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Digital contact tracing applications have been introduced in many countries to aid in the con-
tainment of COVID-19 outbreaks. Initially, enthusiasm was high regarding their implementation
as a non-pharmaceutical intervention (NPI). Yet, no country was able to prevent larger outbreaks
without falling back to harsher NPIs, and the total effect of digital contact tracing remains elusive.
Based on the results of empirical studies and modeling efforts, we show that digital contact tracing
apps might have prevented cases on the order of single-digit percentages up until now, at best.
We show that this poor impact can be attributed to a combination of low participation rates, a
non-flexible reliance on symptom-based testing, low engagement of participants, and delays between
testing and test result upload. We find that contact tracing does not change the epidemic threshold
and exclusively prevents more cases during the supercritical phase of an epidemic, making it unfit
as a tool to prevent outbreaks. Locally clustered contact structures may increase the intervention’s
efficacy, but only if the number of contacts per individual is homogeneously distributed, a condition
usually not found in contact networks. Our results suggest that policy makers cannot rely on digital
contact tracing to contain outbreaks of COVID-19 or similar diseases.

I. INTRODUCTION

During the ongoing coronavirus disease 2019
(COVID-19) pandemic, the severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2) infected
more than 176 million people and caused more than
3.8 million deaths worldwide up to June 18, 2021 [1].
Among other pivotal measures to mitigate or contain
the disease’s spread, the most common one is test-
ing and quarantining of symptomatic individuals [2, 3].
While this intervention is usually rather effective, a
substantial proportion of transmissions in the COVID-
19 pandemic occur from asymptomatic, paucisymp-
tomatic, or presymptomatic infected individuals, which
curbs its success [4–6].

A non-pharmaceutical intervention that can help
identifying non-symptomatic, yet infectious individu-
als is “contact tracing” (CT), where epidemiologically
relevant contacts of confirmed index cases are traced
and isolated. This procedure effectively shortens the in-
fectious period of potentially infected secondary cases,
thereby reducing the number of tertiary infections.
However, if the tracing mechanism takes too much time
to identify and isolate contacts, few further infections
are prevented [7], a problem that many countries face
when their public health system is overburdened. With
the intention to accelerate and supplement the manual
tracing process, digital contact tracing (DigCT) mobile
phone applications were introduced in multiple coun-
tries over the course of 2020, for instance in the Eu-
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ropean Union [8]. These applications measure expo-
sure to other individuals by using low-energy Bluetooth
technology to identify their respective phones running
the same or a compatible application. If tested posi-
tively, an index case can use the app to send notifica-
tions to potentially exposed individuals automatically
who can then contact authorities, isolate themselves or
get tested [9]. The major prospect of DigCT as com-
pared to traditional CT is that infection chains might
be broken sufficiently fast to contain an outbreak. In
addition to the benefit of immediate notification upon
case confirmation, and thus a reduced time until quar-
antine, DigCT may also identify contacts that are un-
known to the index case, an advantage compared to
manual contact tracing [10, 11]. While DigCT could
have also had an indirect impact by providing access
to anonymized, time resolved contact structures that
would have made more informed mitigation strategies
possible, a decentralized implementation was chosen in
most countries due to privacy concerns, which makes
this kind of data unavailable [12]. The success of such
large-scale digital mitigation strategies mostly depends,
for a voluntary and decentralized approach, on accep-
tance in the general population, proper usage of the
application, and technical properties [13]. Numerous
studies have already been conducted regarding benefits
and limitations of DigCT concerning its use during the
COVID-19 pandemic [14–27]. It was found that strong
mitigation effects could only be observed with high app
participation. From a contact network perspective, this
is not surprising because DigCT is founded on sam-
pling contacts in a population and, approximately, the
fraction of sampled contacts scales with participation
quadratically. So, for instance, if 10% of the population
participates only 1% of all contacts occur between pairs
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of individuals that are users of a DigCT application.
Nevertheless, no critical threshold exists below which
DigCT had no impact on mitigation at all, suggesting
that even a low proportion of app-participating indi-
viduals can cause a reduction in outbreak size [20]. In
particular, DigCT might lead, in the absence of other
NPIs, to an asymptotic exponential decay in prevalence,
suggesting DigCT-induced “epidemic control” of an out-
break [11, 14, 23]. Yet, a quantitative assessment of
the actual positive epidemiological effects and DigCT’s
efficacy is challenging because a number of different
variables are involved whose influence can be difficult
to quantify empirically, e.g. participation rates, delays
in quarantining and notification, the amount of traced
contacts, high pre-/asymptomatic transmission rates,
or missing bidirectional tracing [15, 18, 19, 23]. Re-
cently, it was reported that a 30% participation rate
might have lead to a 15% reduction in cases in the UK
during the last quarter of 2020, while for France, a mod-
eling analysis suggested an 8% reduction in peak preva-
lence (on top of household isolation, which was found
to provide a base reduction of 27%) [22, 28]. For em-
pirically recorded temporally resolved contact networks,
a DigCT efficacy of <∼ 5% and ≈ 10% have been found
based on modeling, respectively, for a participation rate
of a = 30% [20]. It has been argued that further increas-
ing the participation rate will lead to stronger mitiga-
tion or even containment [14, 22, 28]. The discrepancy
of reported efficacies and the new availability of empiri-
cal data regarding how users interact with the respective
applications warrant a deeper analysis of which factors
influence the intervention’s success in which way.

In order to assess critical factors that determine the
success of DigCT applications empirically, several field
studies have been conducted, e.g. in Spain, [10], Nor-
way [11], and Switzerland [29]. It was found that 64%
(La Gomera, Spain) or 60.3% (Zurich, Switzerland) of
all app users upload a positive test result. This is in
agreement with the findings in Norway where 50%–70%
of app users were reported to be active daily and may
therefore be categorized as active users. In Germany,
62% of app users uploaded their positive test results
up to May 20, 2021 [30]. Uploaded test results led
to 6.3 (La Gomera) and 4.3 (Zurich) notified individ-
uals per index case. Of those notified contacts, 10%
and 53% reached out to authorities for follow-ups in
La Gomera and Zurich, respectively. Both studies con-
cluded a population-wide app-participation of around
30%. The proportion of notified contacts that are un-
known to the index case ranges from 11% (Norway) to
20%–40% (La Gomera).

So far, it remains essentially elusive, however, to
which extent DigCT applications may have contributed
to the reduction of COVID-19 outbreak sizes. In par-
ticular, the empirical results discussed above have not
been used to quantify outbreak reduction in real-world

settings, apart from the UK [28]. Also, drastic non-
pharmaceutical interventions (NPIs) usually referred to
as “lockdown” measures most likely changed both the
population’s contact structure as well as its mixing
properties, hence the question arises how these changes,
and contact structure in general, might influence the
success of DigCT applications. Since DigCT relies on
symptom-based testing to identify index cases, one may
also wonder how its success depends on testing efficacy,
which of both should be expanded to mitigate the dis-
ease’s spread further, and whether outbreaks can be
prevented with higher levels of app participation.

To provide answers to these questions, we analyzed
how strongly the introduction of DigCT via mobile
phone applications can reduce the size of a COVID-
19-like outbreak in different settings based on stochas-
tic simulations on contact networks and considering the
empirical results from real-world settings.

Our analysis suggests that in the absence of other
NPIs, DigCT might lead to a decrease in outbreak size
on the order of a few percent at best, which represents
an upper bound as it ignores the fact that a large part
of traced individuals are contacts that would have been
found via manual contact tracing, too [10, 11]. DigCT
might be more successful when contact structures are
locally clustered, yet this advantage disappears if con-
tacts per index case are broadly distributed, as is com-
mon for many social systems. We also find that the
efficacy of DigCT increases with increasing symptom-
based testing, but neither can prevent an outbreak of a
disease for which 50% of infections are caused by pre-
or asymptomatic individuals. We show that lockdown
measures that reduce both contacts and mixing, para-
doxically, make DigCT even less effective: supercriti-
cality is crucial for DigCT to work. Consequently, con-
tainment and mitigation policies cannot rely on DigCT
to prevent outbreaks, yet it might help complementing
the manual CT process in times of rising case numbers.

II. MATERIAL AND METHODS

We base our analysis on a stochastic dynamic disease
model that accommodates the central mechanisms con-
tributing to the outcome of DigCT applications. Con-
tact structure is modeled by networks in which nodes
represent individuals (N = 200,000) and links repre-
sent epidemiologically relevant contacts, see Fig. 1A.
Given an app participation of 0 ≤ a ≤ 1, we sample
≈ aN individuals uniformly at random and mark them
as app participants who can thus be traced. Susceptible
individuals may be infected via contacts to infectious
individuals, at which point they enter a latent phase
and become presymptomatic infectious afterwards. In
agreement with empirical results, we assume that 50%
of infections are caused by individuals in the presymp-
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Figure 1. A) Symptom-based testing and DigCT. On a contact network, a proportion a of all individuals are marked as
app users, chosen at random. Only contacts between app users are considered to be traceable. Susceptible individuals
(S) can be infected by presymptomatic, asymptomatic, or symptomatic individuals (I). Once infected, they enter a latent
phase, where they are infected but not yet infectious (not shown here). Symptomatic individuals will be discovered either
through symptom-based or app-induced testing, at which point they enter a latent testing state T that represents a waiting
period during which the result is processed and prepared for upload. When a result is received, individuals enter the X
state, at which point they may upload the result. Not all T individuals will upload their positive test result (either because
they are not app users or because they decide not to). Those who do will trigger a notification of their contacts that
are app users. We assume that notified app users will either self-isolate (enter the states Q or C) or get tested and may
trigger contact-tracing themselves. In this case all, latent, symptomatic, pre-symptomatic, and asymptomatic contacts can
be tested (in contrast to index-case testing, which is symptom-based only). Documented infections are counted in the X
compartment, undocumented infections in the R and C compartments. Simulations are run until state-changing events
no longer occur. The outbreak size and dark factor are given by Eqs. (1)-(2). B) We analyzed the efficacy of DigCT on
four different network topologies to estimate the impact of different properties of real contact networks: (i) Erdős–Rényi
networks (well-mixed and localized degree distribution), (ii) small-world networks (locally clustered with few long-range
connections and narrow degree distribution) (iii) well-mixed networks with a broad degree distribution and (iv) locally
clustered small-world networks with a broad degree distribution.

tomatic phase [4, 5, 31]. We include this to test the
hypothesis that DigCT can reduce outbreaks by identi-
fying and isolating presymptomatic cases quickly. Em-
pirical studies have further shown that approximately
17% of infected individuals remain asymptomatic, while
83% become symptomatic eventually [32]. In both of
these states, individuals infect non-isolated suscepti-
bles, yet only symptomatic individuals can be identi-
fied via symptom-based testing, the major mechanism
through which DigCT is invoked. Naturally, not every
person with symptoms is tested for a variety of rea-
sons. For instance, cases with mild symptoms may be
less likely to seek medical help. Likewise, tests may be
denied to certain individuals when maximum testing
capacity is reached. When a symptomatic individual
is tested, we assume that they are isolated and wait
for their positive test result. When test results are re-
ceived, app participants can choose to notify their con-
tacts through the DigCT application which, according
to the empirical studies cited above, ≈ 64% of app users

do [10]. DigCT-participating contacts of such index
cases are then notified and may choose to self-isolate
or to get tested. We assume that 90% of contacts will
self-isolate and only 10% will contact authorities to get
tested themselves [10]. Susceptibles that have chosen
to self-isolate return to their normal behavior after 10
days on average. Note that we distinguish between
the number of documented, isolated infected individuals
X(t), undocumented, non-isolated infected individuals
R(t), and undocumented, self-isolated infected individ-
uals C(t). The final size of an outbreak is therefore

Ω = R∞ + C∞ +X∞, (1)

with f∞ = limt→∞ f(t). We quantify the ratio of doc-
umented to all infections by means of the dark factor

DF = Ω/X∞ (2)

that is, if the documented number of infections is X∞,
the actual number of infections is DF × X∞, i.e. DF
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times as large, also called the inverse ascertainment
factor [28]. For constant symptom-based testing ef-
ficacy and varying app participation a, we refer to
DF0 = Ω(a = 0)/X∞(a = 0) as the initial dark fac-
tor, i.e. the dark factor in the absence of DigCT.

Regarding the impact of contact network structure,
we assume that the typical infectious period of the or-
der of a few days is sufficiently long to model contact
networks as an effective, averaged medium and simu-
late the dynamics on static networks only [33]. Due
to data privacy reasons, it is impossible for researchers
to record the complete contact structure between indi-
viduals using DigCT applications. We therefore test the
efficacy of DigCT on multiple model network structures
to assess how (i) broader degree distributions and (ii)
strong local clustering affect the success of DigCT, both
of which are typical properties of social networks [34].
We use four different network models to test DigCT ef-
ficacy on all combinations of the network properties (i)
homogeneous and heterogeneous contact numbers and
(ii) locally-clustered and well-mixed structure (see SI).
Given the average contact number of 6.3 per index case
and ≈ 33% app participation in the La Gomera experi-
ment, we simulate networks with an average of k0 = 20
relevant contacts per person in the entire ensemble.

Additionally, we compared the efficacy of DigCT be-
tween two systems where (a) the disease can spread
freely through a well-mixed contact structure and (b)
“lockdown” measures reduce both the number of con-
tacts as well as the population’s degree of mixing. Rep-
resenting a “no-lockdown” scenario, we analyze an en-
semble of Erdős–Rényi random networks with a mean
contact number of k0 = 20 and a basic reproduction
number of R0 = 2.5. We assume that introducing
lockdown measures reduces contacts by 50% and ren-
der clustering in contact structures more pronounced (a
similar effect was observed in mobility networks [35]).
Therefore, for a pure “lockdown” scenario, we simu-
late outbreaks on locally clustered small-world networks
with k0 = 10 and R0 = 1.25, implying a per-link trans-
mission rate that is constant between both scenarios.

III. RESULTS

Assuming an app participation of a = 30% and an ini-
tial dark factor of DF0 = 4 (which implies a 30% detec-
tion rate of symptomatic individuals [36, 37], see SI), we
find that DigCT alone leads to reductions in outbreak
sizes on the order of ≈ 5%. This result is robust for
homogeneous well-mixed networks as well as networks
with broader contact distributions. Only locally clus-
tered networks with narrow contact distributions yield
a higher reduction of ≈ 12% (see Fig. 2A). However,
this increased reduction vanishes when broader contact
distributions are considered in the presence of local clus-
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Figure 2. Relative mean outbreak size reduction 1 −
〈Ω(a = 30%)〉 / 〈Ω(a = 0)〉 caused by DigCT. The app par-
ticipation rate was fixed at a = 30%, and symptom-based
testing was assumed to lead to initial dark factors of DF0 ∈
{12, 4, 2.4} (note that 〈Ω(a = 0)〉 depends on the initial dark
factor as well as the contact structure, see Fig. 4). DigCT
has a stronger effect in locally clustered networks with nar-
row degree distributions as compared to their random coun-
terparts (see grey bars). To test whether this success prevails
for systems that resemble real social networks more closely,
we further measured outbreak size reduction for networks
with heterogeneous contact distribution. We find that the
advantage that local clustering has over random structures
vanished when one additionally considers broader contact
distributions (see orange bars). Increasing symptom-based
testing (i.e. decreasing the dark factor) enhances the effi-
cacy of DigCT. All network structures were simulated with
an average contact number of k0 = 20 per individual.

tering. Increasing the efficacy of symptom-based test-
ing reduces the dark factor and enhances the relative
success of DigCT, which remains on a very low level
nevertheless (Fig. 2A). The dark factor itself changes
only marginally when increasing app participation (see
SI Fig. 6B), implying that DigCT will not contribute
towards a clearer picture of the true extent of an out-
break. The epidemic threshold is unaffected by DigCT
and its positive effect does not increase substantially for
other values of R0 (see SI Fig. 6A).

Considering lockdown measures that reduce both the
number of contacts as well as mixing in the popula-
tion, we compared the DigCT-induced relative outbreak
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Figure 3. Capturing “lockdown” measures in our model, we compare the relative mean outbreak size reduction in a situation
where (A) the disease spreads freely to a situation where (B) the disease’s spread is mitigated by (i) reducing the number
of contacts by 50% and (ii) assuming a locally more clustered contact structure. Despite what our result of Fig. 2 implied,
the locally clustered structure does not enhance DigCT’s success when the disease is subcritical. This suggests that
supercriticality is necessary for DigCT to work more efficiently.

size reduction for two different networks, one where
the disease can spread freely through a well-mixed con-
tact structure and one where a “lockdown” halved the
number of contacts and exposes local clustering, effec-
tively turning the infectious disease dynamics subcrit-
ical. We observe a much lower relative reduction in
the outbreak size in the lockdown scenario than in the
free scenario, even though contacts have been reduced
and our previous analysis suggested increased cluster-
ing or decreased mixing may enhance DigCT’s success
(Fig. 2B). This analysis demonstrates that DigCT effi-
cacy is directly related to the number of infectious con-
tacts and hence prevents more infections in supercritical
situations (both absolutely and relatively).

Many countries experienced similar, more complex
patterns of pandemic trajectories up until now: Of-
ten, periods of un- or partially mitigated spread were
followed by suppressed growth, stifled by “lockdown”
measures that temporarily reduced the effective repro-
duction rate. To investigate how the dynamic trajec-
tory of an epidemic influences the number of infec-
tions averted by DigCT, we compared epidemics that
(i) spread freely and (ii) were dominated by periodic
changes of unmitigated growth and suppression by other
NPIs (see SI). We find that the success of DigCT is
strongly influenced by the dynamics of the pandemic
(see SI, Fig. 11). As a rule of thumb, DigCT will prevent
more cases in phases of epidemic growth. Yet, after an

outbreak reaches its peak and if no other NPIs mitigate
the spread, prevalence will decay less quickly in DigCT-
mitigated systems than if herd immunity was reached
naturally, which, in turn, leads to a negative number
of cases averted during this phase of the outbreak, re-
ducing the overall percentage of averted infections until
the epidemic is over. This reduction in efficacy can
be avoided when other NPIs strongly suppress further
dissemination of the disease, in which case the average
number of averted cases can, but does not have to, re-
main at higher values. This effect is more pronounced
in systems where testing is not symptom-based (see SI,
Fig. 12).

To analyze whether increasing app participation or
increasing efficacy of symptom-based testing has a
higher impact on mitigation we compared how much
the outbreak size is reduced if either the dark factor is
reduced from DF0 = 4 to DF0 = 2.4 (by detecting 20%
more symptomatic individuals, see SI) or the app par-
ticipation is increased by 20% (from 30% to 50%). In
well-mixed networks and networks with an exponential
degree distribution, neither increase has an advantage
over the other (Fig. 4). In locally clustered contact
structures with homogeneous contact numbers, increas-
ing symptom-based testing reduces the outbreak size
more strongly. The benefit of increased symptom-based
testing in locally clustered structures can thus only be
maintained if the number of contacts is homogeneous,
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Figure 4. Comparison of the absolute outbreak size 〈Ω〉 /N for different network models introduced in Fig. 1, shown for app
participation values of a ∈ {0%, 30%, 50%}. We further compared the absence of symptom-based testing, and testing that
would lead to dark factors of DF0 = 4 and DF0 = 2.4, respectively. Empirical observations suggest that several countries
are currently in a state of an a ≈ 30% app participation rate and a dark factor on the order of DF0 = 4. We find that
for three of the four network structures no difference in increasing either symptom-based testing or app-participation. For
locally clustered small-world networks with narrow contact distribution, an increase of symptom-based testing leads to a
stronger reduction than an increase in DigCT participation.

which is untypical for social networks. Neither increase
will lead to containment.

Since we consider that susceptible contacts will iso-
late themselves for an average of 10 days after receiving
a notification, one may wonder how strongly DigCT-
induced mitigation depends on a considerable number
of susceptible individuals shielding themselves from the
infection process. Indeed, considering that susceptibles
would not isolate themselves, we find a reduced efficacy
in outbreak reduction (yet barely effecting our results).
Similarly, the mitigation effect is reduced if less contacts
would respond to a notification (see SI Fig. 7).

So far, we assumed that only 10% of traced contacts
get tested and hence may induce next-generation trac-

ing, as based on the empirical results found in Spain.
This number was measured, however, in a situation
where the population was disease-free. In a real out-
break situation, one might assume that this value in-
creases due to an increase in perceived risk. Considering
that 50% of all traced contacts initiate further tracing
[29], DigCT efficacy does not increase substantially for
dark factors on the order of DF0 = 4 or app partic-
ipation on the order of a ≈ 30%. However, for high
dark factors (i.e. low symptom-based testing efficacy)
or high app participation, an increased probability to
induce next-generation tracing increases DigCT’s rela-
tive efficacy more strongly (see SI Fig. 8).
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IV. DISCUSSION

Contrary to the positive expectations DigCT has
raised initially, we conclude that its impact on the con-
tainment of COVID-19 outbreaks was low in most coun-
tries. While our results suggest a relative reduction of
case numbers in the single-digit percentages for other-
wise unmitigated outbreaks, we ignored the fact that
many of the cases that are found via DigCT will be
found via manual CT, as well (by authorities or by
self-induced household isolation), as suggested by the
empirical studies in Spain and Norway [10, 11]. The
initial claim that the introduction of DigCT might lead
to “epidemic control” [14] is thwarted by the fact that
the intervention has a higher efficacy in phases of strong
growth and higher prevalence.

Our analysis demonstrates, however, that DigCT
does indeed prevent cases, even if this number is in the
low percentages. Since every prevented case is a life
potentially spared, one may argue that its implementa-
tion is of use in any case. Yet, the consequences of the
intervention’s introduction on the behavior of the pop-
ulation should not be disregarded. Since DigCT appli-
cations have been marketed to be rather effective, their
introduction may have lead to an increase in contacts,
which in turn could nullify the method’s benefits.

The efficacy can be enhanced by increasing participa-
tion rates, randomized or symptom-based testing, the
proportion of test results uploaded to the app, the pro-
portion of contacted people that trigger next-generation
tracing, as well as the introduction of strict NPIs that
strongly suppress growth after an outbreak emerged. It
is questionable, however, whether higher participation
rates than those observed can be achieved because the
number of people eligible for participation in DigCT is
limited regardless [38].

In our analysis, we disregarded that contact struc-
tures and app participation may assume heterogeneous
values across different regions and age groups. We ex-
pect that local clustering of app usage will improve the
method’s efficacy due to Jensen’s inequality. In the UK,

higher values of relative outbreak size reduction have
been reported [28], which might be attributed to tech-
nical differences of the application, the authors ignor-
ing the influence of the testing-dependent dark factor,
or that the impact of DigCT was measured exclusively
over a period where cases mostly grew, which is when
the relative effect of DigCT will be stronger.

Apart from their low impact on containment, DigCT
applications might have been an outstanding possibil-
ity for researchers in digital epidemiology to learn more
about temporal and spatial contact structures by allow-
ing access to aggregated, anonymized contact histories.
Doing so would have enabled the field to give more tar-
geted statements about the contact structure-mediated
risk of infection. Unfortunately, this has not been made
possible because due to privacy concerns, a decentral-
ized approach was chosen in most countries, in which
such data is unavailable. Given our analysis, one might
argue that this kind of information, that comes as a
by-product of DigCT, might have had a similar impact
on containment than the applications’ initial purpose,
even if less privacy would have implied lower participa-
tion rates.

In summary, despite the promising outlook DigCT
applications had initially, we argue that at best they
can support manual contact tracing when outbreaks be-
come large, but will not mitigate outbreaks significantly,
which is why policy makers should concentrate on other
non-pharmaceutical interventions for the containment
of COVID-19 or similar diseases.
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Appendix A: Model

We devise a stochastic infection model based on the
compartmental susceptible-exposed-infectious-removed
(SEIR) model [2]. We split the infectious state to ac-
count for presymptomatic (IP ), asymptomatic (IA) and
symptomatic (IS) infectious individuals in order to ad-
equately test the hypothesis that DigCT can contribute
to containment by quickly identifying pre- and asymp-
tomatic individuals. Furthermore, we introduce states
for individuals being susceptible and quarantined (Q),
infected and tested (T ), known infected and quaran-
tined (X), and unknown infected and quarantined (C),
see Fig. 5. The model is run on static networks of node
set size N and mean degree k0. The following events
may happen.

• S + I•
φ•−→ E + I• : Susceptible individuals will

become exposed after getting infected by any of
their a-, pre- or symptomatic neighbors. A sub-
stantial proportion of infections are caused by pre-
and asymptomatic transmissions [4, 5, 31]. We
assume that transmissions caused by presymp-
tomatic individuals represent half of all infections
occured and that asymptomatic and symptomatic
individuals are equally infectious (while asymp-
tomatic infections may be associated with lower
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viral shedding, it has been reported that they
might be equally infectious nevertheless [39], fur-
thermore, asymptomatic infecteds are less likely
to change their behavior, in contrast to symp-
tomatic individuals who will be more prone to
self-isolation). In the base parameter set, a single
infectious individual in an otherwise susceptible
population transmits the disease to R0 = 2.5 sus-
ceptibles. Of these transmissions, R0/2 happen
during the presymptomatic phase and R0/2 in ei-
ther an asymptomatic or a symptomatic phase.
To make simulations comparable across network
models, we gauge the transmission rate per link
using the mean-field definition of R0 as

φP =
βR0

2k0
, (A1)

φA,S =
ρR0

2k0
, (A2)

where β−1 is the average duration of the presymp-
tomatic infectious period and ρ−1 is the average
duration of the remaining infectious period (see
below for numerical values).

• E
α−→ IP : Exposed individuals will become

presymptomatic and therefore infectious after a
latency period τE = α−1 = 3 d [31, 40–44].

• IP
xβ−→ IA : A proportion x = 0.17 [32]

of all presymptomatic individuals will not de-
velop symptoms and will therefore become asymp-
tomatic infectious after an average time τP =
β−1 = 2 d [31, 42].

• IP
(1−x)β−→ IS : A fraction (1 − x) of all presymp-

tomatic individuals will develop symptoms after
an average duration of τP and will therefore be
symptomatic infectious.

• IA,S
ρ−→ R : After an infectious period of τI =

ρ−1 = 7 d [45, 46] asymptomatic and symptomatic
individuals will be removed (R) from the dynam-
ics.

• IS
κ−→ T : With symptom-based testing, a symp-

tomatic infectious individual can be detected with
rate κ which is determined by the isolation prob-
ability q = κ/(κ+ ρ), which measures the prob-
ability to detect a symptomatic individual before
it recovers. Hence, q quantifies the efficacy of
symptom-based testing: For higher values of q,
more symptomatic individuals will be detected
earlier. The detected individual will enter the
state T , which acts as a waiting compartment
and symbolizes the time that passes between de-
tection, receiving, and uploading a positive test

result to the app if the individual is an app par-
ticipant.

• T
χ−→ X : After being detected, the individual

will enter the final infected and quarantined state
X after a time τT = χ−1 = 2.5 d. We base this
assumption on the following considerations: If on
day 1 a sample was taken, then on day 2 the test
result will be available and can be uploaded. Then
on day 3 the contacts of the confirmed case will
download the new data and receive a notification.
When entering X, the app-participating individ-
uals can induce DigCT (red and blue arrows in
Fig. 5).

• DigCT: Digital contact tracing is modeled as a
conditional stochastic event that happens imme-
diately after a Ta → Xa event is triggered. The
probability of an app-participating confirmed in-
fectious individual to upload a positive test re-
sult when entering Xa is assumed to be z = 0.64
[10, 29]. All of this individual’s neighbors will be
notified and will be quarantined. Yet, only a frac-
tion y = 0.1 will induce further tracing themselves
(if they are infected). This implies that if an indi-
vidual in Ta enters theXa state and uploads its re-
sult, its infected (any of Ea, IP,a, IA,a, IS,a) noti-
fied neighbors are entering the Ta state with prob-
ability y (red in Fig. 5), and are therefore counted
as known to the public health system. Otherwise,
they enter the C state with probability 1−y (blue
in Fig. 5). Susceptible notified neighbors will be
quarantined (entering Q) in a manner similar to
infected neighbors, but will never induce further
tracing and will return to their normal behavior
(S) after an average duration of τQ = ω−1 = 10 d
[47]. The remaining 1 − z confirmed infectious
app-users that will not upload their test result
will behave as none-participating individuals and
enter X. Simulations with only half of the indi-
vidual’s contacts reacting, or y = 0.5, or changing
the base configuration in a way that susceptible
contacts will never be isolated can be found in
App. C.

We use an adapted version of Gillespie’s algorithm to
simulate the link- and node-mediated processes listed
above, which is a generalized version of the rejection-
sampling algorithm presented in [48]. The model and
simulations were implemented using the infectious dis-
ease modeling framework “epipack” [49]. All simulations
were initiated with IP,0 presymptomatic infectious in-
dividuals, where IP,0 was drawn from a binomial distri-
bution with size N and mean N/100 . For each simu-
lation, a number of app participants was drawn from a
binomial distribution with size N and mean aN . Both
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Figure 5. Flowchart of the epidemic digital contact tracing model used in this study. States of app-participating individuals
are marked with subscript a. Susceptible individuals S (Sa, respectively) will become exposed E (Ea) after getting infected
and enter a presymptomatic infectious state IP (IPa). Susceptible individuals can be infected by any neighbor in any
infectious state (IA, IP , IS , IA,a, IP,a, IS,a). After being presymptomatic infectious, individuals become either asymptomatic
IA (IAa) or symptomatic infectious IS (ISa) and can either recover R (Ra) or, if they are symptomatic, they can be found
by symptom-based testing T (Ta). Tested individuals that are not app participants (T ) will enter the final infected and
quarantined compartment X. Tested individuals that are app-participants Ta will either upload their positive test result
or not. If they do, they enter the Xa state, if not they behave like non-participating individuals and enter X. When
an individual enters Xa, its infected neighbors will either choose to self-quarantine C or to get tested Ta to induce next-
generation tracing. Susceptible neighbors will always choose to self-quarantine (Q) and will re-enter society after time
ω−1.

initially infected and app participants are drawn uni-
form at random from the node set. For each parameter
set and structure 100 independent simulations were run
until the total event rate reached zero, marking time tf .
Subsequently, the final outbreak sizes were computed
as X∞ = X(tf) + Xa(tf), C∞ = C(tf) + Ca(tf), and
R∞ = R(tf) + Ra(tf) for each simulation (note that
f(t) symbolizes the number of individuals that are in
state f at time t).

Appendix B: Network Models

Simulations were performed on four different static
network models representing several properties of em-
pirical social contact networks. For each simulation,
a network instance was sampled from each of the re-
spective network model ensembles, on which the sim-
ulation was then run. We used N = 200 000 nodes
and an average number of contacts (average degree)
of k0 = 20 if not stated otherwise. While the results
converge for lower values of N , this value was chosen
to strongly reduce the uncertainty of displayed aver-
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ages. As a base model we sample Erdős–Rényi/Gilbert
G(N, p = k0/(N − 1)) random networks [50–52]. These
networks represent well-mixed systems with homoge-
neous contact distributions. For locally clustered small-
world networks with homogeneous contact distribution,
we constructed Watts–Strogatz-like small-world net-
works with an algorithm that draws edges according to a
distance-dependent connection probability with a short-
range kernel [53, 54] (here, distance refers to lattice dis-
tance on a one-dimensional ring). We chose a long-
range probability redistribution parameter of β = 10−7

where the random walk mixing time is on the order of
that of random networks but average clustering is high
(C = 0.7). In order to represent well-mixed systems
with heterogeneous contact distributions, we generated
degree sequences following an exponential distribution
and constructed networks using the configuration model
[55], where we removed self-loops and duplicate links.
Exponentially distributed contact numbers have been
observed in several human contact networks [33, 56].
While systems with heterogeneous contacts are often
modeled with power-law degree distribution, an expo-
nential distribution suffices to induce typical spreading-
related properties such as a lowered epidemic thresh-
old and lower endemic states for higher infection rates
[33]. An exponential contact distribution also ensures
that the maximum number of contacts in a network of
N = 2× 105 nodes is on the order of Dunbar’s number
[57].

Last but not least, we want to represent systems that
are locally clustered, small-world, and have a heteroge-
neous contact distribution. We developed a new model
that meets these properties. Networks are constructed
as follows. Arrange N nodes on a ring. Each node is
assigned a number of stubs from an exponential dis-
tribution. Now iterate over all nodes in one of three
orders: (i) by descending stub count, (ii) by ascending
stub count, or (iii) randomly. For each node u, iter-
ate over all nodes v 6= u on the ring, sorted by lattice
distance to the focal node u, starting with the nearest
node. If node v has stubs left and u is not yet connected
to v, connect to node v and move on to the next node.
Iterate until u has no stubs left or until the node that
is farthest away (lattice distance N/2) has been visited.

If focal nodes u are iterated in descending order, hubs
are connected first and will likely find locally available
stubs that belong to nodes of small stub count. At last,
a final number of nodes with small stub counts will have
to connect to other low-degree nodes that are far away.
Therefore, the structure is dominated by local connec-
tions and a small number of low-degree nodes will have
non-local connections. The generated network will re-
semble a lattice, but nodes will have exponentially dis-
tributed degrees. Since high-degree nodes are connected
first and to nodes with low stub count, degree assorta-
tivity will be negative. The probability that an edge

connects two nodes at lattice distance d will be concen-
trated at low values of d. An empirical analysis reveals
that a small amount of edges will connect far-away re-
gions, yet d will not reach values of maximum distance
N/2 (see Fig. 9).

If focal nodes u are iterated in ascending order, low-
degree nodes are connected first and “fill up” the local
connections such that once high-degree nodes are con-
nected, only long-range connections are possible, and
with high probability only to other high-degree nodes.
Therefore, hubs will play a mixing role, connecting dif-
ferent regions of the network, while low-degree nodes
will contribute a lattice-like, highly clustered structure.
Degree assortativity will be positive. The probability
that an edge connects two nodes at lattice distance ≤ d
approximately follows d−1 (see Fig. 9).

If focal nodes u are iterated in random order, low-
degree nodes are connected first with higher probability
(because there are significantly more low-degree nodes).
However, low-degree nodes will also connect last with
higher probability. Hence, nodes of any degree will form
a lattice-like structure, while nodes of any degree will
play a mixing role, connecting far-away regions. De-
gree assortativity will be close to zero. The probability
that an edge connects two nodes at lattice distance ≤ d
approximately follows d−1 (see Fig. 9).

Since social networks tend to have positive degree
assortativity [58, 59], we choose to construct networks
in the “ascending” order only. In Fig. 10, we compare
a single result on these networks to networks that were
created using the “random” order to find that degree
assortativity makes no substantial difference.

We relied on networkx [60], numpy [61], and mat-
plotlib [62] for additional analyses and illustrations.

Appendix C: Additional Analyses

1. Varying basic reproduction number

To make sure that our analysis does not rely on the
chosen basic reproductive number and to study whether
DigCT influences the epidemic threshold of the system
we compared the mean and coefficient of variation (CV)
of outbreak size for R0 ∈ [0.1, 10] for a = 0 (no DigCT)
and a = 30% app participation (see Fig. 6). For both,
(i) a random network with exponentially distributed de-
gree as well as (ii) a homogeneous, locally clustered net-
work, minor differences in outbreak size and no differ-
ences in CV were observed for the whole range of R0

suggesting that the efficacy does not increase substan-
tially for other R0 and that the epidemic threshold is
not changed, respectively.

Increasing the efficacy of symptom-based testing de-
creases the dark factor but with increasing app par-
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ticipation the dark factor shows only minor changes for
both networks (see Fig. 6B). This suggests that increas-
ing DigCT does not contribute to obtaining a clearer
picture of the outbreak. We attribute this finding to
the fact that many contacts choose to self-quarantine
instead of getting tested as described above.

2. Influence of proportion of contacts that react
to notification

The assumption that all notified contacts react re-
flects an upper bound. Lower participation should be
considered. Hence, we have simulated that instead of
all, only 50% of all contacts react after a notification.
This means of all infected notified contacts 5% (instead
of 10%) will get tested and 45% (instead of 90%) will
choose to self-quarantine, while the remaining contacts
will not change their state. Of all susceptible notified
contacts 50% (instead of 100%) will choose to self quar-
antine (see Fig. 7ii). We find that doing so leads to
smaller values of relative outbreak size reduction, espe-
cially for higher dark factors (i.e. less efficient symptom-
based testing).

3. Estimating the contribution of isolation of
susceptibles

Additionally, one might wonder how reducing the
pool of susceptibles by isolating them contributes to
the efficacy of DigCT. Hence, we have also simulated
that none of the susceptible contacts choose to self-
quarantine. Doing so reduces the efficacy of DigCT,
but not dramatically. The change is slightly more pro-
nounced for mid-range values of the app participation
a (see Fig. 7iii).

4. Influence of next-generation tracing

In our base analysis we have chosen that 10% of noti-
fied infected contacts will get tested and could therefore
induce further tracing as it was found on La Gomera
[10]. We have also discussed that higher values were
found in Zurich [29]. We therefore reran simulations
with y = 0.5, i.e. 50% of notified contacts will get
tested, to analyze the impact of this parameter. We
simulated on well-mixed and locally clustered networks
(both with exponential degree distribution) how results
are changed if (instead of 10%) 50% will get tested (see
Fig. 8). Increasing the proportion of traced individuals
that get themselves tested to 50% is most beneficial for
high dark factors while with low dark factors only minor
differences were observed (tested on random networks).

These differences are also visible in the small-world net-
work but are not as pronounced.

5. Trajectory of the epidemic influences DigCT’s
efficacy

As many countries experienced trajectories where pe-
riods of growing case numbers where followed by phases
of outbreak suppression (mostly through the introduc-
tion of measures that cut contacts in the whole pop-
ulation, i.e. “lockdown” measures), we analyzed how
strongly the trajectory of an epidemic influences rel-
ative outbreak reduction. We therefore compared this
quantity for different trajectories of an epidemic, one
where no NPIs other than quarantine and tracing mit-
igate the disease’s spread and one where the periodic
introduction of lockdown measures lead to two con-
secutive waves. We simulate 100 independent runs on
Erdős–Rényi random networks (N = 200,000, k0 = 20,
R0 = 2.5, IP,0 = 0.001×N).

First, we analyze the trajectory of the otherwise un-
mitigated epidemic (c.f. Fig. 11A). With rising case
numbers, the efficacy of DigCT increases and more
cases can be averted per day (as compared to an
unmitigated epidemic), both relatively and absolutely
(c.f. Fig. 11A.i). Because DigCT has a higher efficacy
during the supercritical phase, however, the percentage
of averted cases decreases with decreasing prevalence,
after a peak has been reached (c.f. Fig. 11A.iii). The
DigCT-induced decay of case numbers is slower than in
the epidemic where herd immunity was reached without
tracing, leading to a negative number of averted cases,
reducing the interventions efficacy (c.f. Fig. 11A.iv).

Simulating multiple other NPIs during the interven-
tion, we introduce “lockdowns” by randomly cutting
60% of links after the first growth period, restoring these
links after the first lockdown, and then cutting 50% of
links after the second growth phase, keeping this config-
uration for t → ∞. Lockdown measures were initiated
after t1 days, lifted after t2 = 2t1 days, and were rein-
troduced after t3 = 3t1 days. We used t1 ∈ {30, 34, 40}
to compare different trajectories (see Fig. 11): First, a
scenario where the second wave is larger than the first
wave. Second, a scenario, where the waves are of sim-
ilar size. In a third scenario, the first wave is much
larger than the second. While with t1 ∈ {30, 34} the
efficacy can be increased or maintained, t1 = 40 leads
to lower outbreak size reduction during the epidemic’s
subcritical phase. This suggests that the influence of
“lockdowns” on DigCT efficacy is highly dependent on
an epidemic’s dynamic trajectory and could explain dif-
ferences of our results to other studies. Note that in
these simulations, efficacy only increases strongly when
the prevalence reaches high values.
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Figure 6. Mean and coefficient of variation (CV) of outbreak size 〈Ω〉 /N for increasing reproduction number R0 ∈ [0.1, 10]
with DF0 = 4 and a = 0 (no DigCT) or a = 30% app participation in the population on (A.i) a random network with an
exponential degree distribution and (A.ii) a locally clustered small-world network with a localized degree distribution. (B)
Dark factors caused by increasing efficacies of symptom-based testing on (solid line) a random network with an exponential
degree distribution and (dotted line) a locally clustered small-world network with a localized degree distribution. For q ≥ 0.3
the dark factor increases with rising app participation. This is due to the increasing number of individuals that are being
traced but choose to self-quarantine and therefore remain undocumented.

Figure 7. Outbreak size 〈Ω〉 /N and relative outbreak size reduction caused by DigCT with DF0 ∈ {12, 4, 2.4} for increasing
app participation a for (i) the base parameter set, (ii) with only 50% of traced contacts reacting to a notification and (iii)
without isolation of susceptible contacts in (A) a locally clustered small-world network with a localized degree distribution
and (B) a random network with an exponential degree distribution.

6. Influence of random testing during multiple
waves

To analyze DigCT’s dependence on testing strategies,
we additionally simulated a stripped-down version of
our model where we do not differentiate between pre-,

a-, and symptomatic infectious individuals (on Erdős-
Rényi networks, see Fig. 12). This mimics “random”
testing, where the probability to get tested does not
depend on specific infection status. For simplicity, we
also assume that (i) quarantining an individual leads
to immediate notification of their contacts, (ii) every
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Figure 8. Outbreak size 〈Ω〉 /N and relative outbreak size reduction caused by DigCT with DF0 ∈ {12, 4, 2.4} for increasing
app participation a in (A) a well-mixed structure with an exponential degree distribution and (B) in a locally clustered
small-world network with an exponential degree distribution where (i) 10% (y = 0.1) and (ii) 50% (y = 0.5) of traced
infected contacts can induce further tracing.

infected contact is immediately quarantined, (iii) no
next-generation tracing is possible and (iv) susceptibles
will not isolate themselves upon notification. We find a
similar effect as described above for the epidemic that is
only mitigated by testing: When case numbers rise, the
relative number of averted cases increases. After reach-
ing its peak, prevalence decreases slower in the DigCT-
controlled system than in the system without tracing,
where herd immunity was reached. Hence, the total rel-
ative number of averted cases decreases again, reaching

a value of 5% for a = 0.3 and q = 0.3 (c.f. Fig. 12A).
However, simulating an epidemic that has been sup-
pressed by other NPIs twice, we find that high values
of relative number of averted cases can be reached, that
are then not reduced strongly when the outbreak is con-
tained by a harsher reduction of the growth rate trough
other interventions (see SI Fig. 12B). From this, we con-
clude that the total efficacy of DigCT can be kept higher
when a larger outbreak is suppressed by the introduc-
tion of harsher lockdown measures (in combination with
randomized testing).
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Figure 9. Illustration of network properties of the small-world model with heterogeneous degree distribution described in
App. B. Networks can be created by iterating over nodes in “descending”, “ascending” or “random” order. We compare the
structures to a well-mixed model with similar degree sequence (configuration model). The upper row shows illustrations of
the networks that are constructed using the proposed algorithm. Larger disks represent nodes with higher degree and nodes
are positioned closer to the center proportional to the maximum distance that any of its connecting edges bridges. For these
illustrations, networks with N = 5000 and k0 = 10 were generated. For the rows below, a single network instance for each
model was analyzed, with N = 100,000 and k0 = 10. We use the per-node random walk mixing time of the network’s largest
connected component [53] and the average local clustering coefficient C [63] to illustrate the small-world effect. The value
of C remains high for all models that are constructed using this algorithm. When iterating nodes in “descending” order,
the mixing time is significantly larger than iterating in “ascending” or “random” order, both of which yield mixing times on
the order of the random network (configuration model). For all network models, the degree distribution is approximately
equal (note that for the “ascending model”, however, the maximum degree is not as high as for the other models). For the
“descending” model, edges mostly bridge short distances, with a few edges connecting regions that are further away (yet
not reaching the maximum distance N/2). The remaining two models yield edge distances d where the complementary
cumulative distribution function (ccdf) follows a power-law d−1. In contrast, the existence of an edge does not depend on
distance in the configuration model.
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Figure 10. Outbreak size 〈Ω〉 /N and relative outbreak size reduction caused by DigCT with DF0 ∈ {12, 4, 2.4} for increasing
app participation a in (A) assortative small-world network (ordering: ascending) with exponential degree distribution and
(B) small-world network (ordering: random) with exponential degree distribution. Results between both models do not
differ substantially.
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Figure 11. Comparison of (i) the prevalence, (ii) the cumulative infections Ωt(a) (and the difference between cumulative
infections of “no DigCT” and DigCT-mitigated systems), (iii) the relative cumulative averted infections, and (iv) the
prevented infections per day with a ∈ {0%, 30%, 50%} app participation for (A) for spread without lockdowns and (B-D)
for periodically introduced lockdowns where (B) t1 = 30, (C) t1 = 34, (D) t1 = 40.
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Figure 12. A stripped-down version of our model where we do not differentiate between pre-, a-, and symptomatic infectious
individuals. This mimics “random” testing, where the probability to get tested does not depend on specific infection
status. We simulate epidemics that are (A) only mitigated by quarantine and DigCT as well as (B) epidemics that are
forced into two waves by other, abstract NPIs (lockdowns, for instance). We show (i) the prevalence, (ii) the cumulative
infections Ω(t) (and the difference between cumulative infections of “no DigCT” and DigCT-mitigated systems), (iii) relative
cumulative averted infections, and (iv) averted infections per day with a ∈ {0%, 30%, 50%} app participation. While for the
(A.iii) otherwise unmitigated disease, DigCT efficacy increases first and decreases afterwards, (B.iii) efficacy monotonically
increases in the two-wave system. This illustrates both the influence of the specific trajectory of the epidemic as well as
randomized testing. All curves are averages over 100 runs for each simulation. We exclusively simulated on Erdős–Rényi
networks with N = 200,000 nodes and mean degree k0 = 20.
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