Waning of Vaccine Effectiveness for the COVID-19 vaccine in Japan

Junko Kurita¹, Tamie Sugawara², Yasushi Ohkusa²

¹) Department of Nursing, Tokiwa University, Ibaraki, Japan
²) National Institute of Infectious Diseases, Tokyo, Japan

Corresponding author: Junko Kurita, kuritaj@tokiwa.ac.jp

ICMJE Statement
Contributors JK was responsible for the coordination of the study and responsible for the data setting. YO developed the model and TS illustrated the results. All authors contributed to the writing of the final manuscript.

Keywords: COVID-19, effective reproduction number, waning, vaccine coverage, variant strain

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: As of the end of 2021 year, the rate of completion for second-dose administration was almost 80% in Japan.

Object: We evaluated waning of vaccine effectiveness for COVID-19 in Japan, controlling for mutated strains, the Olympic Games, and countermeasures.

Method: The effective reproduction number $R(t)$ was regressed on current vaccine coverage and data of a certain number of days prior, as well as shares of mutated strains, and an Olympic Games dummy variable along with data of temperature, humidity, mobility, and countermeasures. The study period was February, 2020 through December 7, as of December 28, 2021.

Results: Estimation results indicate that the past vaccine coverage of older than 60 days prior raises $R(t)$ significantly and cancelled vaccine effectiveness completely.

Discussion and Conclusion: Results indicate significant waning of vaccine effectiveness from 60 days after the second dose.
Introduction

Wide coverage of COVID-19 vaccination has altered the outbreak situations in European countries and in the US. Unfortunately, vaccination in Japan started only in February, 2021 using BNT162b2 mRNA (Pfizer, BioNTech) and mRNA-1273 (Moderna) vaccines. Among the latest of starting dates of economically developed countries. Later, ChAdOx1 adenoviral vector (Oxford, AstraZeneca) also became available. As of the end of year 2021, the rate of completion for second dose vaccine administration was almost 80% in Japan (Figure 1) [1,2]. The next challenge posed by vaccine issues might be waning of vaccine effectiveness.

In fact, waning of vaccine effectiveness has been reported [3,4]. One study revealed that the log of IgG antibody titer decreased by a factor of 18.3 when measured at six months after second-dose vaccination. Another study revealed that vaccine effectiveness was 77.5% after one month later since the second vaccination, but it decreased about 20% after 5-7 month later. However, in the real world, vaccines of several types have been used. Moreover, vaccinated persons might change their behaviors. Therefore, we assess the vaccine effectiveness and its waning through infectiousness in the real world, particularly in Japan.

By the time vaccinations started in Japan, alpha variant strain had emerged and had expanded to dominate the recorded infections. Subsequently, new mutant strain alpha
variant strain appeared in May. Its infectiousness and pathogenicity were estimated as
35–90% higher than those of the original strain circulating before the emerging variant
strain, based mainly on data reported by the UK [5–8]. Therefore, we consider the
prevalence of these mutated strains together when evaluating vaccine effects.

Contemporaneously, the Olympic Games and Paralympic Games of 2020 began on
July 23, 2021. A subject of great concern for COVID-19 outbreak effects in Japan was
whether audiences would be allowed to attend game events, or not. As part of this
controversy, some experts asserted that the Games should be abandoned because they
would expand the outbreak explosively [9]. As a result, the game events were held with
no live audience. Under the state of emergency declared in Tokyo, effects of the Tokyo
Games 2020 must be included to evaluate vaccine effectiveness.

As countermeasures against the COVID-19 outbreak in Japan, school closure and
voluntary event cancellation were adopted from February 27, 2020 through the end of
March. Large commercial events were cancelled. Subsequently, a state of emergency
was declared for April 7 through 25 May, stipulating voluntary restrictions against
leaving home. Consumer businesses such as retail shops and restaurants were shuttered.
During this period, the first peak of infection was reached on April 3. Infections
subsequently decreased through July 29. The so-called “Go To Travel Campaign”
(GTTC) was launched on July 22 as a 50% subsidized travel program aimed at supporting sightseeing and tourism businesses with government-issued coupons for use at shopping at tourist destinations. It was expected that the campaign might expand the outbreak. Thereafter, GTTC continued to the end of December, by which time a third wave of infection had emerged. The third wave in December, which was larger than either of the preceding two waves, reached its highest peak at the end of December. Therefore, GTTC was inferred as the main reason underlying the third wave [10].

To suppress that third wave of infection, a second state of emergency was declared from January 8, 2021 through March 15, 2021. However, a fourth wave emerged at the end of February, probably because of the spread of variant strains. To support hosting of the Olympics and Paralympics games in Tokyo in July, a third state of emergency was declared on April 25, 2021. It had ceased on June 20, 2021 in Tokyo. Nevertheless, the outbreak commenced again before the Tokyo Games 2020 started. Therefore, a fourth state of emergency was declared on July 13, 2021. It continued thereafter until the Tokyo Games 2020 had closed.

Although results have been mixed, some results of earlier studies suggest that COVID-19 is associated with climate conditions [11–14]. If that were true for Japan, then GTTC might not have been the main factor contributing to the third wave.
Moreover, mobility was inferred as the main cause of the outbreak dynamics for the first wave in Japan [15] and throughout the world [16–19]. This study was conducted to estimate vaccine effects on SARS-CoV-2 infectiousness for the outbreak in Japan as well as the mutated strain, the Olympic Games, countermeasures and other factors which might affect infectiousness.

Methods

This study examined the numbers of symptomatic patients reported by the Ministry of Health, Labour and Welfare (MHLW) for February 1, 2020 – August 29, 2021 published [20] as of December 28, 2021. Some patients were excluded from data for Japan: those presumed to be persons infected abroad or infected as Diamond Princess passengers. Those patients were presumed not to represent community-acquired infection in Japan. For some symptomatic patients with unknown onset dates, we estimated the onset dates from an empirical distribution with duration extending from onset to the report date among patients for whom the onset date had been reported.

Onset dates among patients who did not report this information and a reporting delay were adjusted using the same procedures as those used for earlier studies [21,22]. As described hereinafter, we estimated the onset dates of patients for whom onset dates
had not been reported. Letting \(f(k) \) represent this empirical distribution of the incubation period and letting \(N_t \) denote the number of patients for whom onset dates were not published and available at date \(t \), then the number of patients for whom the onset date was known is \(t-1 \). The number of patients with onset date \(t-1 \) for whom onset dates were not available was estimated as \(f(1)N_t \). Similarly, patients with onset date \(t-2 \) and for whom onset dates were not available were estimated as \(f(2)N_t \). Therefore, the total number of patients for whom the onset date was not available, given an onset date of \(s \), was estimated as \(\sum_{k=1}^{t-s} f(k)N_{s+k} \) for the long duration extending from \(s \).

Moreover, the reporting delay for published data from MHLW might be considerable. In other words, if \(s+k \) is larger than that in the current period \(t \), then \(s+k \) represents the future for period \(t \). For that reason, \(N_{s+k} \) is not observable. Such a reporting delay engenders underestimation of the number of patients. For that reason, it must be adjusted as \(\sum_{k=1}^{t-s} f(k)N_{s+k} / \sum_{k=1}^{t-s} f(k) \). Similarly, patients for whom the onset dates were available are expected to be affected by the reporting delay. Therefore, we have \(M_{s,t} / \sum_{k=1}^{t-s} f(k) \), where \(M_{s,t} \) represents the reported number of patients for whom onset dates were period \(s \) as of the current period \(t \).

We defined \(R(t) \) as the number of infected patients on day \(t \) divided by the number of patients who were presumed to be infectious. The number of infected patients was
calculated from the epidemic curve by the onset date using an empirical distribution of
the incubation period, which is \(\sum_{k=1} f(k)E_{t+k} \), where \(E_t \) denotes the number of patients for
whom the onset date was period \(t \). The distribution of infectiousness in symptomatic
and asymptomatic cases \(g(k) \) was assumed to be 30% on the onset day, 20% on the
following day, and 10% for the subsequent five days [23]. Then the number of
infectiousness patients was \(\sum_{k=1} g(k)E_{t+k} \). Therefore, \(R(t) \) was defined as
\[
\sum_{k=1} f(k)E_{t+k}/\sum_{k=1} g(k)E_{t+k}.
\]

Data indicating the shares of mutated variants among all cases were published by
the Tokyo Metropolitan Government. Unfortunately, detailed information about mutated
strains has not been published for the entirety of Japan. We used two measures for the
mutant strain shares in Tokyo, Japan: alpha and delta variant strain [24].

We use average temperature and relative humidity data for Tokyo during the day as
climate data because national average data are not available. We obtained data from the
Additionally, we identified several remarkable countermeasures in Japan: two state of
emergency declarations, GTTC, and school closure and voluntary event cancellation
(SCVEC). The latter, SCVEC, extended from February 27 through March: this
countermeasure required school closure and cancellation of voluntary events, and even
cancellation of private meetings. The first state of emergency was declared April 7. It ceased at the end of May. It required voluntary restriction against going out, school closures, and shutting down of some businesses. To subsidize travel and shopping at tourist destinations, GTTC started on July 22. It was halted temporarily at the end of December. The second state of emergency was declared on January 7, 2021 for the 11 most affected prefectures. This countermeasure required restaurant closure at 8:00 p.m., with voluntary restrictions against going out, but it did not require school closure. It continued until March 21, 2021. The third state of emergency was declared on April 25, 2021 for four prefectures: Tokyo, Osaka, Hyogo, and Kyoto. Later, the application areas were extended gradually. They never covered the entirety of Japan.

To clarify associations among $R(t)$ and the Olympic Games in addition to vaccine coverage, the mutant strains, climate, mobility, and countermeasures, we regressed the daily $R(t)$ on daily current vaccine coverage and daily past vaccine coverage as well as dummy variables for the Games, weekly shares of alpha and delta variant strains, daily climate, mobility, and dummy variables for countermeasures using ordinary least squares regression. Temperatures were measured in degrees Celsius, with humidity, and mobility as percentages in regression, not as standardized. Variables found to be not significant were excluded from explanatory variables. Then the equation was estimated
again.

We define vaccine coverage as the completion rate of the second dose without delay. If a vaccine perfectly protects the recipient from infection, then the estimated coefficient of vaccine coverage would be 0.01 if one assumes an average of $R(t)$ with no vaccination in the study period. That would mean that increasing vaccine coverage by one percentage point can be expected to reduce $R(t)$ by one percentage point. If the estimated coefficient of vaccine coverage were smaller than -0.01, then it might reflect imperfect personal prevention. Conversely, if the estimated coefficients of vaccine coverage were smaller than -0.01, then herd immunity can be inferred to have contributed to prevention of infection among non-recipients.

Waning of vaccine effectiveness was measured by the estimated coefficient of vaccine coverage in the past. Particularly, we examined every 30 days prior until 180 days prior. We expected the estimated coefficient to be positive if waning was occurring. If its estimated coefficient was positive but smaller than the absolute value of the estimated coefficient of current vaccine coverage, then waning was presumed to be partially occurring. Vaccination was presumed to be effective even if a part of effectiveness was waning. If the estimated coefficient of vaccine coverage in the past was positive and almost equal to the absolute value of the estimated coefficient of
current vaccine coverage, then waning was presumed to be complete. We might not expect vaccine effectiveness until that time. Conversely, if the estimated coefficient of vaccine coverage in the past was positive and larger than the absolute value of the estimated coefficient of current vaccine coverage, then the vaccine might raise infectiousness eventually. We adopted 5% as the level at which we inferred significance of results.

Results

Figure 1 depicts vaccine coverage for the first dose with a 12-day delay and depicts the second dose as scatter diagrams. It also shows the shares of alpha and delta variant strains as bars. These are increasing almost monotonically during the period. Adjustments were made for double counting for the number of vaccine recipients. Therefore, the vaccine coverage was sometimes smaller than it was earlier. Figure 2 depicts $R(t)$ during the study period.

Figure 3 presents an empirical distribution of the duration of onset to reporting in Japan. The maximum delay was 31 days. Figure 4 presents an empirical distribution of incubation periods among 91 cases for which the exposed date and onset date were published by MHLW in Japan. The mode was six days. The average was 6.6 days. The
calculated \(R(t) \) is presented in Figure 1.

Table 1 presents estimation results. Current vaccine coverage reduced infectiousness significantly when vaccine coverage in the past was defined as more than 60 days prior. The estimated coefficients increased along with their duration of time into the past: from -0.0711 for vaccination coverage of 60 days prior to -0.0169 for vaccination coverage of 180 days prior.

The estimated coefficients of vaccine coverage in the past were significantly positive when vaccine coverage in the past was defined as more than 60 days prior. The estimated coefficients also increased along with time into the past: from 0.0557 to 0.4173.

The sums of the estimated coefficients of current and past vaccine coverage were not significantly different from zero for 60 or 90 days prior assumed for the past vaccine coverage. When assuming coverage as 120, 150 or 180 days prior, the estimated coefficients of the past vaccine coverage were significantly larger in absolute terms than the current vaccine coverage.

The estimated coefficients of the share of the alpha variant strain were significantly negative except for assuming past vaccine coverage as 150 days prior. Conversely, share of delta variant strain were not significant except for assuming past vaccine coverage as
30 days prior. These results were inconsistent with the expected effects of the variant strain.

Mobility was found to be positive and significant. The first three state-of-emergency periods and GTTC were found to be significantly negative. However, SCVEC was found to be significantly positive. The fourth state-of-emergency period was consistently insignificant. Olympic games was significantly positive only when assuming past vaccine coverage as 30 days prior and otherwise were not significant. Climate conditions were not significant, consistently.

Discussion

Results showed complete waning by 60 days after the second dose of vaccine was administered. This duration is remarkably shorter than those reported from earlier waning studies [3,4] which reached their results based on antibody titer or test negative design. Readers must be reminded that waning estimated for the present study might include behavioral changes among the vaccinated persons to adoption of more risky behavior that is prone to infection. Such behaviors and the vaccine itself affect waning results, but they are not separately discernible from results of this study. Weakening of immunoreaction and behavioral change are separate factors, but their mutual effects
might be the most important for management of public health.

Vaccine efficacy was estimated as 95% through clinical trials [25]. In the real world, it was also estimated as 46–80% for the first dose and 86–90% for the second dose [26–31] through case–control studies or test-negative design. However, even in the real world, such studies specifically examine protection for vaccine recipients only and ignore herd immunity, meaning vaccine effects on non-vaccine recipients. The latter was not able to be estimated through clinical trials, case–control studies, or test negative design. In this sense, these earlier studies have been incapable of evaluating the overall effects of vaccination on the community. Instead of those methods, we evaluated vaccine effectiveness on the entire community, of course including herd immunity, through its effects on SARS-CoV-2 infectiousness.

Results indicated no significant result of momentary effect from the current vaccine coverage or waning from past vaccine coverage when the past vaccine coverage was defined as shorter than 60 days prior. Particularly, these estimated coefficients had unexpected signs but significance. These results were probably caused by multicollinearity among the current and past vaccine coverage. Because of smaller time differences among these variables, correlation among them should be higher. Therefore, the smaller time differences distorted estimation results.
Conversely, when the past vaccine coverage was defined as older than 120 days
prior, the estimated coefficients of the past vaccine coverages were much larger than the
estimated coefficients of the current vaccine coverage in absolute terms. Statistically,
the result probably reflected that the past vaccine coverage longer ago should be a very
small number, as shown in Figure 1. Therefore, the estimated coefficients should be
larger than the correspondence when the past vaccine coverage was defined as older
than 180 days prior. Expressed semantically, because that waning may not reduce the
immunization level to less than before the vaccination was administered, these results
imply that behavioral changes to adopt more risky behaviors prone to infection among
vaccinated persons raise infectiousness considerably.

No evidence exists to indicate that the Tokyo Games 2020 reinforced the outbreak
of COVID-19. Expectations by some experts before the Games might have been wrong.
It seems likely that most Japanese people watched TV at home and rooted for athletes.
The no-audience policy might have contributed to reduction in infectiousness during the
Games. Even though lower infectiousness prevailed during the Games, if it actually
became higher than unity, then the number of newly infected or newly confirmed
patients would be expected to grow during the period. Therefore, the number of patients
has not represented the outbreak situation. We must specifically examine infectiousness
during that period to evaluate policies.

The share of alpha variant strain were significant and negative and the share of delta variant strain were not significant with some exception. These results were not consistent with results reported from earlier studies [5–8].

The present study has some limitations. First, we assumed implicitly that epidemiological characteristics including incubation period or delay in reports were the same among the original strain, alpha and delta variant strains. However, results of one study indicated that delta variant strain has a shorter incubation period than either original strain [32].

Secondly, readers must be reminded when interpreting the obtained results that they do not indicate causality. Results of this study demonstrated that a negative association exists between the vaccine coverage and infectiousness. That finding does not necessarily mean that the vaccine coverage reduced infectiousness. The lower infectiousness might have caused or might have even simply coincided with higher vaccine coverage.
Conclusion

The estimation results are evidence of significant waning in vaccine effectiveness from 60 days after the second dose.

The present study is based on the authors’ opinions: it does not reflect any stance or policy of their professionally affiliated bodies.

Acknowledgments

We acknowledge the great efforts of all staff at public health centers, medical institutions, and other facilities who are fighting the spread and destruction associated with COVID-19.

Ethical considerations

All information used for this study was published data on the web were used. There is therefore no ethical issue related to this study.

Competing Interest

No author has any conflict of interest, financial or otherwise, to declare in relation to this study.
Reference

1. Prime Minister and his Cabinet. Novel Coronavirus Vaccines.

 [accessed on December 28, 2021]

14. Walrand S. Autumn COVID-19 surge dates in Europe correlated to latitudes, not to temperature-humidity, pointing to vitamin D as contributing factor. Scientific Reports volume 11, Article number: 1981 (2021) Cite this article

https://www.nature.com/articles/s41598-021-81419-w

https://publichealth.jmir.org/2021/2/e20335

16. Bergman N, Fishman R. Mobility Reduction and Covid-19 Transmission Rates. doi:

https://doi.org/10.1101/2020.05.06.20093039

18. Li Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, Nair H, for theUsher Network for COVID-19 Evidence Reviews (UNCOVER) group. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across

DOI:https://doi.org/10.1016/S1473-3099(20)30785-4

https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30785-4/fulltext

Y, Yuan J, He J, Lu J. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. medRxiv

2021.07.07.21260122; doi: https://doi.org/10.1101/2021.07.07.21260122
Figure 1: Vaccine coverage and shares of alpha and delta variant strains in 2021

<table>
<thead>
<tr>
<th>share of the variant strain (%)</th>
<th>vaccine coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Black line represents shares of alpha variant strain. Gray line represents shares of delta variant strain, in Tokyo measured at the left-hand side. Red scattered points denote vaccine coverage as defined by the first dose with a 12-day delay. Blue scattered points denote vaccine coverage defined by the second dose. The vaccine coverage data were measured at the right-hand side. Because daily vaccine coverage was not reported on weekends and national holidays, data of vaccine coverage are missing for these days. Moreover, there were adjustment for double counting for the number of vaccine recipients and thus vaccine coverage was sometimes smaller than before.
Figure 2: Effective reproduction number from February, 2020 through December 7, 2021.

R(t)

Note: Line represent the effective reproduction number from February, 2020 through November 4, 2021, in Japan, as of December 28, 2021. Procedures for calculation was explained in the main text.
Figure 3: Empirical distribution of duration from onset to report by MHLW, Japan.

Note: Bars represent the probability of duration from onset to report based on 657 patients for whom the onset date was available in Japan. Data were obtained from MHLW, Japan.
Figure 4: Empirical distribution of the incubation period published by MHLW, Japan.

Notes: Bars show the distribution of incubation periods for 91 cases for which the exposure date and onset date were published by MHLW, Japan. Patients for whom incubation was longer than 14 days are included in the bar shown for day 14.
Table 1: Estimation results of $R(t)$ with vaccine coverage, prevalence of the variant strains, and Olympic Games with the climate condition, mobility, and countermeasures

<table>
<thead>
<tr>
<th>Lag for waning</th>
<th>30</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanatory variable</td>
<td>Estimated coefficient</td>
<td>p-value</td>
<td>Estimated coefficient</td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.0051</td>
<td>0.190</td>
<td>-0.0030</td>
</tr>
<tr>
<td>Humidity</td>
<td>-0.0004</td>
<td>0.767</td>
<td>0.0002</td>
</tr>
<tr>
<td>Mobility</td>
<td>0.0075</td>
<td>0.000</td>
<td>0.0073</td>
</tr>
<tr>
<td>SCVEC</td>
<td>0.7920</td>
<td>0.000</td>
<td>0.8240</td>
</tr>
<tr>
<td>1st State of emergency</td>
<td>-0.8876</td>
<td>0.000</td>
<td>-0.8819</td>
</tr>
<tr>
<td>GTTC</td>
<td>-0.8591</td>
<td>0.000</td>
<td>-0.8503</td>
</tr>
<tr>
<td>2nd State of emergency</td>
<td>-1.0243</td>
<td>0.000</td>
<td>-0.9920</td>
</tr>
<tr>
<td>3rd State of emergency</td>
<td>-.6497</td>
<td>0.000</td>
<td>-0.8526</td>
</tr>
<tr>
<td>4th State of emergency</td>
<td>0.2366</td>
<td>0.199</td>
<td>0.1099</td>
</tr>
<tr>
<td></td>
<td>Olympic Games</td>
<td>Vaccine</td>
<td>Vaccine coverage (%)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>0.6155</td>
<td>0.0528</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1235</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.520</td>
</tr>
</tbody>
</table>

Notes: The dependent variable was $R(t)$; GTTC stands for “Go To Travel Campaign”; SCVEC denotes school closure and voluntary event cancellation. The sample period
was February 1, 2021 through December 7, 2021, as of December 28, 2021. Table 1
(cont.)

<table>
<thead>
<tr>
<th>Lag for waning</th>
<th>120</th>
<th>150</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated</td>
<td>p-value</td>
<td>Estimated</td>
</tr>
<tr>
<td>Explanatory variable</td>
<td>coefficient</td>
<td></td>
<td>coefficient</td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.0026</td>
<td>0.485</td>
<td>-0.0027</td>
</tr>
<tr>
<td>Humidity</td>
<td>0.0002</td>
<td>0.87689</td>
<td>0.0002</td>
</tr>
<tr>
<td>Mobility</td>
<td>0.0075</td>
<td>0.000</td>
<td>0.008079</td>
</tr>
<tr>
<td>SCVEC</td>
<td>0.8152</td>
<td>0.000</td>
<td>0.8116</td>
</tr>
<tr>
<td>1st State of emergency</td>
<td>-0.8829</td>
<td>0.000</td>
<td>-0.8692</td>
</tr>
<tr>
<td>GTTC</td>
<td>-0.8636</td>
<td>0.000</td>
<td>-0.8690</td>
</tr>
<tr>
<td>2nd State of emergency</td>
<td>-0.9915</td>
<td>0.000</td>
<td>-0.9892</td>
</tr>
<tr>
<td>3rd State of emergency</td>
<td>-0.7197</td>
<td>0.000</td>
<td>-0.7191</td>
</tr>
<tr>
<td>4th State of emergency</td>
<td>-0.0561</td>
<td>0.755</td>
<td>-0.0224</td>
</tr>
<tr>
<td>Variable</td>
<td>Coefficient 1</td>
<td>Coefficient 2</td>
<td>Coefficient 3</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Olympic Games</td>
<td>0.1419</td>
<td>0.389</td>
<td>0.2486</td>
</tr>
<tr>
<td>Vaccine coverage (%)</td>
<td>-0.0318</td>
<td>0.001</td>
<td>-0.0202</td>
</tr>
<tr>
<td>Vaccine coverage with lag (%)</td>
<td>0.0488</td>
<td>0.000</td>
<td>0.0942</td>
</tr>
<tr>
<td>Share of alpha variant strain (%)</td>
<td>-0.0037</td>
<td>0.008</td>
<td>-0.0037</td>
</tr>
<tr>
<td>Share of delta variant strain (%)</td>
<td>0.0039</td>
<td>0.528</td>
<td>-0.0018</td>
</tr>
<tr>
<td>Constant</td>
<td>1.1011</td>
<td>0.000</td>
<td>1.0615</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.570</td>
<td>0.569</td>
<td>0.568</td>
</tr>
<tr>
<td>Number of observations</td>
<td>642</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.