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2 Abstract 21 
Vaccine allocation decisions during emerging pandemics have proven to be challenging due to 22 
competing ethical, practical, and political considerations. Complicating decision making, policy 23 
makers need to consider vaccine allocation strategies that balance needs both within and between 24 
populations. Due to limited vaccine stockpiles, vaccine doses should be allocated in locations where 25 
their impact will be maximized. Using a susceptible-exposed-infectious-recovered (SEIR) model we 26 
examine optimal vaccine allocation decisions across two populations considering the impact of 27 
population size, underlying immunity, continuous vaccine roll-out, heterogeneous population risk 28 
structure, and differences in disease transmissibility. We find that in the context of an emerging 29 
pathogen where many epidemiologic characteristics might not be known, equal vaccine allocation 30 
between populations performs optimally in most scenarios. In the specific case considering 31 
heterogeneous population risk structure, first targeting individuals at higher risk of transmission or 32 
death due to infection leads to equal resource allocation across populations. 33 
 34 

3 Introduction 35 
In the past two decades, the 2009 H1N1 influenza pandemic and the recent 2019 SARS-CoV-2 36 
pandemic have highlighted the need for control and mitigation measures against emerging 37 
pathogens. SARS-CoV-2 has caused considerable morbidity and mortality, resulting in over 542 38 
million cases and 6.3 million deaths worldwide as of June 2022 (Dong et al., 2020).  Previously, the 39 
2009 Swine flu pandemic was estimated to have caused around 200 thousand deaths in the first 40 
twelve months globally (Dawood et al., 2012; Simonsen et al., 2013). Vaccines are currently the most 41 
effective public health intervention available against emerging pathogens, and have greatly reduced 42 
severe disease outcomes (Watson et al., 2022).   43 
 44 
Even with the approval and availability of vaccines, both the H1N1 and SARS-CoV-2 pandemics have 45 
highlighted key challenges in in the roll-out and uptake of vaccines globally during an ongoing 46 
epidemic. During the 2009 H1N1 influenza pandemic, global influenza A vaccine supply was much 47 
lower than initially estimated, resulting in large inequities in vaccine access across countries (Fidler, 48 
2010; Kaiser Family Foundation, 2009). In the aftermath of the 2009 H1N1 influenza pandemic the 49 
World health Organization (WHO) developed a preparedness framework for the sharing of vaccines 50 
in a timely manner, and encouraged advance agreements for vaccine allocation and delivery to 51 
improve pandemic response globally (Fineberg, 2014; World Health Organization, 2011).   52 
 53 
The COVID-19 pandemic has seen similar challenges, with vaccine supply falling far short of demand. 54 
Even with the approval of multiple vaccines, distributed across different regions globally, roll-out has 55 
been slow, with vaccination rates highly unequal across countries (Mathieu et al., 2021; Rydland et 56 
al., 2022). At the end of 2021, some countries had already vaccinated over 90% of their population, 57 
while others did not have access to vaccines (Mathieu et al., 2021). Overall, at the beginning of 58 
emerging pandemics, vaccination allocation decisions have been made under the constraint of a 59 
limited vaccine stockpile and multiple factors need to be considered to maximize the effect of each 60 
dose both within and across populations. 61 
 62 
Across both pandemics, numerous papers have shown targeting specific subgroups within the 63 
population can result in decreased disease-related morbidity and mortality. For 2009 H1N1 64 
influenza, models found prioritizing individuals at highest risk of complications resulted in the lowest 65 
morbidity and mortality (Chowell et al., 2009; Lee et al., 2010; Tuite et al., 2010). For the 2019 SARS-66 
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CoV-2 pandemic, previous work (Bubar et al., 2021; Hogan et al., 2020; Matrajt et al., 2021) has 67 
shown, targeting specific subgroups within a given population, including older individuals, results in 68 
decreased COVID-19 morbidity and mortality. Other papers looking at health and occupational risk 69 
factors (Buckner et al., 2021; Islam et al., 2021) found prioritizing certain occupational groups 70 
including healthcare workers, and other essential workers also decreased COVID-19 morbidity and 71 
mortality. However, previous theoretical work (Keeling & Shattock, 2012) has also shown that 72 
unequal vaccine allocations might be favorable in emerging infectious disease settings, but are less 73 
optimal when incorporating realistic assumptions about population heterogeneity and contact 74 
structure. This leaves a potentially conflicting message for policy makers when considering optimal 75 
allocation strategies. We build upon this work, by not only considering the optimal decision, but also 76 
how the decision compares to all possible allocations across two populations. Illustrating these 77 
tradeoffs with a simplified model of an emerging pathogen similar to H1N1 or SARS-CoV-2, our 78 
results show that the efficiency gains for unequal allocations that are found in models with highly 79 
simplified epidemics are typically small; moreover, they vanish and can even reverse under settings 80 
more relevant to pandemics caused by emerging pathogens. Similar to previous findings, we show in 81 
more realistic scenarios, incorporating population heterogeneity and interaction between 82 
populations, that equal distributions are not only optimal, but vastly outperform unequal 83 
distributions. 84 
 85 

4 Materials & Methods 86 
We use a deterministic, two-population, susceptible-exposed-infectious-recovered (SEIR) 87 
compartmental model. We assume people are initially susceptible (S). Susceptible individuals move 88 
to the exposed state (E) after an effective contact with an infectious individual. After a latent period, 89 
exposed individuals become infectious (I). After the infectious period has elapsed, infectious 90 
individuals move to a recovered state (R). We do not account for waning immunity and assume once 91 
individuals have recovered, they stay immune to infection for the duration of our simulation, here 92 
modeled as three years. We start by assuming that there is no interaction between the two 93 
populations, so all disease transitions happen in parallel between the two populations. 94 
 95 
We extend this SEIR model to allow for underlying immunity (Figure 3, S9) and vaccination (all 96 
Figures). At the start of the epidemic, in each population, individuals can be in the susceptible (S), 97 
infectious (I), or recovered (R) compartments. When there is underlying immunity, a set proportion 98 
of individuals are placed in R. Individuals in R, whether through underlying immunity or infection 99 
through the course of the simulation, can never be re-infected. When vaccine doses are distributed 100 
to the population, vaccinated individuals are placed in R if the vaccination is successful. We assume 101 
that the vaccine is all-or-nothing with 95% efficacy, meaning 95% of those who are vaccinated are 102 
placed in R and the remainder stay in S. When there is underlying immunity and vaccination, immune 103 
individuals may be vaccinated; vaccination has no effect on them, and they remain in R. Finally, we 104 
initialize each simulation by placing 0.1% of individuals in I and allow the epidemic to run, 105 
unmitigated except by vaccination, through each population. Full model parameters and equations 106 
are shown in SI Appendix A.2. Where possible, parameters represent estimates from both the 2009 107 
H1N1 influenza pandemic and the 2019 SARS-CoV-2 pandemic; for example, 95% vaccine efficacy is 108 
close to that estimated for the Moderna mRNA vaccine Spikevax (Doria-Rose et al., 2021).   109 
 110 
To recreate the results of Keeling and Shattock (Keeling & Shattock, 2012) we model two 111 
homogeneous populations with identical characteristics apart from population size. In this scenario 112 
we assume population 2 is double the size of population 1 (Figure 2). For later scenarios, which 113 
consider the impact of heterogeneity within populations, we simulate two populations that are 114 
identical in size, but vary in their population characteristics (e.g., fraction high risk) (Figure 5, S3-S7). 115 
 116 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2022. ; https://doi.org/10.1101/2021.06.18.21259137doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.18.21259137
http://creativecommons.org/licenses/by/4.0/


4 

Next, we extend the model by allowing for heterogeneous risk groups. First, within each population, 117 
we model efficient transmitters of infection, for example young adults or children (Goldstein et al., 118 
2021; Kissler et al., 2020) (Figure 5, S3, S4, S6). In this scenario, we assume high-transmitters are 119 
four times more likely to transmit compared to low transmitters (Monod et al., 2021). We fix the 120 
within-population structure to allow the global R0 to equal 2, 4, 8 or 16. The full derivation is shown 121 
in SI Appendix A.2.6. The SEIR model equation are in SI Appendix A.2.4. 122 
 123 
Second, we instead model individuals at elevated risk of death from infection (Figure 5, S3, S5, S7). 124 
For COVID-19 this can represent, for example, elderly individuals or other individuals with co-125 
morbidities known to exacerbate disease (C. Wu et al., 2020; Zhou et al., 2020). For the 2009 H1N1 126 
influenza pandemic, this represents young adults. For simplicity of the model, we assume these 127 
individuals are five times more likely to die than other infected individuals (Lee et al., 2010; Presanis 128 
et al., 2009; Williamson et al., 2020). Note that infection fatality rates are assumed to be constant 129 
throughout the epidemic, which may not be realistic as health care resources are strained by large 130 
caseloads or case management improves over time. The SEIR model equations are in SI Appendix 131 
A.2.5. 132 
 133 
Similar to the homogeneous two-population scenario described above, we initialize the model by 134 
placing individuals from each population in the susceptible or recovered state based on the pre-135 
existing immunity level and the vaccine allocation scenario. The total number of vaccine doses are 136 
split amongst the two populations based on the scenario. Within each population, high-risk 137 
individuals are vaccinated first, with leftover doses then allocated to the low-risk population, as 138 
described in SI Appendix A.2.7. 139 
 140 
Finally, we model the scenario where vaccines are unavailable at the start of the epidemic but are 141 
progressively rolled out over the course of the epidemic (Figure 4, S4-S7). For this simulation we vary 142 
both the timing of roll-out, and the fraction of the population vaccinated each day. We allow vaccine 143 
roll-out to start 1, 10, 30, 50, or 100 days after the epidemic has begun and vary the proportion of the 144 
population vaccinated from 1% to 3% per day. For these simulations, the vaccine is allocated within 145 
and across populations identically to the scenarios described above for the homogeneous and 146 
heterogeneous scenarios. 147 
 148 
For each simulation we calculate the cumulative number of infections and deaths from the 149 
deterministic SEIR model at the end of the epidemic. Across each scenario we define the optimal 150 
allocation strategy as the one that minimizes the total epidemic size (cumulative number of 151 
infections) across both populations. Within the high morbidity scenario, we define the optimal 152 
allocation strategy as the one that minimizes the total number of deaths across both populations. This 153 
is equivalent to maximizing the total number of people across both populations that escape infection 154 
(or death) (Duijzer et al., 2018).   155 
 156 
We conduct sensitivity analyses to assess the robustness of our results. First, we model a leaky 157 
vaccine scenario where we assume the vaccine reduces susceptibility to infection for each individual 158 
by 95% (Figure S1). As a result, all vaccinated individuals (except those previously immune through 159 
natural infection) can become infected with the virus, although the probability of infection for each 160 
contact with an infected individual is lower than for an unvaccinated individual. The SEIR model 161 
equations are in SI Appendix A.2.3. We further extend the model by relaxing the assumption that the 162 
two populations do not interact (Figure S2). We allow a fraction i of infected individuals in both 163 
populations to contribute to the force of infection in the other population instead of their own 164 
population. An i value of 0 corresponds to no interaction, and an i value of 0.5 corresponds to 165 
complete interaction between the two populations (i.e. is equivalent to one large population). Next, 166 
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for each of the scenarios above, we additionally consider the impact of varying R0 between 2 and 16, 167 
allowing for improved understanding across a variety of pathogens or viral variants (McMorrow, 168 
2021) (Figure ). Finally, we relax the assumption of 95% vaccine efficacy by modelling a range of 169 
values from 50% to 90% (Figure S8, S9). Full model equations are shown in SI Appendix A.2. 170 
All analyses were conducted in R version 4.0.3. 171 
 172 

5 Results 173 
 174 

5.1  Literature review 175 

We reviewed the literature on optimal vaccine allocation across populations that was published prior 176 
to the emergence of SARS-CoV-2 (see SI Table A.3.1). Multiple papers (Forster & Gilligan, 2007; 177 
Keeling & Shattock, 2012; Klepac et al., 2011; Rowthorn et al., 2009; J. T. Wu et al., 2007) have shown 178 
that allocation proportional to population size is rarely optimal. Further, previous studies have 179 
highlighted that the timing of vaccine allocation (Matrajt & Longini, 2010; Mylius et al., 2008; 180 
Teytelman & Larson, 2013), heterogeneity in population composition, as well as the stochasticity in 181 
infection dynamics affect the optimal distribution (Nguyen & Carlson, 2016; Yuan et al., 2015). 182 
Duijzer et al. (Duijzer et al., 2018) provide important contributions by showing that the optimal 183 
vaccination threshold is often not the herd immunity threshold as further detailed in SI Appendix 184 
A.3.2. 185 
 186 
5.2  Optimal allocation in two populations of equal size 187 

We build upon the existing literature by first examining allocation decisions in the simple scenario of 188 
two identical, non-interacting populations with no underlying immune protection to the pathogen 189 
(see Figure 1). In the simplest case, with a small number of vaccine doses available, pro-rata 190 
allocation performs comparably to highly unequal allocation strategies. As the number of vaccine 191 
doses increases, highly unequal strategies gain advantage over pro-rata allocation. This occurs 192 
because one population can be vaccinated close to, but lower than, its herd immunity threshold, 193 
maximizing the indirect effect of the vaccine doses (Duijzer et al., 2018). When sufficient vaccines are 194 
available for both populations to reach that threshold, more unequal strategies use the doses less 195 
efficiently, as indicated by the increasing arms of the “W” shapes in Figure 1. Allocating doses to the 196 
population that has reached its threshold provides limited benefit in that population and withholds 197 
doses from the other. When there are nearly enough doses to reach the thresholds in both 198 
populations, the optimal strategy becomes equal allocation between the two populations. 199 
 200 
As the basic reproductive number increases, we again see that unequal allocations preform optimally, 201 
as the number of available doses is less than the number needed to reach the critical herd immunity 202 
threshold in both populations. In these scenarios, vaccinating one or the other population until it can 203 
reach the critical herd immunity threshold results in the lowest cumulative cases across both 204 
populations. At very high basic reproductive numbers (i.e., R0 = 16), pro-rata allocation performs 205 
comparably to highly unequal allocation strategies. 206 
  207 
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 208 
 209 
Figure 1: Performance of different allocation strategies of a limited vaccine stockpile across two 210 
homogeneous population of equal size with no underlying immunity and prophylactic vaccination. 211 
Both populations have one million individuals. Each color represents a different number of total 212 
vaccine doses. Each line represents a different basic reproductive number. Each curve shows the 213 
cumulative number of cases across both population 1 and 2 for different proportions of doses given 214 
each population. Across each curve, from left to right, the proportion of doses to population 1 goes 215 
from 0 to 100%. Conversely, for population 2, the proportion of doses goes from 100% to 0%.  216 
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5.3  Optimal allocation in two populations of unequal size 218 

Extending the simple case of non-interacting populations of equal size, previous studies have shown 219 
how optimal allocation across populations of different sizes is not linear, but varies with the number 220 
of doses available in a characteristic, and often counter-intuitive, “switching” pattern (Duijzer et al., 221 
2018; Keeling & Shattock, 2012; Klepac et al., 2011).  222 
 223 
As shown in Figure 2 (top), when the number of doses available is very limited, optimal allocation 224 
concentrates all vaccine doses to the smallest population, not assigning any to the largest population 225 
(regime 1). As the number of doses allocated to the smaller population reaches its threshold, 226 
additional doses are gradually allocated to the larger population (regime 2). Strikingly, a drastic 227 
switch happens between regimes 2 and 3, and in regime 3 all doses are allocated to the larger 228 
population and none to the smaller one. Then, as the largest population itself reaches its threshold, 229 
supplementary doses are assigned to the smaller population (regime 4). When the number of 230 
vaccines available allows both populations to attain their respective thresholds, vaccines are 231 
allocated proportionally to the population sizes (regime 5). Note that here we assume that the total 232 
number of doses is fixed at the time of allocation and no additional doses become available over time. 233 
We relax this assumption in later scenarios considering continuous rollout.  234 
 235 
For most values of vaccine available, the optimal allocation is highly unequal (regime 1, 2, 3, 4), as 236 
previously shown (Duijzer et al., 2018; Keeling & Shattock, 2012). This counterintuitive result is 237 
caused by the non-linearity of the indirect effect from each additional vaccine dose. Additional doses 238 
are allocated to the population where they have the largest benefit. For example, in regime 1 of Figure 239 
2, additional doses bring a larger benefit in the smaller population then they would in the larger 240 
population. 241 
 242 
Importantly, while prior literature (Keeling & Shattock, 2012) demonstrates that unequal allocations 243 
can be optimal, these results show that the benefit of such unequal, optimal allocations over more 244 
nearly equal ones is often small. As shown in Figure 2 (bottom), for low numbers of vaccine doses 245 
(regimes 1 and 2), although concentrating all doses to the smallest population is optimal, other 246 
strategies do not perform much worse. Each regime is characterized by a different allocation profile 247 
that gives rise to a different optimum, indicated by black points. In regime 4, the characteristic W 248 
shape appears where a fully unequal allocation is sub-optimal, regardless of which population is 249 
vaccinated. 250 
 251 
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 252 
 253 
Figure 2: Top: Optimal allocation strategies of a limited vaccine stockpile across two homogeneous 254 
populations of unequal size with no underlying immunity, prophylactic vaccination and an R0 of 2. 255 
Populations 1 (blue) and 2 (red) have one and two million individuals, respectively. Dashed vertical 256 
lines were added to highlight regimes (1 to 5) showing different vaccine allocation patterns. Bottom: 257 
Performance of allocation strategies for five different numbers of vaccine doses, representative of the 258 
regimes shown in the top half of the Figure. Color coding corresponds to vaccine allocation ranging 259 
from giving all doses to population 2 (red) to giving all doses to population 1 (blue). The optimal 260 
allocation, the minimal value on each plot, is highlighted by a black point. 261 
 262 

263 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2022. ; https://doi.org/10.1101/2021.06.18.21259137doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.18.21259137
http://creativecommons.org/licenses/by/4.0/


9 

5.4  Impact of underlying immunity 264 

As vaccines become available to different locations at different points in their local epidemic, 265 
populations will have varying degrees of underlying immunity to the virus due to prior infections. 266 
Serological surveys estimate that at the end of 2020, around a fifth of the population had already been 267 
infected in areas hardest hit during the spring of 2020 (23% in NYC (Rosenberg et al., 2020), 18% in 268 
London (Public Health England, 2020) and 11% in Madrid and Paris (Pollán et al., 2020; Salje et al., 269 
2020)). More recent estimates show seroprevalence increased to almost 60% after the Omicron 270 
variant became predominant in the United States (Clarke et al., 2022). Select high-risk groups, 271 
including health care workers and nursing home residents, have been shown to have an even higher 272 
prevalence of SARS-CoV-2 antibodies (Ladhani et al., 2020). To account for underlying immunity, we 273 
further simulate optimal allocation decisions with varying levels of underlying immunity in each 274 
population to mirror the fact that allocation decisions are made during an ongoing pandemic. 275 
 276 
Comparing two populations with varying amounts of underlying immunity, the optimal strategy 277 
favors prioritizing the population that is closer to their herd immunity threshold (Figure 3). Figure 3 278 
shows optimal allocation decisions across two homogeneous populations of equal size with no 279 
immunity (top left, repeating Figure 1) or increasing degrees of immunity in population 1. With 280 
increasing immunity in population 1, the characteristic V- or W-shape becomes more lopsided as 281 
fewer doses are required in population 1 to reach the threshold at which doses should be split 282 
between populations. Extremely unequal allocation strategies either waste doses or fail to minimize 283 
the cumulative number of infections in both populations if given completely to population 1 or 2, 284 
respectively. In addition, allocating vaccines to population 1 beyond the amount needed to reach its 285 
threshold results in the highest cumulative number of cases because it confers little additional benefit 286 
in population 1, and deprives population 2 of vaccines needed to mitigate cases. As before, once the 287 
number of doses is large enough to approach or reach the threshold in both populations, optimal 288 
strategies move closer to pro-rata allocations. 289 
 290 
As we vary the basic reproductive number, holding vaccine doses fixed, we find the characteristic V 291 
and W shapes are shifted to the left. The number of vaccine doses needed to reach the critical herd 292 
immunity threshold increases as the basic reproductive number increases. Unequal approaches 293 
become more favorable as the level of underlying immunity in population 1 increases, because fewer 294 
doses are required for population 1 to reach their herd immunity threshold. Thus, even for very high 295 
R0 values, the optimal strategy, minimizing the cumulative number of cases across both populations, 296 
prioritizes allocating doses to the population that is closest to reaching its critical herd immunity 297 
threshold. 298 
 299 
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 300 
 301 
Figure 3: Performance of different allocation strategies of a limited vaccine stockpile across two 302 
homogeneous populations of equal size (one million individuals) with different underlying immunity, 303 
and prophylactic vaccination. We fix population 2 to have no underlying pathogen immunity and vary 304 
underlying immunity in population 1 from 0 to 40%. Each color represents a different number of 305 
total vaccine doses. Each line represents a different basic reproductive number. The panel on the top 306 
left is equivalent to Figure 1. 307 
 308 
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5.5  Impact of delayed vaccine roll-out in a homogeneous population 310 

Next, we examine the impact of vaccine roll-out over the course of the epidemic. We find both the 311 
timing and speed of roll-out play an important role in minimizing the final size of the epidemic. As 312 
shown in Figure 4, the cumulative number of cases across both populations is minimized when 313 
vaccine roll-out occurs as soon as possible after the start of the epidemic. Further, the final size is 314 
minimized when roll-out speed is increased, vaccinating a larger proportion of the population each 315 
day. 316 
 317 
For the early and efficient roll-out (beginning 10 days after the start of the epidemic, at a rate of 2 or 318 
3% of the population/day), the vaccination performance profile across possible allocations looks 319 
similar to that of the prophylactic vaccine deployment strategy shown in Figure 1. However, for a 320 
slower or more delayed roll-out we see highly unequal approaches perform poorly across almost all 321 
doses and more equal approaches result in the smallest final size. This is because a larger fraction of 322 
the population is naturally infected, minimizing the gains from concentrating vaccine doses in one 323 
population. 324 
 325 
As we incorporate differences in transmissibility, we find timing and speed to be of greater 326 
importance. Even with a vaccine roll-out 50 days after the start of the epidemic, there are no 327 
differences in final size across all allocation strategies, within a given R0 level, as the epidemic has 328 
ended in the population before vaccines are introduced. For higher reproductive numbers, faster, 329 
earlier roll-outs are needed for vaccination to have an impact on the total number of infections. 330 
 331 
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 332 
 333 
Figure 4: Performance of different allocation strategies of a limited vaccine stockpile across two 334 
homogeneous populations of equal size (one million individuals) with no underlying immunity, with 335 
vaccines rolled out at different speeds and different times after the start of the epidemic. Each color 336 
represents a different number of total vaccine doses. Each line represents a different basic 337 
reproductive number. We vary both the timing and speed of roll-out between 10, 50 or 100 days after 338 
the start of the epidemic with 1, 2, or 3% of the population vaccinated per day. Each column 339 
represents a given roll-out speed while each row represents a different timing. 340 
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5.6  Impact of heterogeneous population structure 342 

Looking within a population, many studies have shown optimal strategies favor prioritizing older 343 
individuals (e.g., those aged 60 or over) or those with certain comorbidities when the goal is 344 
minimizing mortality. If the goal instead is minimizing final size, targeting adults 20-49 with an 345 
effective transmission-blocking vaccine minimizes cumulative incidence (Bubar et al., 2021; Matrajt 346 
et al., 2021).  Here we model the impact of heterogeneous population structure to examine the impact 347 
of strategies across populations. These simulations consider populations with heterogeneous 348 
transmission or with heterogeneous risk of death. 349 
 350 
Targeting high transmission or high mortality groups first within a population shifts the optimal 351 
allocation across the two populations towards pro-rata allocation (Figure 5, S3). In Figure 5 we first 352 
model the impact of prophylactic vaccination in a heterogeneous population structure with 25% of 353 
each population at either high risk of transmission (top) or death (bottom). In the high-transmission 354 
scenario, the behavior looks similar to that in Figure 1 for a low number of doses, representing the 355 
trade-off between vaccinating the high-transmitters in both populations. Once there are enough 356 
doses available to vaccinate enough high-transmitters to reduce transmission dramatically, the 357 
optimal strategy favors more pro-rata allocations across the two populations as high-transmitters 358 
are driving the bulk of transmission. This shift to more equal allocations occurs at a lower number of 359 
vaccine doses compared to Figure 1. In the high-mortality scenario, we see the optimal allocation 360 
rapidly shift to pro-rata strategies, starting at a very low number of vaccine doses. Interestingly, the 361 
sequence of profiles from Figure 1 is repeated twice. First, for a low number of vaccine doses there is 362 
a trade-off between vaccinating the high-mortality individuals in both populations. Then for higher 363 
vaccine counts the trade-off is repeated, this time between all individuals of both populations. While 364 
this trade-off exists, pro-rata allocation is heavily favored across almost all levels of available vaccine 365 
doses. 366 
 367 
Looking across different levels of R0, we find similar trends. Vaccinating higher transmission or 368 
mortality groups first results in more equal allocation strategies across populations. For higher R0 369 
values (i.e., 8 or 16) pro-rata allocation performs comparably to highly unequal strategies. Increasing 370 
the proportion of high-risk individuals to 50% of the population (Figure S3) we find similar trends 371 
for R0 values of 2 and 4. For higher R0 values, unequal approaches perform optimally as a larger 372 
fraction of the population is driving transmission, so effectively targeting this group in either 373 
population minimizes the cumulative number or deaths or cases across the two populations. 374 
 375 
Next, we considered the impact of continuous roll-out for both the high transmission and high 376 
mortality scenarios. We find that across both high-risk scenarios and all vaccine roll-out times and 377 
speeds, unequal allocation is highly sub-optimal (Figure S4-S7). Similarly to Figure 4, we vary the 378 
start date of vaccination roll-out (1, 10, 30, 50, or 100 days), the daily vaccination rate (1, 2 or 3% 379 
per day), and the proportion of the population at high risk (25 or 50%). We find that both the speed 380 
and timing of vaccine roll-out are important factors in minimizing the cumulative number of cases or 381 
deaths across the two populations and see the greatest reduction in cumulative deaths and final size 382 
with the earliest and fastest roll-out. Specifically, for vaccine stockpiles larger than 500,000 doses, 383 
the achievable impact of vaccination is more dependent on the timing (solid vs. dashed curves) and 384 
speed (different panels) of vaccine roll-out rather than on the total number of doses available. 385 
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 386 
Figure 5: Performance of different allocation strategies of a limited vaccine stockpile across two 387 
heterogeneous populations of equal size (one million individuals) with no underlying immunity and 388 
prophylactic vaccination. Each color represents a different number of total vaccine doses. Each line 389 
represents a different basic reproductive number. In both the high transmission scenario (top) and 390 
high mortality scenario (bottom), 25% of both populations are high risk. 391 
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5.7  Sensitivity Analyses 393 

We assessed the robustness of our results by varying the characteristics of the vaccine and 394 
connection between populations to be more representative of the current pandemic. As expected, 395 
the leaky and all-or-nothing vaccine have the same critical vaccination threshold, though the 396 
cumulative number of cases in the leaky vaccine scenario is equal to or larger than the all-or -397 
nothing scenario (Magpantay et al., 2014) (Figure S1). 398 
 399 
In the previous situations we have only considered the scenario of non-interacting populations. As 400 
we relax this strict assumption, we find that as the amount of interaction between the two 401 
populations increases, equal strategies are most favorable (Figure S2). When the force of infection 402 
in each population depends on epidemic dynamics in both populations, accounting for interaction 403 
drastically changes the optimal allocation profiles and favors equal allocation between populations, 404 
as seen in previous work (Duijzer et al., 2018; Keeling & Shattock, 2012). Even for low values of the 405 
interaction parameter i, equal allocation rapidly becomes optimal. Indeed, for i values higher than 406 
0.01 — which corresponds to one out of every hundred infected individuals contributing to 407 
infection in the other population — equal allocation between the two population always performs 408 
best. As i further increases, unequal strategies progressively approach the optimal (equal) 409 
allocation as indicated by the flattening of the curves. For i equal to 0.5, when the two populations 410 
concretely behave like one large population, all allocation strategies perform almost identically. 411 
Compared to the non-interacting case, allowing for interaction between the two populations leads 412 
to a higher cumulative number of infections for all possible vaccine allocation strategies, and the 413 
“W”-shaped allocation curve no longer appears. 414 
 415 
As we increase the basic reproductive number, we find that the optimal strategy quickly favors 416 
more equal allocation decisions. In addition, interaction between the two populations becomes less 417 
important for very high values of R0, as the allocation profiles look similar across all interaction 418 
parameters for R0 values of 8 and 16. 419 
 420 
As vaccine efficacy decreases from 90% to 50%, the cumulative number of cases across both 421 
populations increases, the critical herd immunity threshold increases and equal-allocation 422 
strategies become less favorable, with unequal allocations being optimal in some cases for the 423 
lowest efficacy values. Even for these situations, however, the advantage of unequal allocations are 424 
modest (Figure S8). Next, as we increase immunity levels across both populations, the total number 425 
of cases is reduced, and the critical herd immunity threshold is lowered. Even with low vaccine 426 
efficacy values, in scenarios with high underlying immunity, the critical herd immunity threshold 427 
can be reached, and equal allocations are favored (Figure S9).  428 
 429 
 430 

6 Discussion 431 
In emerging pandemics, countries must make challenging vaccine allocation decisions due to 432 
resource constraints. Previous studies (Keeling & Shattock, 2012) have shown simple scenarios favor 433 
unequal allocation. We recreated those findings, and further extend vaccine allocation theory, and 434 
apply it to scenarios similar to the 2019 SARS-CoV-2 and 2009 H1N1 influenza pandemics. We focus 435 
on these emerging pathogens as those pandemics are the ones for which we have the greatest amount 436 
of data, understanding, and for which vaccines were deployed while the pandemic was ongoing.  437 
 438 
In the simple case of two non-interacting populations of identical size we show that for very high 439 
quantities of vaccine, relative to population size, equal allocation strategies are optimal. For very few 440 
doses, all strategies provide comparable results. This supports the European Commission’s decision 441 
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to allocate vaccine doses proportional to population size among the 27 European Nations (European 442 
Commission, 2020). In this simplest model, until there is enough vaccine for both populations to 443 
approach their critical herd immunity threshold, optimal strategies favor a highly unequal approach, 444 
allocating doses to either population 1 or 2 until the population has reached its threshold. If the 445 
populations vary in size, allocation decisions vary, and as the number of vaccines increases, focus 446 
switches from the smaller population to the larger one, as supported by Keeling and Shattock 447 
(Keeling & Shattock, 2012). 448 
 449 
We consider more realistic scenarios that better mirror the diversity and complexities of emerging 450 
pandemics including underlying immunity, population interaction, continuous vaccine roll-out, 451 
heterogeneous population structure, and differences in underlying disease transmissibility (either 452 
because of biological or social factors). While many of these parameters are either unknown or 453 
changing throughout the course of the epidemic, we find that, across a range of scenarios, optimal 454 
allocation decisions often favor equal allocation across populations. Since these strategies are often 455 
optimal or nearly optimal across a range of parameters, while unequal allocations are only generally 456 
optimal for narrow parameter ranges, more pro-rata strategies might be the best option under 457 
uncertainty in an ongoing epidemic. Moreover, during an emerging pandemic, it may be unclear 458 
whether the newly developed vaccines confer protection against transmission, thus limiting the 459 
potential benefit from unequal vaccine allocation strategies that rely on maximizing the benefit from 460 
indirect protection in one population. It may thus be preferable to focus on equal allocation strategies 461 
as those rely more on the direct protection against disease. Parameter values from COVID-19 and 462 
pandemic influenza illustrate this phenomenon; however, these results contribute more generally to 463 
the existing vaccine allocation theory for any epidemic emerging in multiple populations when key 464 
epidemic variables remain unknown. 465 
 466 
For scenarios considering heterogeneous population risk, we find that first targeting high risk 467 
individuals, either high-transmitters or those at higher risk of death after infection, results in more 468 
equal allocations between populations being optimal. Targeting high-risk individuals first, then 469 
shifting priority to lower-risk individuals is supported by previous modeling work, looking at SARS-470 
CoV-2 vaccine allocations within a single population (Bubar et al., 2021; Chen et al., 2020; Hogan et 471 
al., 2020; Matrajt et al., 2021; Moore et al., 2021), and is in concordance with the ongoing COVAX 472 
strategy, targeting early doses to high-risk individuals, and the USA’s implement which vaccinated 473 
health care workers and elderly individuals first (Gayle et al., 2020; World Health Organization, 474 
2020). This also supports previous guidelines for 2009 H1N1 influenza where vaccines were targeted 475 
at high risk groups first, before shifting to the general population (Centers for Disease Control and 476 
Prevention, 2009).  477 
 478 
Our modeling analyses are subject to many simplifying assumptions on population dynamics and 479 
vaccine characteristics that may not be applicable to the current pandemic. We consider a vaccine 480 
that prevents both disease and infection, thus providing indirect protection to a fraction of the 481 
population. While some vaccines are able to reduce infectiousness, in future pandemics this effect 482 
will still need to be precisely assessed. We do not model vaccine refusal and assume that all 483 
individuals given doses accept them. Recent studies (Dror et al., 2020) show vaccine hesitancy as a 484 
threat to successful pandemic response. Next, we do not consider delays between doses, but model 485 
the epidemic from a final dose which confers 95% efficacy. Due to vaccine shortages, the delay 486 
between the first and second dose could impact our findings as individuals may be able to get infected 487 
in the interim. Further, we only model one available vaccine. The current SARS-CoV-2 pandemic 488 
illustrates how the vaccine landscape can be complex, as multiple vaccines are available, with many 489 
more rapidly undergoing testing. Considerations for optimal allocation in this context are more 490 
complicated, especially if the vaccines have different immunogenicity profiles, and the quantity of 491 
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doses and timing of roll-out varies across candidates. Finally, we do not consider the impact of non-492 
pharmaceutical interventions (NPIs) in conjunction with vaccination. 493 
 494 
Furthermore, we only model allocation strategies within two symmetric populations. It is likely that 495 
policy makers will face allocation decisions across multiple countries, or across multiple regions 496 
within a country. While our analyses do not extend to more than two locations, general principles 497 
should remain the same, as illustrated elsewhere for three populations (Keeling & Shattock, 498 
2012),(Duijzer et al., 2018).  499 
 500 
Future modeling work on vaccination strategies during emerging pandemics is needed, for example 501 
considering scenarios where multiple vaccine candidates are rolled out simultaneously. These 502 
studies should also consider the effects of vaccines on reducing hospitalizations and preserving 503 
hospital capacity, which may have indirect benefits for mortality rates for COVID-19 and other 504 
diseases beyond the direct prevention of infection in high-risk populations. In addition, other work 505 
should also consider populations with varying epidemic dynamics, and distribution capacity. Indeed, 506 
it has been argued that populations at higher immediate risk of disease spread and populations 507 
where vaccine roll-out is most efficient should be prioritized for vaccine allocation (Emanuel & 508 
Persad, 2021). 509 
 510 
With vaccine supplies usually severely constrained, in the future rapid allocation decisions will need 511 
to be made while the pandemic is ongoing. Due to the global impact and magnitude of some 512 
pandemics such as the current 2019 SARS-CoV-2 pandemic, further political and economic 513 
constraints will likely play a large role in allocation decisions. Mathematical modelling can provide 514 
insight into optimal allocation strategies that maximize the benefit from each dose. Conclusions from 515 
such models should be balanced with ethical considerations on the fairness of allocation that also 516 
minimize disparities in access. We show key principles that should be considered in the design of 517 
realistic and implementable allocation strategies. 518 
 519 
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