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Abstract 

Genome-wide association studies have successfully discovered thousands of common 

variants associated with human diseases and traits, but the landscape of rare variation in 

human disease has not been explored at scale. Exome sequencing studies of population 

biobanks provide an opportunity to systematically evaluate the impact of rare coding variation 

across a wide range of phenotypes to discover genes and allelic series relevant to human 

health and disease. Here, we present results from systematic association analyses of 4,529 

phenotypes using single-variant and gene tests of 426,370 individuals in the UK Biobank with 

exome sequence data. We find that the discovery of genetic associations is tightly linked to 

frequency as well as correlated with metrics of deleteriousness and natural selection. We 

highlight biological findings elucidated by these data and release the dataset as a public 

resource alongside the Genebass browser for rapidly exploring rare variant association results.  
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Introduction 

Coding variation has been the most readily interpretable class of genomic variation since 

the development of the gene model and mapping of the human genome. As such, it has 

facilitated the mapping and interpretation of variants with immediate clinical importance such as 

the American College of Medical Genetics actionable variant list (Kalia et al., 2017). More 

recently, exome sequencing has yielded the discovery of specific causal variants for hundreds 

of rare diseases, particularly dominant acting de novo variants for severe diseases (Bamshad et 

al., 2019). 

As the sample sizes of exome sequencing datasets continue to grow, so do the 

opportunities to identify associations between rare variants and phenotypes (both complex traits 

and diseases). In complex diseases, identifying causal genetic factors for a given disease can 

provide direct insight into the potential for therapeutic avenues. For instance, gain-of-function 

variants in PCSK9 have been demonstrated to increase LDL levels and thus risk for 

cardiovascular disease (Abifadel et al., 2003). Accordingly, loss-of-function (LoF) variants are 

protective for cardiovascular disease (Cohen et al., 2006), and less than 15 years after the 

discovery of this effect, therapeutic approaches to inhibit PCSK9 have been brought to market 

(Sabatine et al., 2017). 

Deeply phenotyped biobanks present a unique opportunity to simultaneously analyze 

multiple diseases and traits within a single cohort, enabling the discovery of new disease genes 

with therapeutic potential at a large scale, such as the identification of rare variants in ANGPTL7 

that protect against glaucoma (Tanigawa et al., 2020). The UK Biobank is a collection of 

approximately 500,000 participants with standardized, detailed phenotypic data (Bycroft et al., 

2018) on which GWAS have been run extensively. The UKB Exome Sequencing Consortium, a 

partnership between the UKB and 8 biopharma companies, generated exome sequences for 

this cohort (Szustakowski et al., 2021), and recent studies have used the exome sequence data 

to explore various aspects of rare variant associations, including novel biological signals for type 
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2 diabetes (Deaton et al., 2021), cardiometabolic traits (Jurgens et al., 2022), as well as cross-

phenotype analyses that identify new hits for a variety of traits (Backman et al., 2021; Sun et al., 

2022; Wang et al., 2021). Here, we describe results from a systematic, large-scale rare variant 

association analysis of 4,529 phenotypes, release these full sets of summary statistics in a 

results browser, and explore the role of natural selection and allele frequency on rare variant 

associations. 

Generating high-quality exome data for rare variant associations 

We built an end-to-end pipeline for read mapping, processing, joint variant calling, 

quality control (QC), and mixed model association analysis, and applied this pipeline to 454,697 

individuals with exome sequence data from the UK Biobank. The read mapping and processing 

pipeline adopted the GATK Best Practices pipeline (GRCh38), and the resulting variants (gVCF 

files) were joint-called using a scalable implementation in Hail (Supplementary Information; Fig. 

S1) (Hail Team, 2020). We processed a set of 4,529 phenotypes including 1,233 quantitative 

traits as well as 3,296 binary traits with at least 200 cases, which included 725 disease 

endpoints based on ICD-10 codes (Fig. S2). 

After performing QC in a similar but augmented (e.g. array concordance; see 

Supplementary Information) manner as for the Genome Aggregation Database (gnomAD) 

(Karczewski et al., 2020), we generated a high-quality dataset of 450,953 individuals (Figs. S3 

to S5; table S1) including related individuals. This included 426,370 individuals of European 

ancestry in which we find 23,880,790 high-quality variants (Fig. S6). For each of 19,407 protein-

coding genes, we considered up to four functional annotation categories: predicted LoF (pLoF), 

missense (including low-confidence pLoF variants and in-frame indels), synonymous, and the 

combination pLoF or missense group, resulting in 8,074,878 variants and 75,767 groups for 

association testing (i.e., one group per gene and functional annotation category). 
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Creating a high-quality set of rare variant associations 

We performed group tests using the mixed model framework SAIGE-GENE (Zhou et al., 

2020), which includes single-variant tests and gene-based burden (mean), SKAT (variance), 

and SKAT-O (hybrid variance/mean) tests (Fig. S7). In total, we performed up to 8,074,878 

single-variant tests and 75,767 group tests for each of 4,529 phenotypes (Fig. 1). Additionally, 

we generated 314 heritable random phenotypes to test the asymptotic properties of the mixed-

model association testing framework (Figs. S8 to S9), and to determine empirical p-value 

thresholds for Type I error control. Based on this analysis, for each phenotype, in addition to QC 

criteria defined below, we consider genome-wide p-value thresholds of 2.5 x 10-7 for SKAT-O 

tests, 6.7 x 10-7 for burden tests, and 8 x 10-9 for single-variant tests (see Supplementary 

Information; Fig. S10), corresponding to approximately 0.05 expected false positives per 

phenotype. 
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Figure 1 | Quality control (QC) of rare variant association tests. The number of phenotypes (A), 
variants (B), and groups (i.e., gene-annotation pairs; C) before and after QC. After QC, the 
number of variants (D) and genes (E) are broken down by annotation and frequency bin 
(alternate allele frequency [AF] for variants, cumulative allele frequency [CAF] for genes). 
 

We performed extensive QC on these summary statistics (Fig. 1; Table S2; 

Supplementary Information), including a minimum of two variants per group test, a minimum 

coverage of 20X, a minimum expected allele count (frequency × n_cases) of 50 for the 

summary statistics, respectively, as well as genomic control (lambda GC) for each phenotype 

and each gene (Figs. S11 to S15). Further, we pruned to a set of 3,637 high-quality 

independent phenotypes encompassing 677 continuous traits and 2,960 binary traits, including 

690 ICD codes (Figs. 1A, S16; Table S2). We confirmed the robustness of our results by 

comparing them to a previous large-scale study of height (Tables S3 to S5, Fig. S17) and red 

blood cell phenotypes (Table S6), for which our analysis replicates the majority of associations 

with consistent direction of effect (Hu et al., 2021; Marouli et al., 2017). 

We filtered to 385,034 variants, including 8,404 pLoF variants, 224,148 missense 

variants, and 152,482 synonymous variants with at least one phenotype having expected allele 

count (cohort frequency × n_cases) over 50 (Fig. 1B). For group tests, we filter to a high-quality 

set of 58,056 gene tests with at least 20X coverage (Fig. S13) and !"#$%!&"#'(%#)*%('"+)%#,-"*#

%.)%/"%0#!$$%$%#/'1("#2#34#for pLoF (N=9,636 genes), missense (N=16,320), synonymous 

(N=16,354), and pLoF or missense (N=15,746) (Fig. 1C). 

Using these criteria, we identified a total of 71,648 and 6,991 associations meeting our 

p-value threshold with a mean of 19.7 and 1.9 associations per phenotype, for single-variant 

tests and group tests, respectively (disease results shown in Fig. 2A-B). Comparing the group 

test results to single-variant association test results, we find that single-variant tests identify 

more significant associations than group tests, as these are largely from common variants that 

are excluded from the group tests. However, we also find 2,237 associations (on average 0.62 
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per phenotype) from group tests where no single-variant association reached our p-value 

threshold for any single variant in the corresponding gene (Fig. 2C). Further, most associations 

arise from missense and synonymous variants, as expected from their greater numbers in the 

exome, particularly from single-variant associations. However, pLoF variants exhibit relatively 

more associations in group tests, which is consistent with these variants being individually rare, 

but directionally consistent, resulting in increased power in a group test (Fig. 2D). In combined 

tests of pLoF and missense variants, we find an additional 267 associations among burden tests 

(245 for SKAT-O) that are significant for the combined test but not missense or pLoF tests 

alone. 
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Figure 2 | Rare variant association testing is enhanced by group tests. (A-B), For each ICD 
chapter, we show a Manhattan plot, depicting the distribution of p-values for all single-variant 
(A) and SKAT-O gene-based (B) associations, where for each variant/gene, the minimum p-
value across phenotypes within each category is shown. (C-D): The number of gene-level 
associations per phenotype is shown as a barplot, broken down by trait type (left) and 
normalized within each trait type (right), separated by phenotype category (C) or functional 
annotation (D). The single-variant tests are grouped into genes where at least one associated 
variant is necessary to be “Significant by variant” which is shown alongside group tests 
(“Significant by gene”) as well as genes where an association is found both for group and 
single-variant tests. 
 

Displaying rare variant associations 

The utility of human genetic variation datasets are substantially enhanced when made 

accessible in the form of online portals that enable non-technical domain experts to quickly 

browse, interpret, and export results for downstream follow-up (Karczewski et al., 2017). We 

extended our gnomAD browser toolkit to create the genebass (gene-biobank association 

summary statistics) browser (https://genebass.org), a new, highly interactive tool for exploring 

large numbers of gene-based PheWAS analysis results. This resource provides users with 

direct access to all 4,529 phenotypes, serving up 993,280,477 gene-level association statistics 

(across 19,407 genes, 4 annotation sets, and 3 burden tests) and 28,158,190,538 single variant 

association statistics across 8,074,878 exome variants. For completeness, the released dataset 

includes all association statistics, including pre-QC data, but we provide functionality to filter to 

only the highest quality data presented herein. Our web application features a novel layout and 

navigational scheme for rapidly browsing phenome-wide associations by integrating results 

across genes and variants. Customizable controls, plots, and tables enable flexible filtering and 

visualization of phenotypes, genes, and variants of interest; results can be exported for 

downstream analyses; and variant associations across traits can be compared to inform 

pathways associated with complex traits and develop therapeutic hypotheses (see 

Supplementary Information).  
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Frequency and selection affect the landscape of rare variant associations 

 The relationship between natural selection, allele frequency, effect size, and power for 

discovery is a major complexity in the analysis and interpretation of association statistics, 

particularly from rare variants. The power to detect association is proportional to the variance 

explained of a biallelic variant (Sham et al., 2000). Specifically, for a continuous trait the 

variance explained of a biallelic variant that is purely additive is 2pqa2 where p is the allele 

frequency, q = 1-p and a is the allelic effect of the variant. Thus, for a fixed effect size, a more 

common variant will capture more variance and by extension show stronger association. 

However, the process of negative selection will tend to decrease the frequency of 

functional damaging variants, suggesting that variants with large effect sizes are more likely to 

be rare. Indeed, partitioned heritability analyses for common variants support the presence of 

these countervailing forces, as comparatively lower frequency variants have larger absolute 

effect sizes but this growth in effect size is slower than the loss in variance explained from their 

lower frequency (Gazal et al., 2017). In evaluating the landscape of rare variant association, we 

observe a similar pattern with increasing proportion of variants associated with at least one 

phenotype as frequency increases (Fig. 3A). However, within each frequency category, we 

observe the effect of functional annotation, a known correlate for deleteriousness, on the 

association statistics. 

Comparing the number of associations by variant annotation in each allele frequency 

category, we find that pLoF variants have a larger number of associations than missense 

variants, followed by synonymous variants for single-variant tests (Fig. 3A) as well as group 

tests (Fig. 3B). For common variants (>1%), we observe further increases in associations due to 

power, but with attenuated associations for pLoF variants, likely due to an increased rate of 

artifacts at common pLoF variants (MacArthur and Tyler-Smith, 2010) (Fig. S18). Within 

missense variants, variant deleteriousness as predicted by PolyPhen2 (Adzhubei et al., 2010) is 

correlated with the number of associations meeting our p-value threshold (Fig. S18). For splice 
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donor variants, we find a correlation between the proportion expressed across transcripts (pext) 

(Cummings et al., 2020) and the number of associations (Fig. 3C). Additionally, the 

pathogenicity level of ClinVar variants is correlated with phenotypic association (Fig. 3D). 

 

Figure 3 | The influence of variant allele frequency and functional annotation in exome 
association testing. The proportion of single variants (A) and genes (B) with at least one 
significant hit is shown broken down by allele frequency category (A) or cumulative allele 
frequency category (B), each shown below the plot, broken down by functional annotation. This 
metric is also plotted by the proportion expressed across transcripts for splice variants (C), and 
ClinVar pathogenicity status (D). 
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Gene function influences association statistics 

We examined the phenotypic impact of gene categories previously known to have 

functional relevance and/or a role in disease. In particular, we find that 470 genes previously 

implicated in developmental delay (Kaplanis et al., 2020) are more likely to be associated with a 

phenotype in the UK Biobank (Fisher’s exact p = 3.6 x 10-4, OR = 3.50; Fig. 4). Further, we 

observe a correlation between selection against pLoFs in a gene and the phenotypic impact of 

pLoFs in that gene: specifically, constrained genes (i.e., those in the highest decile of LoF 

observed/expected upper bound fraction [LOEUF], a metric of LoF intolerance) are more likely 

to be associated with a phenotype (9.14%) than a frequency-matched set of genes in the 

genome (2.12%; Fisher’s exact p = 6.1 x 10-14, OR = 4.65; Fig. 4). Similarly, genes with known 

autosomal dominant and autosomal recessive diseases, as well as genes with previously 

established hits in the GWAS catalog and FDA approved drug targets, show an increased 

phenotypic impact of pLoFs and missense variants. 
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Figure 4 | The effect of gene function on the landscape of rare variant associations. The 
proportion of gene-annotation pairs with at least one association (SKAT-O p < 2.5 x 10-7) is 
shown for a number of gene categories, each compared to a background set of genes matched 
on cumulative allele frequency. Error bars represent 95% confidence intervals. Asterisks denote 
a significant difference between the background set and test set (* and ** indicate p < 0.05 and 
p < 0.001, respectively). 
 

 

Biological insights from rare variant association results 

The biological information encapsulated in this dataset is extremely high-dimensional, 

and we release the full dataset of results for the benefit of the community. Here, we highlight a 

set of known and putative associations as examples of the power of this dataset. First, we 
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recapitulate many known associations from previous studies, including associations between 

PCSK9 and LDL cholesterol (pLoF burden p = 3.5 x 10-132), COL1A1 and bone density (pLoF 

burden p = 2 x 10-9) (Mann et al., 2001), KLF1 and several red blood cell traits (pLoF burden < 2 

x 10-12) (Perkins et al., 2016), and LRP5 (Wnt coreceptor) and bone density and osteoporosis 

phenotypes (pLoF burden < 5 x 10-7) (Baron and Rawadi, 2007). 

We highlight novel biological signals identified in the exome dataset, enabled by the 

Genebass browser. In particular, we find an association between predicted loss-of-function of 

SCRIB and white matter integrity of tapetum (Fig. 5). Notably, this association is not significant 

at any single pLoF variant, but when aggregated into a SKAT-O or burden group test, the 

overall ablation of the transcript is associated at a p-value of 6 x 10-15 (Fig. 5A). This provides 

additional context to a signal observed in a recent GWAS of white matter integrity (Zhao et al., 

2020) averaged across regions of the brain, as well as in the body of corpus callosum (Fig. 5B). 

To our knowledge, this gene has not been associated in previous genome-wide association 

studies, although it is a constrained gene (pLI = 0.93) that shows evidence for neural tube 

defects in mice (Murdoch et al., 2003) with ultra-rare occurrences in humans (Lei et al., 2013). 
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Figure 5 | Refined association between SCRIB and white matter integrity of tapetum. The 
Genebass browser provides views of the full dataset, including all quality control metrics and 
association statistics. (A): The summary of association information between pLoF variants in 
SCRIB with mean OD (orientation dispersion index) in tapetum on FA (fractional anisotropy) 
skeleton (from dMRI data). (B): A rare variant Manhattan plot of 8 rare pLoF variants is shown. 
(C): Details for the component variants are shown in a table, including their functional 
consequence (CSQ), a detailed protein-coding annotation (HGVSp), the association p-value 
and beta, as well as frequency information (AC: allele count, Hom: number of homozygotes, AN: 
allele number, AF: allele frequency). Each component pLoF variant in scrib has a positive beta 
value and in aggregate, these variants show an association at p = 6 x 10-15 (A). (D): A 
Manhattan plot of a previous GWAS (Zhao et al., 2020) of FA averaged across brain regions 
(top), body of corpus callosum (middle), and splenium of corpus callosum (bottom). Horizontal 
dashed line indicates a GWAS genome-wide significance threshold (5 x 10-8), and vertical line 
indicates the location of SCRIB. 
 

Discussion 

We have generated rare variant association analysis summary statistics for 4,529 

phenotypes and made these data available to the public, via bulk data downloads as well as a 

public-facing browser (https://genebass.org). We explore aspects of this resource relating 

natural selection, allele frequency, and genetic discovery, and we highlight a novel association 

between SCRIB and a brain imaging trait. Future work will be needed to fully assess the 
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contribution of rare variants to the heritability of common diseases, as well as the extent and 

role of pleiotropy among rare variants. 

Limitations of the study 

There are a number of limitations to our analysis. Although we performed extensive QC 

to improve the reliability of these results, we urge caution in interpreting association results, 

particularly for the rarest binary traits (prevalence < 10-4) and ultra-rare variants (frequency < 10-

4) as the asymptotic properties of the association tests may not be met. For the rarest outcomes, 

increasing the number of cases is essential to properly evaluate the impact of rare coding 

variation across genes. Alternatively, other statistical methods such as Firth regression may be 

better suited to such traits. For pLoF variants, the median cumulative allele frequency across 

genes is approximately 1.5 x 10-4, suggesting that group tests at current sample sizes are only 

powered to detect individual gene effects for quantitative traits that capture at least 0.02% of 

variance, as well as diseases and traits that have a high prevalence (well above 10%; Fig. S10). 

These considerations are underscored by the apparently poor asymptotic properties of the 

mixed-model tests for rarer binary traits, as the lambda GC for these tests decreases 

precipitously (Fig. S9). Nonetheless, global biological trends are apparent, such as the relative 

ordering of functional impact (pLoF > missense > synonymous; Fig. 3), highlighting that the 

ability to accurately annotate variants with the functional consequences on a gene is critical to 

powering discovery in rare variant analysis. Further, measures of natural selection at the gene 

level continue to highlight that certain classes of genes, such as LoF-intolerant genes, are 

clearly enriched for phenotypic associations. 

Finally, these association analyses were only performed for individuals of European 

ancestry, the largest group in the dataset. Notably, these analyses only interrogate a slice of 

human genetic diversity, and expanding to additional ancestries has been shown to increase 

power and resolution for genetic discovery (Majara et al., 2021; Morales et al., 2018; Sakaue et 

al., 2020); however, as the sample sizes of non-European individuals in the UK Biobank are 
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very limited, these analyses would be underpowered for most binary traits including many 

disease outcomes. Concentrated efforts in building large biobanks with diverse participants will 

be required to overcome these limitations and provide more insight into the contribution of rare 

variants to common disease etiology.  
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