Abstract
It is of great theoretical and application value to accurately forecast the spreading dynamics of COVID-19 epidemic. We first proposed and established a Bayesian model to predict the epidemic spreading behavior. In this model, the infection probability matrix is estimated according to the individual contact frequency in certain population group. This infection probability matrix is highly correlated with population geographic distribution, population age structure and so on. This model can effectively avoid the prediction malfunction by using the traditional ordinary differential equation methods such as SIR (susceptible, infectious and recovered) model and so on. Meanwhile, it would forecast the epidemic distribution and predict the epidemic hot spots geographically at different time. According to the results revealed by Bayesian model, the effect of population geographical distribution should be considered in the prediction of epidemic situation, and there is no simple derivation relationship between the threshold of group immunity and the virus reproduction number R0. If we further consider the virus mutation effect and the antibody attenuation effect, with a large global population spatial distribution, it will be difficult for us to eliminate Covid-19 in a short time even with vaccination endeavor. Covid-19 may exist in human society for a long time, and the epidemic caused by re-infection is characterized by a wild-geometric && low-probability distribution with no epidemic hotspots.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research is funded by Dezhou University (30101418)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
I confirm all relevant ethical guidelines have been followed, this research did not require any IRB and/or ethics committee approvals.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data and codes in this reprint are available through the link below.
https://github.com/zhaobinxu23/A-Continuous-Bayesian-Model-for-the-Simulation-of-SARS-CoV-2-Epidemic