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Abstract 

The etiopathogenesis of severe COVID-19 remains unknown. Indeed given major 

confounding factors (age and co-morbidities), true drivers of this condition have remained 

elusive. Here, we employ an unprecedented multi-omics analysis, combined with artificial 

intelligence, in a young patient cohort where major co-morbidities have been excluded at the 

onset. Here, we established a three-tier cohort of individuals younger than 50 years without 

major comorbidities. These included 47 “critical” (in the ICU under mechanical ventilation) 

and 25 “non-critical” (in a noncritical care ward) COVID-19 patients as well as 22 healthy 

individuals. The analyses included whole-genome sequencing, whole-blood RNA 

sequencing, plasma and blood mononuclear cells proteomics, cytokine profiling and high-

throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum 

annealing and structural causal modeling led to key findings. Critical patients were 

characterized by exacerbated inflammation, perturbed lymphoid/myeloid compartments, 

coagulation and viral cell biology. Within a unique gene signature that differentiated critical 

from noncritical patients, several driver genes promoted severe COVID-19 among which the 

upregulated metalloprotease ADAM9 was key. This gene signature was replicated in an 

independent cohort of 81 critical and 73 recovered COVID-19 patients, as were ADAM9 

transcripts, soluble form and proteolytic activity. Ex vivo ADAM9 inhibition affected SARS-

CoV-2 uptake and replication in human lung epithelial cells. In conclusion, within a young, 

otherwise healthy, COVID-19 cohort, we provide the landscape of biological perturbations in 

vivo where a unique gene signature differentiated critical from non-critical patients. The key 

driver, ADAM9, interfered with SARS-CoV-2 biology. A repositioning strategy for anti-ADAM9 

therapeutic is feasible. 
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INTRODUCTION 

Unlike many viral infections and most respiratory virus infections, COVID-19 is characterized 

by an extraordinarily complex and diversified spectrum of clinical manifestations, which 

results in the use of “syndemic” within, or in lieu of, pandemic (Horton, 2020). Indeed, upon 

infection with SARS-CoV-2, age-, sex-, and phenotype-matched individuals can be classified 

within four distinct groups, i.e., (1) asymptomatic individuals, (2) patients displaying 

influenza-like illnesses, (3) patients affected by respiratory dysfunction who eventually need 

an external oxygen supply, and (4) patients suffering from acute respiratory distress 

syndrome (ARDS) who need invasive mechanical ventilation in an intensive care unit (ICU). 

Even though the last group represents only a small fraction of COVID-19 patients, this group 

encompasses the most severe form of the disease and has an average case-fatality rate of 

approximately 25% (Quah et al., 2020). Despite intense investigation, the fundamental 

question of why the course of the disease shows such a marked difference in an otherwise, 

apparently indistinguishable set of individuals, remains despite key findings in discrete 

subpopulations (Van Der Made et al., 2020; Shelton et al., 2021; The Severe Covid-19 

GWAS, 2020; Zhang et al., 2020), largely unanswered i.e. the exact pathophysiological 

mechanism governing the disease severity within a demographically and clinically 

homogeneous group of patients remains, for the majority of such patients, mostly unclear. To 

better understand this issue, high-resolution molecular analyses should be applied to well-

defined cohorts of patients and controls where a maximum of confounding factors have been 

eliminated. These include notably older age as well as a number of co-morbidities – e.g., 

cerebrovascular disease, types 1 and 2 diabetes, chronic kidney disease, chronic obstructive 

pulmonary disease, heart conditions, etc. (CDC, 2021) – present in COVID-19 patients. This 

is the case for the three-tier cohort studied in this work. 

Several studies have used single, or a restricted number of omics technologies to 

uncover key molecular processes associated with disease severity, usually in unfiltered 

severe COVID-19 patients. Systemic inflammation with high levels of acute-phase proteins 

(C reactive protein; CRP, serum amyloid A; SAA, calprotectin) (Silvin et al., 2020) and 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.21.21257822doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.21.21257822


6 
 

inflammatory cytokines, particularly interleukin (IL)-6 and IL-1β (Chen et al., 2020a; 

Giamarellos-Bourboulis et al., 2020; Lucas et al., 2020) has been found to be a hallmark of 

disease severity. In contrast, following an initial burst shortly after infection, the type I 

interferon (IFN) response is impaired at the RNA (Hadjadj et al., 2020) and plasma (Trouillet-

Assant et al., 2020) levels. Severity was also correlated with profound immune 

dysregulations, including modifications in the myeloid compartment with increases in 

neutrophils (Meizlish et al., 2021; Schulte-Schrepping et al., 2020), decreases in nonclassical 

monocytes (Silvin et al., 2020) and dysregulation of macrophages (Giamarellos-Bourboulis et 

al., 2020; Shen et al., 2020). The lymphoid compartment is also modified by both a B-cell 

response activation (De Biasi et al., 2020a) and an impaired T-cell response characterized 

by skewing towards a Th17 phenotype (De Biasi et al., 2020b; Odak et al., 2020). Moreover, 

coagulation defects have been identified in critically ill patients who are prone to thrombotic 

complications (Helms et al., 2020; Klok et al., 2020b, 2020a). Nevertheless, the full spectrum 

of omics technologies has not been applied to a highly curated cohort of COVID-19 patients 

and controls that was established by discarding a number of key confounding factors that 

affect severity and death, such as older age and comorbidities, at onset. 

In this study, we hypothesized that SARS-CoV-2 induces characteristic molecular 

changes in critical patients that can differentiate them from noncritical patients. We also 

hypothesized that certain host driver genes might be responsible for the development of 

critical illness and that those genes might represent diagnostic, prognostic, and particularly 

therapeutic targets. To test these hypotheses, we performed an ensemble artificial 

intelligence (AI)/machine learning (ML)-based multiomics study of 47 young (aged <50 years) 

COVID-19 patients without comorbidities admitted to the ICU and under mechanical 

ventilation (“critical” patients), versus matched COVID-19 patients (i.e., aged <50 years with 

no comorbidities) needing “only” hospitalization at a noncritical care ward (25 “noncritical” 

patients) and an age- and sex-matched control group of 22 healthy individuals not infected 

with SARS-CoV-2 (“healthy”). The multiomics approach included whole-genome sequencing 

(WGS), whole-blood RNA sequencing (RNA-seq), quantitative plasma and peripheral blood 
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mononuclear cells (PBMCs) proteomics, multiplex plasma cytokine profiling and high-

throughput immune cell phenotyping. These analyses were complemented by the status of 

anti-SARS-CoV-2 neutralizing antibodies and multitarget IgG serology as well as the 

measurement of neutralizing anti-type I IFN auto-antibodies in the entire cohort. 

 

RESULTS 

Patients’ characteristics and study design 

The present study focused on patients who were hospitalized for COVID-19 at a university 

hospital network in northeast France (Alsace) during the first French wave of the pandemic 

(March-April 2020), before the routine use of corticosteroids. A total of 72 patients under 50 

years of age without comorbidities were enrolled. Fifty-three of these patients were men 

(74%), and the median age of the patients was 40 [IQR 33; 46] years. The patients were 

divided into two groups: (i) a “critical” group consisting of 47 (65%) patients hospitalized at 

the ICU due to moderate or severe ARDS according to the Berlin criteria (Ranieri et al., 

2012) with 45 requiring invasive mechanical ventilation and 2 requiring high-flow nasal 

oxygen and noninvasive mechanical ventilation due to acute respiratory failure and (ii) a 

“noncritical” group consisting of 25 patients (35%) who stayed at a noncritical care ward. In 

the latter group, nineteen (76%) needed low-flow supplemental oxygen. Patients who were 

transferred from the noncritical care ward to the ICU were considered “critical” patients. The 

median simplified acute physiology score (SAPS) II of the patients at the ICU was 38 [IQR 

33; 47] points, and the median PaO2/FiO2 ratio of these patients was 123 [IQR 95; 168] 

mmHg upon admission. All the patients were discharged from the hospital or were deceased 

at the time of data analysis. The overall hospital- and day-28 mortality rate was 8.3% (6 

patients, all in the critical group, for a mortality of 13% in this group). The characteristics of 

the patients in both groups are summarized in Table 1. 

Based on these two patient groups and an additional group of 22 healthy (SARS-Cov-

2 negative) sex- and aged-matched controls, we applied a global multiomics analysis 

strategy to identify pathways and drivers of ARDS (Figure 1). PBMCs were analyzed by 
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mass-cytometry (CyTOF®) and shotgun proteomics. Plasma samples were used for multiplex 

cytokine quantification and shotgun proteomics. Serum samples were used for multiplex IgG 

serology (Rudberg et al., 2020), detection of anti-SARS-CoV-2 neutralizing antibodies and 

anti-type I IFN neutralizing autoantibodies. Finally, RNA-seq and WGS were performed using 

whole-blood samples. Unless otherwise specified, all measures were obtained from samples 

that were collected at the time of hospital admission (whether at the ICU or the noncritical 

care ward). Validation of the identified driver genes and pathways was performed using an 

ex vivo model of SARS-CoV-2 infection and a validation cohort of 81 critical patients and 73 

recovered critical patients.  

 

Cytokines, antibodies and immune cell hallmarks of critical COVID-19 

The global proinflammatory cytokine profile showed significantly increased concentrations of 

IFNγ, TNFα, IL-1β, IL-4, IL-6, IL-8, IL-10, and IL-12p70 in critical versus noncritical patients 

(Figure 2A). This “cytokine storm” (Mehta et al., 2020) was more pronounced in critical 

patients, as only IFNγ, TNFα and IL-10 are higher in noncritical patients as compared to 

healthy controls. Although the disease severity was initially associated with an RNA-seq 

based type I IFN signature, the absence of a significant increase in the plasma level of IFNα 

in critical versus noncritical patients, the decrease in the IFNα concentration during the ICU 

stay and the reduction in the number of plasmacytoid dendritic cells, which are the main 

source of IFNα, suggest that the IFN response is indeed impaired in critical patients (Figure 

S1) (Hadjadj et al., 2020). 

At a systemic level, lymphopenia is correlated with disease severity (Guan et al., 

2020; Huang et al., 2020; Mehta et al., 2020) (Figure 2B). To further characterize the 

immune cells, we analyzed PBMCs by mass cytometry using an immune profiling assay 

covering 37 cell populations. Visualization of stochastic neighbor embedding (viSNE) showed 

a cell population density distribution pattern that was specific to the critical group (Figure 2C). 

This pattern could be partly linked to the known immunosuppression phenomenon in severe 

patients (Hadjadj et al., 2020; Leisman et al., 2020; Remy et al., 2020), which was 
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characterized by marked differences in the T cell compartments where memory CD4 and 

CD8 cells and Th17 cells were negatively correlated with disease severity (Figure 2D). The 

latter observation is in line with the absence of a clear association between the plasma levels 

of IL-17 and disease severity (Figure 2A). In contrast, the B-cell compartments of critical 

patients contained more naïve B cells and plasmablasts and fewer memory B cells than 

those of healthy controls (Figure 2E). In accordance with previous reports (De Biasi et al., 

2020a), the number of plasmablasts tended to be higher in critical versus noncritical patients. 

Moreover, noncritical and critical patients were also characterized by lower numbers of 

dendritic cells and nonclassical monocytes (Figure 2F and G). The remaining cell populations 

are presented in Figure S2. 

Altogether, the results indicate that critical illness was characterized by a 

proinflammatory cytokine storm and notable changes in the T, B, dendritic and monocyte cell 

compartments. These specific changes were independent from the extent of viral infection 

per se, as both the global anti-SARS-CoV-2 antibody levels and their neutralizing activity 

were not significantly different in critical versus noncritical patients (Figure S3A and B). 

To complete the immunologic profile, based on findings suggesting that at least 10% 

of critical patients have preexisting anti-type I IFN autoantibodies (Bastard et al., 2020, 

2021), we measured anti-IFNα2 and anti-IFNω neutralizing autoantibodies in patients and 

controls. Autoantibodies against type I IFNs were identified in two critical patients (Figure 

S3C) but none of the non-critical patients nor the healthy controls. Interestingly, in these two 

patients, the presence of autoantibodies was associated with an absence of SARS-CoV-2 

neutralizing activity (Figure S3D). 

 

Quantitative plasma and PBMC proteomics highlight signatures of acute inflammation, 

myeloid activation and dysregulated blood coagulation 

Quantitative nanoLC-MS/MS analysis of whole unfractionated plasma samples identified an 

average of 178 ± 7, 189 ± 11 and 195 ± 8 proteins in healthy individuals, noncritical and 

critical patients, respectively (Figure 3A). After validating the homogeneous distribution of the 
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three groups using a multidimensional scaling plot, we performed a differential protein 

expression analysis to identify protein signatures that were specific to critical patients (Figure 

3B and C). In line with previous studies (Chen et al., 2020b; Silvin et al., 2020), the 

antimicrobial calprotectin (heterodimer of S100A8 and S100A9) was among the top 

differentially expressed proteins (DEPs) in critical versus noncritical patients, which confirms 

that calprotectin is a robust marker for disease severity (Figure 3D). Our data also showed 

dysregulation of multiple apolipoproteins including APOA1, APOA2, APOA4, APOM, APOD, 

APOC1 and APOL1 (Figure 3C and E). Most of these proteins were associated with 

macrophage functions and were downregulated in critical patients. Acute-phase proteins 

(CRP, CPN1, CPN2, C6, CFB, ORM1, ORM2, SERPINA3, and SAA1) were strongly 

upregulated in critical patients (Figure 3C and E). These findings are consistent with previous 

studies showing that acute inflammation and excessive immune cell infiltration are 

associated with disease severity (Chen et al., 2020c; Guan et al., 2020; Shu et al., 2020). 

Whole-cell lysates of PBMCs from the same groups of patients and controls were also 

subjected to quantitative nanoLC-MS/MS analysis. An average of 801 ± 213, 1050 ± 309 and 

1052 ± 286 proteins were identified and quantified in PBMCs of healthy individuals, 

noncritical and critical patients, respectively (Figure 3F). Although the distribution of the three 

groups in the multidimensional scaling plot was less clear than that found for plasma 

proteins, the differential expression analysis between noncritical and critical patients showed 

dysregulation of blood coagulation and myeloid cell differentiation (Figure 3H-I). The latter 

observation involving the CA2, AHSP, SLC4A1, TFRC, DMTN, FASN, and PRTN3 proteins 

was in line with the plasma proteomics results evidencing dysregulation of macrophages and 

with other reports showing that severe COVID-19 is marked by a dysregulated myeloid cell 

compartment (Schulte-Schrepping et al., 2020). The profile of the blood coagulation 

proteins HBB, HBD, HBE1, SLC4A1, PRDX2, SRI, ARF4, MANF, ITGA2, ORM1, and 

SERPINA1 confirmed that severity is also associated with coagulation-associated 

complications that can involve either bleeding or thrombosis (Al-Samkari et al., 2020).  
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Combined transcriptomics and proteomics analysis supports inflammatory pathways 

associated with critical disease 

Consistent with the proteomics data, differential gene expression and gene set enrichment 

analysis of RNA-seq data from whole blood samples collected from the patients showed that 

regulation of the inflammatory response, myeloid cell activation and neutrophil degranulation 

were the main enriched pathways in critical patients with normalized enrichment scores of 

2.33, 2.65 and 2.66, respectively (Figure 4A and B). 

To identify enriched pathways that were supported by different omics layers, we 

performed nested GOSeq (nGOseq) (Yu et al., 2017) functional enrichment of the 

differentially expressed genes or proteins identified from the RNA-seq, plasma and PBMC 

proteomics data. Figure 4C shows the nGOseq terms that were found to be statistically 

enriched in at least two omics datasets in critical compared with non-critical patients. In line 

with the cytokine profiling results (Figure 2A), inflammatory signaling and the response to 

proinflammatory cytokine release (IL-1, IL-8 and IL-12) were supported by multiple omics 

datasets. As suggested by the results from immune cell profiling (Figure 2C and D) and 

previous studies, the B-cell response was activated, whereas the T-cell response was 

impaired (De Biasi et al., 2020a; Li et al., 2021a). As previously witnessed (Meizlish et al., 

2021; Sánchez-Cerrillo et al., 2020; Schulte-Schrepping et al., 2020; Silvin et al., 2020), the 

activation of neutrophils and monocytes was confirmed by the enrichment of nine different 

nGOseq terms (Figure 4C). The nGOseq enrichment analysis also indicated that dysfunction 

of blood coagulation involves a fibrinolytic response, an observation that could, however, be 

linked to the anticoagulant therapy administered to most critical patients. Moreover, nGOseq 

terms related to viral entry and even viral transcription were strongly enriched in the three 

omics datasets. This result was consistent with the identification of viral gene transcripts in 

the RNA-seq data of eight critical patients but not in those from noncritical patients (Table 

S1).  
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Integrated ensemble AI/ML and probabilistic programming discovers a robust gene 

expression signature and driver genes that differentiate critical from noncritical 

patients 

To robustly identify a set of genes that might differentiate between noncritical and critical 

COVID-19 patients and could thus be related to the progression to ARDS, we adopted the 

pipeline depicted in Figure 1B. Briefly, we partitioned the patient blood RNA-seq data 100 

times to account for sampling variation, using 80% for training and 20% for testing, and 

evaluated the performance of seven distinct AI/ML algorithms, including a quantum support 

vector machine (qSVM) to differentiate between noncritical and critical COVID-19 patients. 

We have previously shown that quantum annealing is a more robust classifier for relatively 

small patient training sets (Li et al., 2021b). The receiver operating characteristic curves 

(ROCs) for the 100 partitions of the patient data as well as other classification performance 

metrics are shown in Figure 5A and Table S2. The classification performance on the test set 

provided a high degree of confidence that the signals learned by the various AI/ML 

algorithms are generalizable. 

After successfully classifying noncritical versus critical patients based on whole-

transcriptome RNA-seq profiling, we assessed feature scores across the six distinct ML 

algorithms (see Methods section) and all partitions to determine an ensemble feature 

ranking, ignoring features from the partitions of patient data where the test AUROC was less 

than 0.7. Aggregating the best performing features across both the algorithm and data 

partitions afforded a more robust and stable set of generalizable features. 

This signature represents hundreds of genes that are differentially expressed and by 

itself does not distinguish between driver genes of severe COVID-19 and genes that react to 

the disease. Therefore, we then selected the top 600 most informative genes and used them 

as input for structural causal modeling (SCM) to identify likely drivers of severe COVID-19 

disease. Previous work has shown that SCM of RNA-seq data produces causal dependency 

structures, which are indicative of the signal transduction cascades that occur within cells 

and drive phenotypic and pathophenotypic development (Ricard et al., 2019). However, this 
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approach works best if the gene sets are stable and consistent across six different 

algorithms, as shown here. The resultant SCM output is presented as a directed acyclic 

graph (DAG) in Figure 5B, a gene network representing the putative flow of causal 

information, with genes on the left predicted to have the greatest degree of influence on the 

entire state of the network. That is, perturbing these genes is most disruptive to the state of 

the network (Figure S4) and is expected to exert the greatest effect on the expression of 

downstream genes. The top five genes associated with the greatest degree of putative 

causal dependency were ADAM9, RAB10, MCEMP1, MS4A4A and GCLM, and all five of 

these genes were significantly upregulated in critical patients (Figure 5C). 

The usefulness of the 600 genes identified in this first group of patients was then 

evaluated in a second patient cohort consisting of critical COVID-19 patients sampled at the 

time of entry into the ICU and recovered critical patients sampled at three months after 

discharge from the ICU. The top 600 genes from the first patient cohort were able to 

significantly differentiate between critical and recovered patients (Figure S5A and B); 

classification performance when training on the differentially expressed genes between 

critical and recovered patients was nearly the same (not shown), which indicated the high 

degree of generalizability of this gene signature. Moreover, the five driver genes identified in 

patient cohort 1 were also upregulated in critical patients in this second patient cohort (Figure 

S5C).  

 

ADAM9 is a major driver of ARDS in critical COVID-19 patients 

Among the five driver genes identified by structural causal modeling, we primarily focused on 

experimentally determining the role of ADAM9 (a disintegrin and a metalloprotease 9) in 

COVID-19 etiology because (i) it was the gene with the greatest degree of causal influence in 

the SCM DAG, (ii) it was the only driver gene that was previously shown to interact with 

SARS-CoV-2 through a global interactomics approach (Gordon et al., 2020a, 2020b) and (iii) 

it is an entry factor for another RNA virus, the encephalomyocarditis virus (Bazzone et al., 

2019). ADAM9 is a metalloprotease with various functions that are mediated either by its 
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disintegrin domain for adhesion or by its metalloprotease domain for the shedding of a large 

range of cell surface proteins (Chou et al., 2020). The ADAM9 gene encodes two isoforms, 

which encode membrane-bound and secreted proteins. Although neither isoform could be 

detected using our proteomics approach, ADAM9 was upregulated at the RNA level, and the 

secreted form was found at a higher concentration in the serum of critical versus noncritical 

patients (Figure 6A and B). The transcriptional upregulation of ADAM9 was also found to be 

associated with disease severity in a previously published bulk RNA-seq dataset (Figure S6) 

(Arunachalam et al., 2020). To assess a potentially increased metalloprotease activity in the 

critical group, we quantified the soluble form of the MICA protein (Carapito and Bahram, 

2015), which is known to be cleaved by ADAM9 (Kohga et al., 2010) by ELISA. The 

concentration of soluble MICA was indeed significantly higher in the plasma of critical 

patients as compared to noncritical patients and healthy controls (Figure 6C). A global eQTL 

analysis using WGS and RNA-seq data identified eight SNPs associated with three of the top 

five putative driver genes with genome-wide significance (Table S3). Among these SNPs, 

rs7840270 is localized just 0.3 kb upstream of the ADAM9 gene and an eQTL for blood 

expression reported in GTEX (Figure 6D). In accordance with the observed upregulation of 

the gene, the higher expressing allele C was more frequent in critical than in noncritical 

patients (71.3% vs. 50%, OR=2.48, P=0.017). 

To assess the role of ADAM9 in viral infection, we set up an ex vivo assay in which 

ADAM9 was silenced by siRNA in Vero 76 or A549-ACE2 (Buchrieser et al., 2020) cells and 

subsequently infected the cells with SARS-CoV-2. Viral replication was monitored by flow 

cytometry quantification of the intracellular nucleocapsid protein and by quantitative viral RT-

PCR of the culture supernatant (Figure 6E). The average silencing efficiency reached 66% in 

Vero 76 cells and 93% in A549-ACE2 cells (Figure S7). In both cell lines, the amount of 

intracellular virus and the quantity of released virus were significantly lower when ADAM9 

was silenced as compared to the control condition that was treated with a control siRNA 

(Figure 6F and G). Our results collectively demonstrate that ADAM9 is an in vivo upregulated 
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driver in critical patients, shows higher global proteolytic activity in these patients and 

facilitates viral infection and replication. 

 

DISCUSSION 

A number of studies have detailed the molecular and cellular modifications associated with 

COVID-19 disease severity (Arunachalam et al., 2020; Chua et al., 2020; Hadjadj et al., 

2020; Lucas et al., 2020; Messner et al., 2020; Schulte-Schrepping et al., 2020; Shen et al., 

2020; Shu et al., 2020; Silvin et al., 2020; Su et al., 2020; Wei et al., 2020; Zhou et al., 2020), 

yet very few studies have targeted a young population with no comorbidities to reduce 

confounders that may also drive severity and mortality, and these confounders were limited 

to epidemiology and/or standard bioclinical parameters such as CRP, D-dimers or SOFA 

scores (e.g., Ioannidis et al., 2020; Li et al., 2020; Wang et al., 2020). A comprehensive 

understanding of the immune responses to SARS-CoV-2 infection is fundamental to an 

explanation as of why some young patients without comorbidities progress to critical illness 

whereas others do not, a phenomenon that has been exacerbated with new viral variants in 

current epidemic waves across the globe (Davies et al., 2021; 

http://www.utisbrasileiras.com.br). In particular, knowledge of the molecular drivers of critical 

COVID-19 is urgently needed to identify predictive biomarkers and more efficient therapeutic 

targets that function through drivers of severe COVID-19 rather than to downstream or 

secondary events (Hermine et al., 2021; Mariette et al., 2021; Rubin et al., 2021). 

Here, we used a multiomics strategy associated with integrated AI/ML and 

probabilistic programming methods to identify pathways and signatures that can differentiate 

critical from noncritical patients in a population of patients younger than 50 years without 

comorbidities. This in silico strategy provided a detailed view of the systemic immune 

response that was globally in accordance with previously published data. The thrust of our 

work, however, was to define a consistent transcriptomic signature that can robustly 

differentiate critical from noncritical patients, as shown by the classification performance 

metrics assessed in this study (Figure 5A and Table S2). Most significantly, this signature 
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can be generalized because the same classification performance was shown to perform 

equally well in a replication cohort composed of 81 critically ill patients and 73 recovered 

critical patients (Figure S5). 

Using the top 600 gene expression features of the signature as the input for structural 

causal modeling, we derived a causal network that uncovered five putative driver genes: 

RAB10, MCEMP1, MS4A4A, GCLM and ADAM9. RAB10 (Ras-related protein Rab-10) is a 

small GTPase that regulates macropinocytosis in phagocytes (Liu et al., 2020), which is a 

mechanism that has been suggested to be involved in the entry of SARS-CoV-2 into 

respiratory epithelial cells (Glebov, 2020). MCEMP1 (mast cell expressed membrane protein 

1) is a membrane protein specifically associated with lung mast cells, and decreasing the 

expression of this protein has been shown to reduce inflammation in septic mice (Li et al., 

2005; Xie et al., 2020). MS4A4A (a member of the membrane-spanning, four domain family, 

subfamily A) is a surface marker for M2 macrophages that mediates immune responses in 

pathogen clearance (Sanyal et al., 2017) and regulates arginase 1 induction during 

macrophage polarization and lung inflammation in mice (Sui and Zeng, 2020). GCLM 

(glutamate-cysteine ligase modifier subunit) is the first rate-limiting enzyme of glutathione 

synthesis and has been linked to severe COVID-19 (Sui and Zeng, 2020). Although these 

four genes are all good candidates that can at least partially explain the severity of the 

disease, we focused our functional validations on ADAM9, which represented, from an in 

silico standpoint, the most promising driver gene. The confirmed upregulation of ADAM9 at 

the RNA and protein levels in critical patients, the increased metalloprotease activity in these 

same patients and our ex vivo validation of its effect on viral uptake/replication are indeed 

strong arguments supporting the targeting of this protein as a potential therapeutic strategy 

for the treatment or prevention of severe COVID-19. ADAM9 appears to dramatically affect 

viral uptake. The inhibition of this presumed mechanism of action of ADAM9 might represent 

a novel means for the treatment SARS-CoV-2 and/or other viral illnesses. Moreover, 

therapies that block viral uptake rather than host receptor binding are more likely to be 
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variant-independent, a known virological behavior which might - at least partially – derail 

current vaccination efforts (Dejnirattisai et al., 2021). 

Due to its implication in tumor progression and metastasis, ADAM9 is currently being 

tested as a target of antibody-drug-conjugate therapy for solid tumors (Hicks et al., 2019). A 

repurposing strategy using ADAM9-blocking antibodies for the treatment of critical COVID-19 

patients could therefore be envisioned. Alternatively, other therapeutic agents to reduce the 

ADAM9 levels or activity could be pursued. 

 In conclusion, this study presents a detailed multiomics investigation of a well-

characterized cohort of young, previously healthy, critical COVID-19 patient series compared 

with noncritical patients and healthy controls. In addition to uncovering a landscape of 

molecular changes in the blood of critical patients, we applied a data-driven ensemble AI/ML 

strategy, which was independent of prior biological knowledge and thus significantly 

minimized possible annotation biases, to gain novel insights into COVID-19 pathogenesis 

and to provide potential candidate diagnostic, prognostic and especially much needed 

therapeutic targets that might be helpful in the ongoing battle against the COVID-19 

pandemic. 

 

MATERIALS AND METHODS 

 

Patients 

In March and April 2020, patients aged less than 50 years, who had no comorbidities (of 

note, obesity alone was not considered an exclusion criterion) and were admitted for COVID-

19 to the infectious disease unit (hereafter designated noncritical care ward) or to the 

designated ICUs at the university hospital network in northeast France (Alsace) were 

investigated within the framework of the present study. Follow-up was performed until 

hospital discharge. SARS-CoV-2 infection was confirmed in all the patients by a quantitative 

real-time reverse transcriptase PCR tests for COVID-19 nucleic acid of nasopharyngeal 

swabs (Institut Pasteur, 2021). The ethics committee of Strasbourg University Hospitals 
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approved the study (COVID-HUS, reference CE: 2020-34). Written informed consent was 

obtained from all the patients. The demographic characteristics, medical history, and 

symptoms were reported. Three groups were considered: (1) the “critical group” which 

included 47 patients admitted to the ICU, (2) the “noncritical group”, which was composed of 

25 hospitalized patients at the noncritical care ward, and (3) the “healthy control group”, 

which included 22 healthy age- and sex-matched blood donors aged less than 50 years. A 

replication cohort composed of 81 critical patients and 73 recovered critical patients from one 

of the ICU departments of Strasbourg University hospitals was used to validate our molecular 

findings. 

 

Sampling 

Venipunctures were performed upon admission to the ICU or medical ward within the 

framework of routine diagnostic procedures. A subset of ICU patients (73%) were sampled 

every 4-8 days posthospitalization until discharge or death. Patient blood was collected into 

BD Vacutainer tubes with heparin (for plasma and PBMCs), EDTA (for DNA) or without 

additive (for serum) and into PAXgene® Blood RNA tubes (Becton, Dickinson and Company, 

Franklin Lakes, NJ, USA). Blood from healthy donors was sampled in BD Vacutainer tubes 

with heparin, with EDTA or without additive. Plasma and serum fractions were collected after 

centrifugation at 900 x g at room temperature for 10 min, aliquoted, and stored at -80°C until 

use. PBMCs were prepared within 24 h by Ficoll density gradient centrifugation. Aliquots of 1 

x 106 dry cell pellets were frozen at -80°C until use for proteomics. Aliquots of a minimum of 

5 x 106 cells were frozen at -80°C in 90% fetal calf serum (FCS)/10% dimethyl sulfoxide 

(DMSO). The EDTA and PAXgene® tubes were stored at -80°C until use for DNA and RNA 

extraction, respectively. 

 

Cytokine profiling 

The plasma samples were analyzed using the V-PLEX Proinflammatory Panel 1 Human Kit 

(IL-6, IL-8, IL-10, TNF-α, IL-12p70, IL-1β, IL-2, IL-4 and IFN-γ) and the S-PLEX Human IFN-
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α2a Kit following the manufacturer’s instructions (Mesoscale Discovery, Gaithersburg, MD, 

USA). The plasma was used undiluted for the S-PLEX Human IFN-α2a Kit and diluted 2-fold 

for use with the V-PLEX Proinflammatory Panel 1. The MSD plates were analyzed with an 

MS2400 imager (Mesoscale Discovery, Gaithersburg, MD, USA). Soluble IL-17 in undiluted 

serum was quantified by Quantikine® HS ELISA (Human IL-17 Immunoassay) following the 

manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA). All standards and 

samples were measured in duplicate. 

 

Immune phenotyping by mass cytometry 

PBMCs were thawed rapidly, washed twice with 10 volumes of RPMI (Roswell Park 

Memorial Institute) medium (Thermo Fisher Scientific, Waltham, MA, USA) and centrifuged 

for 7 min at 300 x g at room temperature between each washing step. Cells were then 

treated with 250 U of DNase (Thermo Fisher Scientific, Waltham, MA, USA) in 10 volumes of 

RPMI medium for 30 min at 37°C in the presence of 5% CO2. During this step, the viability 

and the number of the cells were determined with Trypan Blue (Thermo Fisher Scientific, 

Waltham, MA, USA) and Türk’s solution (Merck Millipore, Burlington, MA, USA), respectively. 

After the elimination of DNase by centrifugation for 7 min at 300 x g at room temperature, a 

total of 3 x 106 cells were used for immunostaining with the Maxpar® Direct Immune Profiling 

Assay kit (Fluidigm, San Francisco, CA, USA), following the manufacturer’s instructions, 

except that we used 32% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, 

USA). A red blood cell lysis step was included after the immunostaining following the 

manufacturer’s instructions. The prepared cells were stored at -80°C until use for acquisition 

with a Helios mass cytometer system (Fluidigm, San Francisco, CA, USA). An average of 

600000 events were acquired per sample. The mass cytometry standard files produced with 

the Helios instrument were analyzed using Maxpar® Pathsetter software v.2.0.45 that was 

modified for live/dead parameters: the tallest peak was selected instead of the closest peak 

for the identification and quantification of the cell populations. The FCS files from each group 

(healthy, critical, non-critical) were then concatenated using CyTOF® software v.7.0.8493.0 
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for viSNE analysis (Cytobank Inc, Mountain View, CA, USA). A total of 300000 events were 

used for the viSNE map that was generated with the following parameters: iterations (1000), 

perplexity (30) and theta (0.5). viSNE maps are presented as the means of all samples in 

each group. 

 

Plasma proteomics analysis 

Sample preparation 

Samples were prepared using the PreOmics iST Kit (PreOmics GmbH, Martinsried, 

Germany) according to the manufacturer’s protocol. Two microliters of plasma was mixed 

with 50 µl of Lyse buffer and heated at 95°C for 10 min at 1000 rpm. The protein 

concentration was determined using the Bradford assay (Bio-Rad, Hercules, CA, USA) 

according to the manufacturer’s instructions. The samples were transferred to 96-well-plate 

cartridges, and 50 µl of resuspended Digest solution was added. The samples were then 

heated at 37°C for 2 h, and 100 µl of Stop buffer was added. The samples were centrifuged 

to retain the peptides on the cartridge and washed twice with “Wash 1” and “Wash 2” buffers. 

The peptides were then eluted twice with Elute buffer before evaporation under vacuum. The 

peptides were then resuspended using the “LC-load” solution containing iRT peptides 

(Biognosys, Schlieren, Switzerland), and the samples were rapidly sonicated before being 

injected into the nanoLC-MS/MS system. 

 

NanoLC-MS/MS analysis 

The NanoLC-MS/MS analyses were performed with a nanoAcquity Ultra-Performance LC® 

(UPLC®) device (Waters Corporation, Milford, MA, USA) coupled to a Q-ExactiveTM Plus 

mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Peptide separation was 

performed on an ACQUITY UPLC BEH130 C18 column (250 mm × 75 μm with 1.7-μm-

diameter particles) and a Symmetry C18 precolumn (20 mm × 180 μm with 5-μm-diameter 

particles, Waters). The solvent system consisted of 0.1% FA in water (solvent A) and 0.1% 

FA in ACN (solvent B). The samples (equivalent to 500 ng of proteins) were loaded into the 
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enrichment column over 3 min at 5 μl/min with 99% solvent A and 1% solvent B. The 

peptides were eluted at 400 nl/min using the following gradient of solvent B: from 1 to 35% 

over 60 min and from 35 to 90% over 1 min. The 90 samples were injected in randomized 

order. The MS capillary voltage was set to 2.1 kV at 250°C. The system was operated in the 

data dependent acquisition mode with automatic switching between MS (mass range 300–

1800 m/z with R = 70000, automatic gain control (AGC) fixed to 3 x 106 ions, and maximum 

injection time of 50 ms) and MS/MS (mass range of 200–2000 m/z with R = 17,500, AGC 

fixed at 1 x 105 and maximal injection time of 100 ms) modes. The ten most abundant ions 

were selected on each MS spectrum for further isolation and higher energy collision 

dissociation fragmentation, excluding unassigned and monocharged ions. The dynamic 

exclusion time was set to 60s. A sample pool comprising equal amounts of all protein 

extracts was constituted and regularly injected during the course of the experiment as an 

additional quality control.  

 

Data analysis 

The raw data obtained from each sample (45 critical patients, 23 non-critical patients, and 22 

healthy controls) were processed using MaxQuant (version 1.6.14). Peaks were assigned 

using the Andromeda search engine with trypsin/P specificity. A database containing all 

human entries was extracted from the UniProtKB-SwissProt database (May 11 2020, 20410 

entries). The minimal peptide length required was seven amino acids, and a maximum of one 

missed cleavage was allowed. Methionine oxidation and acetylation of the proteins’ N-termini 

were set as variable modifications, and acetylated and modified methionine-containing 

peptides, as well as their unmodified counterparts, were excluded from the protein 

quantification step. Cysteine carbamidomethylation was set as a fixed modification. The 

“match between runs” option was enabled. The maximum false discovery rate was set to 1% 

at the peptide and protein levels with the use of a decoy strategy. The normalized label-free 

quantification (LFQ) intensities were extracted from the ProteinGroups.txt file after the 

removal of nonhuman and keratin contaminants, as well as reverse and proteins only 
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identified by site. This resulted in 336 quantified proteins. Complete datasets have been 

deposited in the ProteomeXchange Consortium database with the identifier PXD025265 

(Deutsch et al., 2017). 

 

Differential protein expression analysis 

The LFQ values from MaxQuant were used for differential protein expression analysis. For 

each pairwise comparison, the proteins expressed in at least 80% of the samples in either 

group were retained. Variance stabilization normalization (Vsn) was performed using the 

justvsn function from the vsn R package (Huber et al., 2002). Missing values were imputed 

using the random forest approach (Kokla et al., 2019). This process resulted in 161 proteins. 

Differential protein expression analysis was performed using the limma bioconductor 

package in R (Ritchie et al., 2015). Significant differentially expressed proteins were 

determined based on an adjusted P-value cutoff of 0.05 using the Benjamini-Hochberg 

method. 

 

PBMC proteomics analysis 

Samples were prepared using the PreOmics’ iST Kit (PreOmics GmbH, Martinsried, 

Germany) according to the manufacturer’s protocol. Briefly, PBMC pellets were resuspended 

in 50 µl of Lyse buffer and heated at 95°C for 10 min at 1000 rpm before being sonicated for 

10 min on ice. The protein concentration of the extract was determined using the Pierce™ 

BCA Protein Assay Kit (Thermo Fisher, Waltham, MA, USA). The samples were transferred 

to 96-well plate cartridges and 50 µl of resuspended Digest solution was added. The samples 

were then heated at 37°C for 2 h and 100 µl of Stop buffer was added. The samples were 

centrifuged to retain the peptides on the cartridge and washed twice with “Wash 1” and 

“Wash 2” buffers. The peptides were then eluted twice with Elute buffer before evaporation 

under vacuum. Finally, the peptides were resuspended using the “LC-load” solution 

containing iRT peptides (Biognosys, Schlieren, Switzerland), and the samples were rapidly 

sonicated before being injected into the nanoLC-MS/MS system. 
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NanoLC-MS/MS analysis 

NanoLC-MS/MS analyses were performed with a nanoAcquity UPLC device (Waters 

Corporation, Milford, MA, USA) coupled to a Q-Exactive HF-X mass spectrometer (Thermo 

Fisher Scientific, Waltham, MA, USA). Peptide separation was performed on an Acquity 

UPLC BEH130 C18 column (250 mm × 75 μm with 1.7-μm-diameter particles) and a 

Symmetry C18 precolumn (20 mm × 180 μm with 5-μm-diameter particles, Waters). The 

solvent system consisted of 0.1% formic acid (FA) in water (solvent A) and 0.1% FA in 

acetonitrile (ACN) (solvent B). The samples (equivalent to 414 ng of proteins) were loaded 

into the enrichment column over 3 min at 5 μl/min with 99% solvent A and 1% solvent B. The 

peptides were eluted at 400 nl/min using the following gradient of solvent B: from 2 to 25% 

over 53 min, from 25 to 40% over 10 min and 40 to 90% over 2 min. The 77 samples were 

injected using a randomized injection sequence. The MS capillary voltage was set to 1.9 kV 

at 250°C. The system was operated in data dependent acquisition mode with automatic 

switching between MS (mass range of 300-1800 m/z with R = 60000, automatic gain control 

(AGC) fixed to 3 x 106 ions and maximum injection time of 50ms) and MS/MS (mass range of 

200–2000 m/z with R = 15000, AGC fixed at 1 x 105 and maximal injection time of 100 ms) 

modes. The ten most abundant ions were selected on each MS spectrum for further isolation 

and higher energy collision dissociation fragmentation with the exclusion of unassigned and 

monocharged ions. The dynamic exclusion time was set to 60 s. 

 

Data analysis 

The raw data obtained from each sample (34 critical patients, 21 non-critical patients and 22 

healthy controls) were processed using MaxQuant (version 1.6.14). Peaks were assigned 

using the Andromeda search engine with trypsin/P specificity. A combined human and 

bovine database (because of potential traces of fetal calf serum in the samples) was 

extracted from UniProtKB-SwissProt (8 September 2020, 26,413 entries). The minimal 

peptide length required was seven amino acids and a maximum of one missed cleavage was 
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allowed. Methionine oxidation and acetylation of the proteins’ N-termini were set as variable 

modifications, and acetylated and modified methionine-containing peptides, as well as their 

unmodified counterparts, were excluded from protein quantification. Cysteine 

carbamidomethylation was set as a fixed modification. The “match between runs” option was 

enabled. The maximum false discovery rate was set to 1% at the peptide and protein levels 

with the use of a decoy strategy. Only peptides unique to human entries were retained and 

their LFQ intensities were summed to derive the protein intensities. This process resulted in 

2,196 quantified proteins. Complete datasets have been deposited in the ProteomeXchange 

Consortium database with the identifier PXD 025265 (Deutsch et al., 2017).  

 

Differential protein expression analysis 

Summed peptides normalized label-free quantification (LFQ values from MaxQuant software) 

values were used for differential protein expression analysis. For each pairwise comparison, 

proteins expressed in at least 80% of the samples in either group were retained. Variance 

stabilization normalization (Vsn) was performed using the justvsn function from the vsn R 

package (Huber et al., 2002). Missing values were imputed using the random forest 

approach (Kokla et al., 2019). This resulted in 732 proteins. Differential protein expression 

analysis was performed using the limma bioconductor package in R (Ritchie et al., 2015). 

Significant differentially expressed proteins were determined based on an adjusted P-value 

cutoff of 0.05 using the Benjamini-Hochberg method. 

 

Serology analysis 

The serum IgG reactivity towards three SARS-CoV-2 viral antigens was measured as 

previously described (Rudberg et al., 2020)  by means of a multiplex antigen bead array. The 

three viral antigens included in our multiplex bead array comprise two representations of the 

Spike protein (a soluble trimeric form of the spike glycoprotein stabilized in the pre-fusion 

conformation expressed in HEK, and the Spike S1 domain expressed in CHO cells), and the 

C-terminal domain of the Nucleocapsid protein (expressed in E.coli). Briefly, each antigen 
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was immobilized on the surface of uniquely color-coded magnetic beads (Bead ID; 

MagPlex®, Luminex Corporation, Austin, TX, USA), and the bead IDs pooled together to 

generate the bead array used to test the serum samples. Sera were incubated with the 

multiplex antigen array in a 384-well plate format, and the IgG reactive to the viral antigen 

was detected by means of a phycoerythine-conjugated anti-hIgG (H10104, Invitrogen, 

Thermo Fisher Scientific, Waltham, MA, USA) in a FlexMap3D instrument (Luminex 

Corporation, Austin, TX, USA). The cut-off for reactivity was evaluated for each antigen 

singularly and defined as the mean +6SD of the intensity signals of 12 negative controls. The 

12 controls were carefully selected among pre-pandemic samples as representative of the 

background range for each single antigen included in the test. The performance of this 

serology assay was previously evaluated on 2090 negative samples (pre-pandemic samples 

collected in 2019 or earlier and including 26 samples from individuals infected by other 

Coronaviruses) and 331 samples from COVID-19 PCR-confirmed cases (sampled collected 

at least 17 days after disease onset), showing 99.7% sensitivity and 100% specificity.  

 

Neutralizing antibodies 

Spike pseudotype neutralization assay was conducted using vesicular stomatitis virus (VSV) 

where glycoprotein gene (G) has been deleted and substituted in trans with SARS-CoV-2 

Spike protein (D614G variant) lacking terminal eighteen amino acids of the cytoplasmic 

domain. The pseudotype VSV- ΔG SARS-CoV-2 S D614G is cytopathic and expresses the 

firefly luciferase. For the neutralization assay, VSV-ΔG SARS-CoV-2 S D614G was 

incubated with serial dilutions of patient sera starting at 1:40 dilution for 1 h at room 

temperature. A monolayer of Vero cells seeded at 60000 cells/well in black-well plates was 

infected with the pseudotype virus (virus only) or virus and serum mixture overnight at 37°C - 

5% CO2. The following day, cells were lysed using passive lysis buffer (Promega, Madison, 

WI, USA) and luciferase activity was measured upon addition of substrate (Promega® 

CellTiterGlo®, Madison, WI, USA) using Biotek plate reader and Gen5 software. 
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Neutralization was calculated by comparing relative luciferase units of serum treated versus 

the virus only control. To determine neutralizing titers, the concentration of the antibody 

resulting in 50% neutralization (NT50) was determined using XLFit and graphed using Prism 

(GraphPad, San Diego, CA, USA). 

 

Autoantibodies against type I IFNs 

The blocking activity of anti-IFNα and anti-IFNω autoantibodies was determined by 

assessing a reporter luciferase activity as previously described (Bastard et al., 2021). Briefly, 

HEK293T cells were transfected with the firefly luciferase plasmids under the control of 

human ISRE promoters in the pGL4.45 backbone, and a constitutively expressing Renilla 

luciferase plasmid for normalization (pRL-SV40). Cells were transfected in the presence of 

the X-tremeGene 9 transfection reagent (Sigma Aldrich, Saint-Louis, MI, USA) for 36 hours. 

Then, Dulbecco’s modified Eagle medium (DMEM, Thermo Fisher Scientific, Waltham, MA, 

USA) supplemented with 10% healthy control or patient serum and were either left 

unstimulated or were stimulated with IFNα or IFNω (10 ng/mL) for 16 hours at 37°C. Each 

sample was tested once. Finally, Luciferase levels were measured with the Dual-Glo 

reagent, according to the manufacturer’s protocol (Promega, Madison, WI, USA). Firefly 

luciferase values were normalized against Renilla luciferase values, and fold induction is 

shown relative to controls transfected with empty plasmids. 

 

Whole-genome sequencing (WGS) 

WGS data was generated from DNA isolated from whole blood. NovaseqTM 6000 (Illumina 

Inc., San Diego, CA, USA) machines were used for DNA sequencing to a mean 30X 

coverage. The raw sequencing reads from FASTQ files were aligned using Burrows-Wheeler 

Aligner (BWA) (Li and Durbin, 2009), and GVCF files were generated using Sentieon version 

201808.03 (Kendig et al., 2019). Functional annotation of the variants was performed using 
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Variant Effect Predictor from Ensembl (version 101). GATK version 4 (Van der Auwera et al., 

2013; DePristo et al., 2011) was used for the joint genotyping process and variant quality 

score recalibration (VQSR). We removed one duplicate sample based on kinship (king cutoff 

of 0.3) and retained 24,476,739 SNPs that were given a ‘PASS’ filter status by VQSR. The 

analysis of the 72 samples from the critical and non-critical groups identified 15870076 

variants with MAF < 5%. The first two principal components were generated using plink2 on 

LD-pruned variants with Hardy-Weinberg equilibrium in the controls with a P-value ≥ 1 × 10−6 

and MAF > 5% and were used as covariates to correct for population stratification. 

 

Analysis of expression quantitative trait loci (eQTLs)  

We performed local (cis-) eQTL analysis to test for associations between genetic variants 

and gene expression levels in 67 samples having both RNA-seq and SNP genotype data. 

Briefly, we used the MatrixEQTL R package (Shabalin, 2012) where we selected a linear 

model and a maximum distance for gene-SNP pairs of 1 × 106. The top two principal 

components identified from the genotype principal component analysis were used as 

covariates to control for population stratification. We selected 304044 significant eQTLs with 

false discovery rate (FDR) ≤ 0.05.  

 

RNA sequencing (RNA-seq) 

RNA extraction 

Whole-blood RNA was extracted from PAXgene tubes with the PAXgene Blood RNA Kit 

following the manufacturer’s instructions (Qiagen, Hilden, Germany). A total of 69 samples, 

including 46 critical and 23 non-critical patients were processed. The RNA quantity and 

quality were assessed using the Agilent 4200 TapeStation system (for the RIN) (Agilent 

Technologies, Santa Clara, CA, USA) and RiboGreenTM (for the concentration) (Thermo 

Fisher Scientific, Waltham, MA, USA). RNA sequencing libraries were generated using the 

TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina, San Diego, CA, USA) and 

sequenced on the Illumina NovaSeq 6000 instrument with S4 flow cells and 151-bp paired-
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end reads. The raw sequencing data were aligned to a reference human genome build 38 

(GRCh38) using the short reads aligner STAR (Dobin et al., 2013). Quantification of gene 

expression was performed using RSEM (Li and Dewey, 2011) with GENCODE annotation 

v25 (http://www.gencodegenes.org). Raw and processed datasets have been deposited in 

GEO with identifier GSE172114. 

 

Differential gene expression (DGE) analysis 

DGE analysis was performed for two different purposes: 1) for the combined omics analysis 

of differentially expressed genes and proteins, and 2) as step to determine feature selection 

for classification in the in silico computational intelligence approach. For the combined omics 

analysis, we first removed low expressed genes for the 69 samples by removing genes with 

less than 1 count per million in less than 10% of the samples. We then performed DGE 

analysis on all 69 samples using the trimmed mean of M-values method (TMM) from the 

edgeR R package (Robinson and Oshlack, 2010; Robinson et al., 2010). 

In our computational intelligence approach, we performed DGE analysis for each 

partition of the train data using a frozen TMM normalization to calculate normalization factors 

based only on the training data, in order to avoid data leakage. Briefly, we removed low 

expressed genes for the 69 samples with genes with 1 count per million in less than 10% of 

samples. For each partition of the training data, we calculated the normalization factors, and 

then selected the library that had a normalization factor closest to 1. We used this library as a 

reference library to normalize all the samples keeping the training normalization factors 

unchanged. Differentially expressed genes were identified using quasi-likelihood F-test 

(QLF)-adjusted P-values from the edgeR R package. Differentially expressed genes with 

FDRs less than 0.05 were used for further downstream analysis. 

 

Identification of potential driver genes through structural causal modeling 

To identify potential biomarkers that might differentiate patients in the noncritical group from 

those in the critical group, we used classification as a feature selection approach and then 
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used the most informative features as input for structural causal modeling to identify potential 

driver genes. More specifically, classification was performed using the RNA-seq data by 

repeatedly partitioning noncritical and critical patients into 100 unique training and 

independent test sets representing 80% and 20% of the total data, respectively, ensuring that 

the proportions of noncritical and critical patients were consistent in each partition of the 

data. One hundred partitions of the data were used to capture the biological variation and to 

obtain increased statistical confidence in the results. After classification, feature scores for 

each method were determined and combined across all 100 partitions of the data and six of 

the ML algorithms, not including the deep learning algorithm. The 600 most informative 

features were retained for structural causal modeling. More details about the classification 

algorithms used, the feature ranking, and the structural causal modeling are provided below. 

 

Ensemble artificial intelligence  

We used seven distinct ML approaches for our classification models. The relevant 

hyperparameters for each method are mentioned in their respective sections. 

Hyperparameters were selected by using 10-fold cross-validation of the training data, and the 

performance was evaluated using the held-out test data.  

 

Least Absolute Shrinkage and Selection Operator (LASSO), and Ridge Regression 

LASSO (Tibshirani, 1996) is an L1-penalized linear regression model defined as: 

 𝛃𝛃�(λ) =  argmin
𝛃𝛃, β0 

[− log�𝐿𝐿�𝑦𝑦;𝛃𝛃,β0�� + λ�|𝛃𝛃|�1 (1) 

Ridge (Hoerl and Kennard, 1970; Hoerl et al., 1975) is an L2-penalized linear regression 

model defined as: 

 

  𝛃𝛃�(λ) = argmin
𝛃𝛃, β0 

[− log�𝐿𝐿�𝑦𝑦;𝛃𝛃,β0�� + λ�|𝛃𝛃|�2
2 (2)  

where the loss function is 
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 𝐿𝐿 =
1
𝑁𝑁
��𝑦𝑦𝑖𝑖(β0 + 𝒙𝒙𝑖𝑖 ⋅ 𝛃𝛃) −  𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝑒𝑒β0−𝒙𝒙𝑖𝑖⋅𝛃𝛃)�
𝑁𝑁

𝑖𝑖=1

 

In both cases, λ  > 0 is the regularization parameter that controls model complexity, 𝛃𝛃 are the 

regression coefficients, β0 is the intercept term, 𝑦𝑦 represents an indicator function for the 

critical patients (i.e., 𝑦𝑦𝑖𝑖 = 1 if the 𝑖𝑖-th training sample is a critical patient; otherwise 𝑦𝑦𝑖𝑖 = 0), 

the vector 𝒙𝒙𝑖𝑖 is the 𝑖𝑖-th training sample, and the goal of the training procedure is to determine 

𝛃𝛃� and 𝛽𝛽0, the optimal regression coefficients and the optimal intercept, that minimize the 

quantities defined in Eqs. (1) and (2). The predicted label is given by 𝑦𝑦 = β0 + 𝒙𝒙 ⋅ 𝛃𝛃, where a 

threshold of 0.5 is introduced to binarize the label for classification problems. In LASSO, the 

constraint placed on the norm of 𝛃𝛃 (the strength of which is given by λ) causes coefficients of 

uninformative features to shrink to zero. This leads to a simpler model that contains only a 

few nonzero coefficients. We used the ‘glmnet’ function from the caret (Kuhn, 2008) R 

package to train all Lasso and Ridge models. For Ridge, the constraint placed on the norm of 

𝛃𝛃 plays a similar role in determining model complexity, except that coefficients for 

uninformative features do not necessarily shrink to zero. 

For both Lasso and Ridge, we opted to implement the function over a custom tuning 

grid of λ from 2−8 to 22. λ was selected via 10-fold cross-validation as the value that gave the 

minimum mean cross-validated error.  

 

Support Vector Machines (SVM) 

SVMs (Boser et al., 1992; Cortes and Vapnik, 1995) are a set of supervised learning models 

used for classification and regression analyses. The primal form of the optimization problem 

is: 

𝒘𝒘𝑙𝑙𝑜𝑜𝑜𝑜 = argmin
𝒘𝒘,𝑏𝑏,𝒂𝒂

 �𝐿𝐿𝑜𝑜 =
1
2
‖𝒘𝒘‖2

2 −�𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖(𝒙𝒙𝑖𝑖 ⋅ 𝒘𝒘 + 𝑏𝑏) + �𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� 
(3)  

 

where 𝐿𝐿𝑝𝑝 is the loss function in its primal form (p for primal), 𝒘𝒘 represents the weights to be 

determined in the optimization, 𝒙𝒙𝑖𝑖 is the 𝑖𝑖-th training sample, 𝑦𝑦𝑖𝑖 is the label of the 𝑖𝑖-th training 
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sample, 𝑎𝑎𝑖𝑖  ≥ 0 are Lagrange multipliers, 𝑁𝑁 is the number of training points, and 𝑏𝑏 is the 

intercept term. Labels are predicted by thresholding 𝒙𝒙𝑖𝑖 ⋅ 𝒘𝒘 + 𝑏𝑏. 

The optimization problem in its dual form is defined as 

𝒂𝒂𝑙𝑙𝑜𝑜𝑜𝑜 = argmax
𝒂𝒂

 �𝐿𝐿𝐷𝐷(𝒂𝒂) = �𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1

−
1
2
�𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖,𝑗𝑗=1

𝑎𝑎𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗�� 
   

 

where 𝐿𝐿𝐷𝐷 is the Lagrangian dual of the primal problem, 𝑎𝑎𝑖𝑖 are the Lagrange multipliers, 𝑦𝑦𝑖𝑖 

and 𝒙𝒙𝑖𝑖 are the 𝑖𝑖-th label and training sample, respectively, and 𝐾𝐾(⋅,⋅) is the kernel function. 

Maximization takes place subject to the constraints ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 = 0 and 𝑎𝑎𝑖𝑖 ≥ 𝐶𝐶 ≥ 0,∀𝑖𝑖. Here 𝐶𝐶 is 

a hyperparameter that controls the degree of misclassification of the model for nonlinear 

classifiers. The optimal values of 𝒘𝒘 and 𝑏𝑏 can be found in terms of the 𝑎𝑎𝑖𝑖 ’s, and the label of a 

new data point 𝒙𝒙 can be found by thresholding the output ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏. 

In most cases, many of the 𝑎𝑎𝑖𝑖 ’s are zero, and evaluating predictions can be faster 

using the dual form. We used SVM with a linear kernel (‘svmLinear2’) (i.e., 𝐾𝐾(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 𝒙𝒙𝑖𝑖 ⋅ 𝒙𝒙𝑗𝑗, 

the inner product of 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗) function from the caret (Kuhn, 2008) R package to train all 

SVM models. 𝐶𝐶 ranged from 2−2 to 23, and a 10-fold cross-validation was used to tune and 

select the hyperparameters with the best cross-validation accuracy for training the model. 

 

Random Forest (RF) 

RF (Breiman, 2001; Breiman et al., 1993) is an ensemble learning method for classification 

and regression that builds a set (or forest) of decision trees. In RF, 𝑛𝑛 samples are selected 

(typically two-thirds of all the training data) with replacement from the training data 𝑚𝑚 times, 

which yields 𝑚𝑚 different decision trees. Each tree is grown by considering ‘mtry’ of the total 

features, and the tree is split depending on which features yield the smallest Gini impurity. In 

the event of multiple training samples in a terminal node of a particular tree, the predicted 

label is given by the mode of all the training samples in a terminal node. The final prediction 

for a new sample 𝒙𝒙 is determined by taking the majority vote over all the trees in the forest. 

We used the ‘rf’ function from the caret (Kuhn, 2008) R package to train all RF models. Ten-
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fold cross-validation was used to tune the parameters for training the model. A tune grid with 

44 values from 1 to 44 for ‘mtry’, the number of random variables considered for a split in 

each iteration during the construction of each tree, was used for the tuning model. 

 

XGBoost (XGB) 

XGB (Chen and Guestrin, 2016) is a distributed gradient boosting library for classification 

and regression by building an ensemble of decision trees. In contrast to RF, XGB uses an 

additive strategy to add new trees one at a time based on whether they optimize the 

objective function. The objective function for the t-th tree is 

𝑙𝑙𝑏𝑏𝑗𝑗(𝑡𝑡) = ��𝐺𝐺𝑗𝑗𝑤𝑤𝑗𝑗 +
1
2
�𝐻𝐻𝑗𝑗 + λ�𝑤𝑤𝑗𝑗2�

𝑇𝑇

𝑗𝑗=1

+ γ𝑇𝑇 

where 𝐺𝐺𝑗𝑗 = 2∑ (𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) − 𝑦𝑦𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑗𝑗 , 𝐻𝐻𝑗𝑗 = 2�𝐼𝐼𝑗𝑗�, λ and γ are hyperparameters controlling model 

complexity, 𝑇𝑇 is the number of leaves in the trees, 𝑤𝑤𝑗𝑗 is the combined score across all the 

data points for the 𝑗𝑗-th leaf. Here, 𝐼𝐼𝑗𝑗 refers to the set of indices of data points assigned to the 

𝑗𝑗-th leaf, �𝐼𝐼𝑗𝑗� is the size of the set 𝐼𝐼𝑗𝑗, 𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) is the predicted score (without the 𝑜𝑜-th tree) of the 

𝑖𝑖-th data point, and 𝑦𝑦𝑖𝑖 is the actual label of the 𝑖𝑖-th data point. The default parameter tuning 

grid in R was used, and a 10-fold cross-validation was used to tune and select the 

hyperparameters with the best cross-validation accuracy for training the model. 

 

Quantum Support Vector Machines (qSVM) 

qSVM is a quantum adaptation of SVM that can be used for classification designed to be run 

with a quantum annealer (QA) (Willsch et al., 2020). The advantage of running the 

optimization problem on a QA is that, since the QA samples from the quantum distribution, it 

retains both the lowest energy solution and some of the next lowest-energy solutions (Albash 

and Lidar, 2018). Because of the suboptimal solutions, we expect qSVM to perform worse on 

the training data than classical SVM (which only includes the optimal solution). However, 

suboptimal solutions can capture different aspects of the training data and generate different 
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decision boundaries. As such, a suitable combination of the suboptimal solutions in qSVM 

might outperform cSVM on the test data.  

The objective function is the same as for classical SVM up to a change in sign, i.e.,  

𝜶𝜶𝑙𝑙𝑜𝑜𝑜𝑜 = argmin
𝜶𝜶

 �𝐿𝐿𝐷𝐷(𝜶𝜶) =
1
2
�𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖,𝑗𝑗=1

𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗�  −  �𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� [] 

subject to the constraints ∑ 𝛼𝛼𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 = 0 and 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶,∀𝑖𝑖. 

 qSVM was run on physical quantum annealers manufactured by D-Wave Inc. 

(Johnson et al., 2011). The D-Wave “Advantage” device used in this work had 5436 qubits 

with 15 couplers per qubit, featuring the “Pegasus” connectivity graph between qubits. Since 

D-Wave can only produce binary solutions, we used the encoding as defined in Willsch et al. 

(2020) to convert the continuous variables 𝛼𝛼𝑖𝑖 into 𝐾𝐾 binary variables using base 𝐵𝐵:  

α𝑖𝑖 = �𝐵𝐵𝑘𝑘𝑎𝑎𝐾𝐾𝑖𝑖+𝑘𝑘

𝐾𝐾−1

𝑘𝑘=0

,   𝑎𝑎𝐾𝐾𝑖𝑖+𝑘𝑘 ∈ {0,1}. 

Using this encoding and also adding a penalty 𝜉𝜉 to the loss function, the optimization 

problem becomes a quadratic unconstrained binary optimization (QUBO) problem, which can 

be run on a QA: 

𝐸𝐸 =
1
2
� 𝑎𝑎𝐾𝐾𝑖𝑖+𝑘𝑘𝑎𝑎𝐾𝐾𝑗𝑗+𝑙𝑙𝐵𝐵𝑘𝑘+𝑙𝑙
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙

𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� −�𝐵𝐵𝑘𝑘𝑎𝑎𝐾𝐾𝑖𝑖+𝑘𝑘
𝑖𝑖,𝑘𝑘

+ ξ ��𝐵𝐵𝑘𝑘𝑎𝑎𝐾𝐾𝑖𝑖+𝑘𝑘𝑦𝑦𝑖𝑖
𝑖𝑖,𝑘𝑘

�
2

 

= � � 𝑄𝑄𝐾𝐾𝑖𝑖+𝑙𝑙,𝐾𝐾𝑗𝑗+𝑙𝑙𝑎𝑎𝐾𝐾𝑖𝑖+𝑘𝑘𝑎𝑎𝐾𝐾𝑗𝑗+𝑙𝑙

𝐾𝐾−1

𝑘𝑘,𝑙𝑙=0

𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

, 

where 𝑄𝑄𝐾𝐾𝑖𝑖+𝑘𝑘,𝐾𝐾𝑗𝑗+𝑙𝑙 = 1
2
𝐵𝐵𝑘𝑘+𝑙𝑙𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗�𝐾𝐾(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) + 𝜉𝜉� − 𝛿𝛿𝑖𝑖,𝑗𝑗𝛿𝛿𝑘𝑘,𝑙𝑙𝐵𝐵𝑘𝑘 . As the objective function above 

might necessitate connections between any pair of qubits, an embedding is necessary (Choi, 

2008). Hyperparameters were selected using a custom 3-fold Monte-Carlo cross-validation 

on the training data. Hyperparameters included the type of kernel (linear versus Gaussian), 𝐵𝐵 

(between 2 and 10), 𝐾𝐾 (between 2 and 6), ξ (between 0 and 5), and γ (between 2−3 and 23). 

Closely related quantum ML approaches deploying QA have been used in classifying 
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transcription factor binding to DNA (Li et al., 2018) and in classification of multiomics human 

cancer data (Li et al., 2021b). 

 

Deep artificial neural network (DANN) 

We adapted common deep learning methodologies to analyze genomic datasets (Alipanahi 

et al., 2015). Typical deep neural networks use a series of nonlinear transformations (termed 

layers), with the final output considered a prediction of class or regression variables. Each 

layer consists of a set of weights (𝑊𝑊) and biases (𝑏𝑏) that are tuned during the training phase 

to learn which nonlinear combinations of input features are most important for the prediction 

task. These types of models “automatically” learn patterns in the data and combine them in 

some abstract nonlinear fashion, to gain an ability to make predictions about the dataset. 

The basic formulation of a fully connected DANN is given as 

𝐹𝐹𝑙𝑙𝐹𝐹 𝑚𝑚 𝑙𝑙𝑎𝑎𝑦𝑦𝑒𝑒𝐹𝐹𝑙𝑙…

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑓𝑓1 = 𝜌𝜌1 ���𝑊𝑊1,𝑗𝑗 × 𝑋𝑋𝑗𝑗�
𝑑𝑑1

𝑗𝑗=1

+ 𝑏𝑏𝑑𝑑1+1�

𝑓𝑓2 = 𝜌𝜌2 ���𝑊𝑊2,𝑗𝑗 × 𝑓𝑓1�
𝑑𝑑2

𝑗𝑗=1

+ 𝑏𝑏𝑑𝑑2+1�

𝑓𝑓𝑚𝑚 = 𝜌𝜌𝑚𝑚 ���𝑊𝑊𝑚𝑚,𝑗𝑗 × 𝑓𝑓𝑚𝑚−1�
𝑑𝑑𝑚𝑚

𝑗𝑗=1

+ 𝑏𝑏𝑑𝑑𝑚𝑚+1�

 

where the dimensions of 𝑊𝑊 and 𝑏𝑏 are determined by the number of neurons in each layer 

(𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑚𝑚). Each layer used rectified linear units as activation functions:  

ρ𝑙𝑙(𝑧𝑧) = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑙𝑙, 𝑧𝑧). 

The final layer used a softmax function, with the number of neurons equal to the number of 

classes (𝐾𝐾), to convert the logits to probabilities:  

ϕ(𝑓𝑓𝑚𝑚)𝑗𝑗 =
𝑒𝑒𝑓𝑓𝑚𝑚,𝑗𝑗

∑ 𝑒𝑒𝑓𝑓𝑚𝑚,𝑘𝑘𝐾𝐾
𝑘𝑘=1

 for 𝑗𝑗 = 1,⋯ ,𝐾𝐾, 

where 𝑓𝑓𝑚𝑚,𝑗𝑗 is the output of the 𝑗𝑗-th neuron of the 𝑚𝑚-th layer. In addition, we used the concept 

of “dropout,” which randomly sets a portion of input values (η) to the layer to zero during the 

training phase (Srivastava et al., 2014). This has a strong regularization effect (essentially by 
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injecting random noise) that helps prevent models from overfitting. Layers that included 

dropout were formulated as  

𝑓𝑓 = ρ���𝑊𝑊𝑗𝑗 × 𝑋𝑋𝑗𝑗�
𝑑𝑑

𝑗𝑗=1

+ 𝑏𝑏𝑑𝑑+1� × 𝑚𝑚𝑙𝑙 , 

where 𝑚𝑚𝑙𝑙  ~ Bernoulli(𝜂𝜂). 

When evaluating models on test datasets, the dropout mask was not used. We used 

the categorical cross-entropy loss function to train DANNs, where (𝐵𝐵𝑛𝑛) is the minibatch size, 

𝑜𝑜𝑖𝑖 is the correct class index, and 𝑜𝑜𝑖𝑖 is the class probability from the softmax layer: 

𝐿𝐿𝑇𝑇 = −�𝑜𝑜𝑖𝑖

𝐵𝐵𝑛𝑛

𝑖𝑖=1

𝑙𝑙𝑙𝑙𝑙𝑙(𝑜𝑜𝑖𝑖). 

We used minibatch stochastic gradient descent with Nesterov momentum to update 

the DANN parameters based on the above-described loss function (Sutskever et al., 2013). 

We used the TensorFlow (Abadi et al., 2016) Python package to construct the DANNs. 

 

Ensemble feature ranking 

To derive an ensemble ranking of the feature importance, we first calculated the feature 

importances for each algorithm. LASSO, Ridge, SVM, and qSVM are linear models, and thus 

the feature importance was determined based on the value of the weight assigned to each 

feature, with a larger score corresponding to greater importance. RF creates a forest of 

decision trees, and as part of the fitting process, it determines an estimate of the feature 

importance by randomly permuting the features one at a time and determining the change in 

the accuracy. XGB calculates the feature importance by averaging the gain across all the 

trees, where the gain is the difference in the Gini purity of the parent node and the two 

children nodes. 

The top 1000 most informative features of each model and for each partition of the 

data were retained. Because there were 100 partitions of the data, six algorithms (LASSO, 

Ridge, SVM, qSVM, RF, and XGB; DANN was not included because it lacks a robust 

approach to determine the feature importance), and up to 1000 features were retained, a 
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total of up to 600000 possible features were considered for each feature set (“up to” since 

they might not be unique, as the top 1000 features for one partition of the data might exhibit 

some overlap with the top 1000 features for another partition of the data). We discarded the 

feature scores from an algorithm on any partition with a test AUROC < 0.7 in an attempt to 

exclude scores that might not truly be informative. To aggregate the scores, we scaled the 

scores by the most informative feature for each algorithm on each partition such that the 

feature scores were all between 0 and 1; i.e., for the first partition of the data, we scaled the 

1000 most informative features from LASSO, then proceeded to do the same for Ridge, 

SVM, RF, and then repeated the process for each partition of the data. The scores were then 

averaged across all the partitions of the data to obtain a feature ranking for each method. If a 

feature was determined to be important for one partition of the data but not for others, it was 

given a value of 0 for all partitions of the data in which it did not appear. To determine a final 

ensemble feature ranking, the grand mean across all training partitions and algorithms was 

taken, and the features were sorted by the average score. 

 

Structural causal modeling 

We generated BBNs for the top 600 most informative genes as defined by ensemble feature 

ranking described above. BBNs were used to assess the conditional dependence and 

probabilistic relationships between the most informative genes. We used the TensorFlow 

(Abadi et al., 2016) Python package to construct the DANNs. We relied on a set of common 

assumptions to determine the causal structure: (1) causal sufficiency assumption, where 

there are no unobserved cofounders; (2) causal Markov assumption, where all d-separations 

in the graph (G) imply conditional independence in the observed probability distribution; and 

(3) causal faithfulness assumption, where all of the conditional independences in the 

observed probability distribution imply d-separations in the graph (𝐺𝐺). We acknowledge that 

our data might not strictly meet all of these assumptions, however, the generated BBNs 

provide useful biological hypotheses that could be experimentally validated.  
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We determined BBNs using the bnlearn R package with the score-based hill-climbing 

algorithm that heuristically searched the optimality space of all possible DAGs (Scutari, 

2010). As the hill-climbing algorithm can get trapped in local optima and is quite dependent 

on the starting structure, we initialized 100 BBNs starting from different network seeds. 

During the hill-climbing process, each candidate BBN was assessed with the Bayesian 

information criterion (BIC) score (Lam and Bacchus, 1994; Scutari, 2010): 

BIC = 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿 (𝑋𝑋1, … ,𝑋𝑋𝑣𝑣) −
𝑑𝑑
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛, 

where 𝑋𝑋1, … ,𝑋𝑋𝑣𝑣 is the node set, 𝑑𝑑 is the number of free parameters, 𝑛𝑛 is the sample size of 

the dataset, and 𝐿𝐿 is the likelihood. Note that this definition of the BIC, which is the version 

implemented in the bnlearn package, rescales the classic definition by -2. The penalty term 

was used to prevent overly complicated structures and overfitting. Each run of the hill-

climbing algorithm returns a structure that maximizes the BIC score (including evaluating the 

directions of edges). A caveat is that these structures might be partially oriented graphs (i.e., 

situations in which the directionality of some edges cannot be effectively determined). We 

use the cextend function from the bnlearn package to construct a DAG that is a consistent 

extension of 𝑋𝑋. We then generated a consensus network based on the 100 networks after 

hill-climbing and selected to keep the edges that were present in graphs at least 30% of the 

time. Any residual undirected edges contained in the consensus network were discarded. We 

assessed the statistical significance of the edges within the imposed consensus network by 

randomly permuting the dataset 10000 times and evaluating the consensus structure on 

these scrambled datasets (thus providing an estimate of the null distribution). BBN edges 

with a FDR of at least 5% (i.e., the edge occurred in ≥500 of the random BBNs) were 

removed from the final network.  

After deriving a final consensus network structure, we performed a series of in silico 

tests to determine the importance of each gene to the network. For each of the 600 genes, 

we removed all incident edges (both incoming and outgoing) and recalculated the BIC of the 

entire network. Doing so resulted in a lower BIC, and the magnitude of the change in BIC is a 
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measure of how important a gene is to the network. We also experimented with permuting 

the data corresponding to a single gene; the results for the mean change in BIC using the 

permutation test and removing all the incident edges did not significantly differ (Pearson’s 

correlation > 0.999). Having derived a measure for the importance of each gene to the 

network, we can compare the mean change in BIC of the top five driver genes to 1000 

random sets of five genes from the network.  

 

Real-time reverse transcription quantitative PCR (RT-qPCR) 

Total RNA was extracted from cells using the RNeasy Mini Kit (Qiagen, Hilden, Germany), 

and the RNA quality was assessed using an Agilent 2100 BioAnalyzer before reverse 

transcription into cDNA with Maxima™ H Minus Mastermix and following the manufacturer’s 

instructions (Thermo Fisher Scientific, Waltham, MA, USA). RT-qPCR was performed using 

QuantStudio3 (Thermo Fisher Scientific, Waltham, MA, USA) according to the 

manufacturer's protocol, and using PowerTrack™ SYBR™ Green Master Mix (Thermo 

Fisher Scientific, Waltham, MA, USA). The following primers were used: ADAM9, forward 5’-

GGACTCAGAGGATTGCTGCATTTAG-3’, reverse 5’-

CTTCGAAGTAGCTGAGTCATGCTGG-3’; and GAPDH (housekeeping gene), forward 5′-

GGTGAAGGTCGGAGTCAACGGA-3′ and 5′-GAGGGATCTCGCTCCTGGAAGA-3′ 

(Integrated DNA Technologies, Coralville, IO, USA). The RT-qPCR protocol consisted of 

95°C for 2 min followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. All reactions were 

performed in duplicate, and the relative amounts of transcripts were calculated with the 

comparative Ct method. Gene expression changes were calculated using the 2-ΔΔCt values 

calculated from averages of technical duplicates relative to the negative control. Melting-

curve analysis was performed to assess the specificity of the PCR products. 

 

Enzyme-linked immunosorbent assays (ELISA) 

The levels of soluble ADAM9 (sADAM9) and soluble MICA (sMICA) in the serum of critical 

and noncritical patients and healthy controls were quantified by ELISA. For soluble ADAM9, 
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we used the Human sADAM9 DuoSet ELISA kit (R&D Systems, Minneapolis, MN, USA) 

following the manufacturer’s instructions. sMICA levels were measured with an in-house 

developed sandwich ELISA using two monoclonal mouse antibodies for capture (A13-

C485B10 and A9-C255A9 at concentrations of 2 mg/ml and 0.2 mg/ml, respectively) and one 

biotinylated monoclonal mouse antibody for detection (A15-C199B9 at 60 pg/ml). Coating of 

MaxiSorp ELISA plates (Thermo Fisher Scientific, Waltham, MA, USA) was performed in 

PBS at 4°C overnight. After three washing steps with PBS, the wells were blocked with 200 

μl of 10% BSA in PBS for 1 h at room temperature. All the following steps were carried out at 

room temperature with PBS/0.05% Tween 20/10% BSA, which was used as a diluent for all 

the reagents and sera. The plates were washed three times with PBS/0.05% Tween 20 

between incubation steps. After blocking, the plates were incubated with 100 μl of sera, 

standards and controls for 2 h, followed by incubation with 100 μl of biotinylated detection 

antibody for 1 h. The plates were subsequently incubated for 1 h with 100 μl of a 5000-fold 

dilution of streptavidin poly-HRP (Thermo Fisher Scientific, Waltham, MA, USA) per well. The 

reactions were finally revealed using TMB Ultra (Thermo Fisher Scientific, Waltham, MA, 

USA) at 100 μl/well for 15 min and stopped with 100 μl of 1 M HCl. The absorbance was 

measured at 450 nm. 

 

Cell culture 

Vero 76 cell lines were grown at 37 °C under 5% CO2 and maintained in DMEM (Thermo 

Fisher Scientific, Waltham, MA, USA) containing 100 units/ml penicillin and supplemented 

with 10% fetal bovine serum (Pan Biotech, Aidenbach, Germany). ACE2-expressing A549 

cells (A549-ACE2) were grown at 37 °C under 5% CO2 and maintained in DMEM (Thermo 

Fisher Scientific, Waltham, MA, USA) containing 10 µg/ml of blasticidine S (Invitrogen, 

Carlsbad, CA, USA). 

 

Silencing and cell transfection 
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The cells were transfected with predesigned Stealth siRNA directed against ADAM9 

(HSS112867) or the control Stealth RNAi Negative Control Duplex medium GC (45-55%) 

(Thermo Fisher Scientific, Waltham, MA, USA) using LipofectamineTM RNAiMAX 

Transfection Reagent (Thermo Fisher Scientific, Waltham, MA, USA). One day prior to 

transfection, the cells were seeded in a 24-well plate at 0.05 × 106 cells per well. First, 1.5 μl 

of LipofectamineTM RNAiMAX Transfection Reagent was added to 25 μl of Opti-MEMTM 

medium, followed by addition of the mix containing 5 pmoles of siRNA in 25 μl of Opti-MEMTM 

medium (Thermo Fisher Scientific, Waltham, MA, USA). The mixture was incubated at room 

temperature for 5 min and then added to the cells. The cells were collected or infected after 

48 h. 

 

Western blot 

After collection and centrifugation, the cells were washed once in Dulbecco’s phosphate 

buffered saline (D-PBS, Sigma Aldrich, Saint-Louis, MI, USA). The pellet was resuspended 

in 60 μl of RIPA lysis buffer (150 mM NaCl, 5 mM EDTA, 1% NP40, 50 mM Tris pH 8, 0.5% 

sodium deoxycholate, and 0.1% SDS) including protease inhibitors (cOmplete, Roche 

Diagnostics, Rotkreuz, Switzerland) and maintained on ice for 20 min. The total cellular 

extract was then centrifuged for 30 min at 13000 g to remove all cell debris. A Bradford 

assay was used for protein quantification (Bio-Rad protein Assay, Bio-Rad Laboratories, 

Hercules, CA, USA). For Western blotting analysis, 20 μg of total cell extract was loaded on 

an 8% SDS-polyacrylamide gel. After migration, the proteins were transferred onto a PVDF 

membrane with a semidry transfer system (Trans-Blot, Bio-Rad Laboratories, Hercules, CA, 

USA). The membranes were blocked for 1 h in 5% skimmed milk/TBS 0.05%/Tween 20 and 

then incubated with the anti-ADAM9 antibody (ab218242; Abcam, Cambridge, UK) for 2 h at 

4°C in 5% BSA/TBS 0.1% Tween at 1/1000 dilution. The membrane was then incubated with 

the secondary antibody coupled to HRP (Bio-Rad Laboratories, Hercules, CA, USA). Bound 

antibodies were revealed with an enhanced chemiluminescence detection system using 
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ChemiDoc XRS (Bio-Rad Laboratories, Hercules, CA, USA). An anti-GAPDH antibody 

(MAB374, Merck Millipore, Burlington, MA, USA) was used for loading control. 

 

In vitro viral infections 

Vero 76 and A549-ACE2 cell lines were infected with wild-type SARS-CoV-2 virus at 

Multiplicities Of Infections (MOIs) of 10 and 400, respectively. The percentage of infected 

cells was determined by staining with SARS-CoV-2 nucleocapsid (% of nucleocapsid positive 

cells), and virus released into the supernatant was analyzed by RT-PCR (copies/ml), after 2 

and 3 days of infection for Vero 76 and A549-ACE2 cells, respectively.  

 

Flow cytometry staining 

The cells were fixed for 20 min in 3.6% paraformaldehyde at 4°C, washed in 5% FCS in PBS 

and stained with anti-nucleocapsid antibody (GTX135357, Genetex, Irvine, CA, USA) at a 

1/200 dilution in Perm/WashTM (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) 

for 45 min at room temperature. The antibody was then revealed by incubation with an Alexa 

647-labeled goat anti-rabbit monoclonal antibody (Ab150083, Abcam, Cambridge, UK) 

diluted 1/200 in 5% FCS in PBS for 45 min at room temperature. 

 

Viral RT-qPCR 

RNA was extracted from the supernatant of infected cells using the NucleoSpin Dx Virus Kit 

(Macherey-Nagel GmbH & Co.KG, Düren, Germany). RT-qPCR was performed using 

TaqPath™ 1-Step RT-qPCR Master Mix (CG) on the Quanstudio3 instrument (Thermo 

Fisher Scientific, Waltham, MA, USA). The primer/probe mix used for absolute quantification 

of the virus was N1 and N2 from the 2019-nCoV RUO Kit (Integrated DNA Technologies, 

Coralville, IO, USA), and the positive control for the standard curve was 2019-nCoV N 

Positive Control (Integrated DNA Technologies, Coralville, IO, USA). The reaction was 

performed in 20 μl, which included 5 μl of eluted RNA, 5 μl of TaqPath Master Mix and 1.5 μl 

of the primer/probe. The RT-qPCR protocol consisted of 25°C for 2 min, 50°C for 15 min, and 
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95°C for 2 min, and 40 cycles of 95°C for 3 s and 60°C for 30 s. All reactions were performed 

in duplicate, and absolute quantification was calculated with the standard curve of the 

positive control. 
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TABLES 

Table 1. Patients description 

Characteristics of all patients admitted to the hospital for COVID-19 

 All patients 
(n=72) 

Non-critical 
Group (n=25) 

Critical Group 
(n=47) P 

Age – median, IQR 40 [33; 46] 38 [31; 45] 41 [34; 46] 0.24 

Male - n (%) 53 (73.6) 17 (68.0) 36 (76.6) 0.61 

BMI (kg/m2) – median, IQR 30.0 [26.8; 35.0] 29.7 [23.8; 33.0] 30.2 [27.1; 35.6] 0.54 

Time since first symptoms 
(days) – median, IQR 8.0 [6.0; 11.0] 9.5 [7.2; 13.5] 7.0 [6.0; 10.0] 0.08 

COVID-19 treatments (during 
hospital stay) - n (%)     

Lopinavir/Ritonavir 21 (29.1) 3 (12.0) 18 (38.3) 0.02 

Remdesivir 3 (4.1) 1 (4.0) 2 (4.2) 1.00 

Hydroxychloroquine 19 (26.4) 2 (8.0) 17 (36.2) 0.01 

Corticosteroids 6 (8.3) 1 (4.0) 6 (12.8) 0.25 

Neurological symptoms - n (%) 26 (50.0) 10/25 (40.0) 16/27 (59.2) 0.27 

Outcome - n (%)     

In-hospital and day-28-mortality 6 (8.3) 0 6 (12.8) 0.09 

Characteristics of ICU patients 

 Critical Group 
(n=47)  

Baseline severity scores 
SAPS II – median, IQR 

  

38 [33; 47]  

SOFA – median, IQR 6 [4; 9]  

ARDS - n (%) 45 (95.7)  

Moderate  21 (46.7)  

Severe  24 (53.3)  

Supportive treatments   

Invasive mechanical ventilation – n (%) 45 (95.7)  

Duration of invasive mechanical ventilation (days) – median, IQR  13 [7;24]  

NMBA – n (%) 40 (89.0)  

Catecholamines – n (%) 41 (91.1)  

Catecholamines (days) – median, IQR 4 [2;10]  

RRT – n (%) 7 (15.6)  

ECMO – n (%) 2 (4.4)  

BMI: body mass index; IL-6R: interleukin 6 receptor; IQR: interquartile range; ARDS: acute 
respiratory distress syndrome; ECMO: extracorporeal membrane oxygenation; NMBA: 
neuromuscular blocking agent; RRT: renal replacement therapy; SAPS II: simplified acute 
physiology score II; SOFA: Sequential Organ Failure Assessment.  
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FIGURE LEGENDS 

Figure 1. Multiomics analytical strategy 

A. Forty-seven critical patients (C), 25 noncritical patients (NC) and 22 healthy controls (H) 

were enrolled in the study. PBMCs were isolated by density gradient and frozen in 

DMSO/FCS until utilization for Helios mass cytometry (Maxpar Direct Immune Profiling 

System, Fluidigm) and whole proteomics. Plasma was used for cytokine profiling (IL-17 

ELISA, V-PLEX Proinflammatory Panel and S-PLEX Human IFN-α2a Kit, Mesoscale 

Discovery) and whole proteomics. Serum was used to measure anti-type I IFN neutralizing 

antibodies, anti-SARS-CoV-2 neutralizing antibodies and multi-target antiviral serology. 

Whole blood was used for RNA-seq (PAXgene tubes, PreAnalytiX) and whole-genome 

sequencing (WGS). The number of treated samples per group and per omics is indicated 

below each omics designation. B. RNA-seq pipeline based on the NC vs. C comparison. The 

RNA-seq data were partitioned 100 times with 80% for training and the rest for testing. For 

each partition of the data, feature selection was performed based on differential expression 

and the genes that were significantly differentially expressed in each partition of the training 

data were selected for both the training and corresponding test data. Classification was 

performed using an ensemble computational approach with seven different algorithms. After 

classification and verification of the quality of the results on the test dataset, an ensemble 

feature ranking score across six of the seven algorithms and all 100 partitions of the data 

was determined. The top 600 of those features were used as the input for structural causal 

modeling to derive a putative causal network. C. Cytokines and immune cells were quantified 

following the manufacturer’s instructions. WGS data were used for eQTL analysis together 

with the gene counts from the RNA-seq. Proteomics data were subjected to differential 

protein expression and nGOseq enrichment analyses. D. The key pathways and drivers 

resulting from the omics analyses (B and C) were validated in a replication cohort of 81 

critical and 73 recovered critical patients. The differential expression of ADAM9, the main 

driver gene, was compared to publicly available bulk RNA-seq data. Finally, ex vivo infection 

experiments with SARS-CoV-2 were conducted to validate a driver gene candidate. 
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Figure 2. Immune profiling of healthy individuals, noncritical and critical COVID-19 

patients 

A. The levels of proinflammatory cytokines in plasma were quantified by cytokine profiling 

assays (V-PLEX Proinflammatory Panel and S-PLEX Human IFN-α2a Kit, Mesoscale 

Discovery) or ELISA (IL-17, R&D Systems). B. Absolute lymphocyte counts. Each dot 

represents a single patient. C. viSNE map colored according to the cell density across the 

three groups. Red indicates the highest density of cells. D-G. The proportions of modified 

lymphocyte subsets from COVID-19 patients and healthy controls as determined by mass 

cytometry. Proportions of T-cell subsets (D), B-cell subsets (E), dendritic cells (F) and 

nonclassical monocytes (G) are shown. The other cell subsets are presented in Figure S2. 

Each dot represents a single patient. In (A) and (D-G), the P-values were determined with 

the Kruskal-Wallis test, followed by Dunn’s posttest for multiple group comparisons; *P < 

0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. In (B), the P-value was determined by a two-

tailed unpaired t-test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 

 

Figure 3. Plasma and PBMCs proteomics of healthy individuals, noncritical and critical 

COVID-19 patients 

A. Total number of proteins identified in the plasma of patients and healthy controls. Each 

dot represents a patient. B. Multidimensional scaling plot of the normalized intensities of all 

patients/individuals in the three groups. C. Volcano plot representing the differentially 

expressed proteins (DEPs) in critical versus noncritical patients. The orange dots represent 

the proteins that are differentially expressed with a corrected P-value < 0.05. Proteins labeled 

in green and purple represent downregulated apolipoproteins and upregulated acute phase 

proteins, respectively. D. Normalized intensities of the proteins S100A8 and S100A9 in the 

three groups. P-values were determined with the Kruskal-Wallis test, followed by Dunn’s 

posttest for multiple group comparisons; *P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 

0.0001. E. Heatmap showing the expression of apolipoproteins involved in macrophage 
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functions and acute phase proteins in the three groups. Upregulated proteins are shown in 

red and downregulated proteins are shown in light blue. F. Total number of proteins identified 

in PBMCs of patients and healthy controls. Each dot represents a patient. G. 

Multidimensional scaling plot of the normalized intensities of all patients/individuals in the 

three groups. H. Volcano plot representing the DEPs in critical versus noncritical patients. 

The orange dots represent the proteins that are differentially expressed with a corrected P-

value < 0.05. Proteins labeled in green and purple are upregulated proteins involved in the 

regulation of blood coagulation and myeloid cell differentiation, respectively. I. Heatmap 

showing the expression of proteins involved in the regulation of blood coagulation and 

myeloid cell differentiation in the three groups. Upregulated proteins are shown in red and 

downregulated proteins are shown in light blue. 

 

Figure 4. RNA-seq and combined omics analysis of critical patient-specific pathways 

A. Volcano plot representing the differentially expressed genes in critical versus noncritical 

patients. The orange dots represent the genes that are differentially expressed with a 

corrected P-value < 0.05. Proteins labeled in green and purple represent upregulated genes 

involved in blood pressure regulation and viral entry, respectively. B. Gene set enrichment 

analysis plots showing positive enrichment of inflammatory response, myeloid leukocyte 

activation and neutrophil degranulation pathways. NES, normalized enrichment score. C. 

Enriched nested gene ontology (nGO) categories in critical vs. noncritical patients in RNA-

seq, plasma proteomics and PBMC proteomics. 

 

Figure 5. Integrated AI/ML and probabilistic programming of noncritical and critical 

COVID-19 patients 

A. ROCs of the train and test sets for critical vs noncritical comparisons. All methods 

performed similarly. Other classification metrics are provided in Table S2. B. Putative 

network showing the flow of causal information based on the top 600 most informative genes 

for classifying RNA-seq data of critical versus noncritical patients. C. Box plots showing the 
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normalized gene counts of the five driver genes in critical and noncritical patients. The 

indicated values correspond to the FDR. 

 

Figure 6. Validation of ADAM9 as a key driver of viral infection and replication 

A. Quantitative RT-PCR confirmation of the differential expression of ADAM9 in noncritical 

vs. critical patients and in healthy controls. B. Soluble ADAM9 (sADAM9) concentration in 

serum of healthy controls, noncritical and critical patients determined by ELISA. C. Soluble 

MICA concentration (sMICA) in serum of healthy controls, noncritical and critical patients 

determined by ELISA. D. Expression of ADAM9 according to the genotype of the eQTL 

rs7840270. E. Experimental approach for assessing viral uptake and viral replication in 

silenced Vero 76 or A549-ACE2 cells. F. Flow cytometry-based intracellular nucleocapsid 

staining in control and ADAM9-silenced Vero 76 and A549-ACE2 cells. G. Quantitative RT-

PCR of SARS-CoV-2 in culture supernatant after the silencing of ADAM9 in Vero 76 or A549-

ACE2 cells. The results from probe N1 are shown. In (A) and (F-G), the P-values were 

determined from a two-tailed unpaired t-test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 

0.0001. In (B-D), the P-values were determined with the Kruskal-Wallis test followed by 

Dunn’s posttest for multiple group comparisons; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P 

< 0.0001. 
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Figure 5.  

A 

B 

C p=1.6x10-11 p=3.1x10-12 p=1.6x10-11 

p=1.0x10-9 p=5.3x10-13 

Non-cr
itic

al

Criti
ca

l
0

2

4

6

8

10

AD
AM

9
No

rm
al

iz
ed

 C
ou

nt
s

✱✱✱✱

Non-cr
itic

al

Criti
ca

l
6.0

6.5

7.0

7.5

8.0

8.5

9.0

RA
B1

0
No

rm
al

iz
ed

 C
ou

nt
s

✱✱✱✱

Non-cr
itic

al

Criti
ca

l
0

2

4

6

8

M
CE

M
P1

No
rm

al
iz

ed
 C

ou
nt

s

✱✱✱✱

Non-cr
itic

al

Criti
ca

l
0

2

4

6

8

M
S4

A4
A

No
rm

al
iz

ed
 C

ou
nt

s

✱✱✱✱

Non-cr
itic

al

Criti
ca

l
0

2

4

6

8

G
CL

M
No

rm
al

iz
ed

 C
ou

nt
s

✱✱✱✱

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.21.21257822doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.21.21257822


Infection 

Infection 

↓ADAM9 

Control Vero-76 cells 
or A549-ACE2 cells 

Quantification of  
intracellular 
virus 

Viral production in 
culture supernatant 

Figure 6. 

A B C 

D E 

F G 

co
ntro

l R
NAi tr

ea
ted

 ce
lls

ADAM9 s
ile

nce
d ce

lls
9.0

9.5

10.0

A549-ACE2

Vi
ra

l t
ite

r (
lo

g/
m

l)
✱✱✱

co
ntro

l R
NAi tr

ea
ted

 ce
lls

ADAM9 s
ile

nce
d ce

lls
0

20

40

60

80

100

A549-ACE2

Pe
rc

en
ta

ge
 o

f S
AR

S-
Co

V-
2

nu
cl

eo
ca

ps
id

e 
po

si
tiv

e 
ce

lls

✱✱✱

CC
(26)

CA
(39)

AA
(20)

0

10

20

30

40

Genotype of rs7840270

N
or

m
al

iz
ed

 R
ea

d 
Co

un
ts ✱✱✱

✱✱✱

ns

co
ntro

l R
NAi tr

ea
ted

 ce
lls

ADAM9 s
ile

nce
d ce

lls
0

20

40

60

80

100

Vero 76

Pe
rc

en
ta

ge
 o

f S
AR

S-
Co

V-
2

nu
cl

eo
ca

ps
id

e 
po

si
tiv

e 
ce

lls ✱✱

co
ntro

l R
NAi tr

ea
ted

 ce
lls

ADAM9 s
ile

nce
d ce

lls
8.0

8.5

9.0

9.5

10.0

Vero 76

Vi
ra

l t
ite

r (
lo

g/
m

l)

✱✱

Hea
lth

y

Non-cr
itic

al

Criti
ca

l
0

2

4

6

Re
la

tiv
e 

qu
an

tit
y 

of
AD

AM
9 

tra
ns

cr
ip

ts

ns

✱✱✱✱

✱✱✱✱

Hea
lth

y

Non-cr
itic

al

Criti
ca

l
0

2000

4000

6000

sM
IC

A 
(p

g/
m

l)

ns

✱✱✱

✱

Hea
lth

y 

Non-cr
itic

al

Criti
ca

l
0

500

1000

1500

2000

2500

sA
DA

M
9 

co
nc

en
tra

tio
n 

(p
g/

m
l) ns

✱✱

✱✱

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.21.21257822doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.21.21257822

	Carapito et al. 2021_manuscript_medRxiv
	Carapito et al. 2021_figures_medRxiv
	Diapositive numéro 1
	Diapositive numéro 2
	Diapositive numéro 3
	Diapositive numéro 4
	Diapositive numéro 5
	Diapositive numéro 6


