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KEY POINTS 

Question: Can algorithms that estimate invariant properties across environments for domain 

generalization and unsupervised domain adaptation improve the robustness of machine learning-derived 

clinical prediction models to temporal dataset shift? 

Findings: In this cohort study using 4 clinical outcomes, domain generalization and unsupervised 

domain adaptation algorithms did not meaningfully outperform the standard model training algorithm – 

empirical risk minimization – in learning robust models that generalize over time in the presence of 

temporal dataset shift. 

Meaning: These findings highlight the difficulty of improving robustness to dataset shift with purely data-

driven techniques that do not leverage prior knowledge of the nature of the shift and the requirement of 

alternate approaches to preserve model performance over time in clinical medicine. 

 

ABSTRACT 

Importance: Temporal dataset shift associated with changes in healthcare over time is a barrier to 

deploying machine learning-based clinical decision support systems. Algorithms that learn robust models 

by estimating invariant properties across time periods for domain generalization (DG) and unsupervised 

domain adaptation (UDA) might be suitable to proactively mitigate dataset shift.  

Objective: To characterize the impact of temporal dataset shift on clinical prediction models and 

benchmark DG and UDA algorithms on improving model robustness.  

Design, Setting, and Participants:  In this cohort study, intensive care unit patients from the MIMIC-IV 

database were categorized by year groups (2008–2010, 2011–2013, 2014–2016 and 2017–2019). Tasks 

were predicting mortality, long length of stay, sepsis and invasive ventilation. Feedforward neural 

networks were used as prediction models. The baseline experiment trained models using empirical risk 

minimization (ERM) on 2008–2010 (ERM[08-10]) and evaluated them on subsequent year groups. DG 

experiment trained models using algorithms that estimated invariant properties using 2008–2016 and 

evaluated them on 2017– 2019. UDA experiment leveraged unlabelled samples from 2017–2019 for 
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unsupervised distribution matching. DG and UDA models were compared to ERM[08-16] models trained 

using 2008-2016. 

Main Outcome(s) and Measure(s): Main performance measures were area-under-the-receiver-

operating-characteristic curve (AUROC), area-under-the-precision-recall curve and absolute calibration 

error. Threshold-based metrics including false-positives and false-negatives were used to assess the 

clinical impact of temporal dataset shift and its mitigation strategies.  

Results: In the baseline experiments, dataset shift was most evident for sepsis prediction (maximum 

AUROC drop, 0.090; 95% confidence interval (CI), 0.080-0.101). Considering a scenario of 100 

consecutively admitted patients showed that ERM[08-10] applied to 2017-2019 was associated with one 

additional false-negative among 11 patients with sepsis, when compared to the model applied to 2008-

2010. When compared with ERM[08-16], DG and UDA experiments failed to produce more robust 

models (range of AUROC difference, -0.003-0.050).  

Conclusions and Relevance: DG and UDA failed to produce more robust models compared to ERM in 

the setting of temporal dataset shift. Alternate approaches are required to preserve model performance 

over time in clinical medicine.  
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INTRODUCTION  

The wide-spread adoption of electronic health records (EHRs) and the enhanced capacity to 

store and perform computation with large amounts of data have enabled the development of highly 

performant machine learning models for clinical outcome predictions.1 The utility of these models 

critically depends on sustained performance to maintain safety,2 end-users’ trust, and to outweigh the 

high cost of integrating each model into the clinical workflow.3 However, this is hindered in the non-

stationary healthcare environment by temporal dataset shift due to mismatch between the data 

distribution on which models were developed and the distribution to which models were applied.4 

There has been limited research on the impact of temporal dataset shift in clinical medicine.5 

Recent approaches largely relied on maintenance strategies consisting of performance monitoring, 

model updating and calibration over certain time intervals.6-8 Another approach grouped clinical features 

into their underlying concepts to cope with a change in the record-keeping system.9 Generally, these 

approaches either require detection of model degradation or rely on explicit knowledge or assumptions 

about the underlying cause of the shift. Complementary to these approaches would be ones that attempt 

to proactively produce robust models that incorporate relatively few assumptions on the nature of the 

shift.  

The past decade of machine learning research offered numerous algorithms that learn robust 

models by using data from multiple environments to identify invariant properties. These algorithms were 

often developed for domain generalization (DG)10 and unsupervised domain adaptation (UDA).11 In the 

DG setting, the goal is to learn models that generalize to new environments unseen at training time. In 

the UDA setting, the goal is to adapt models to target environments using labeled samples from the 

source environment as well as a limited set of unlabeled samples from the target environment. If we 

consider EHR data across discrete time windows as related but distinct environments, then both DG and 

UDA settings may be suitable to combat the impact of temporal dataset shift. To date, these approaches 

have not been evaluated on improving model robustness to temporal dataset shift for clinical prediction 

tasks. Therefore, the objective was to benchmark learning algorithms for DG and UDA on mitigating the 
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impact of temporal dataset shift on machine learning model performance in a set of clinical prediction 

tasks.  

 

METHODS  

Data Source 

We used the MIMIC-IV database,12 which contains deidentified EHRs of 382,278 patients 

admitted to an intensive care unit (ICU) or the emergency department at the Beth Israel Deaconess 

Medical Center (BIDMC) between 2008–2019. For this cohort study, we considered ICU admissions 

sourced from the clinical information system MetaVision at the BIDMC, in which records from 53,150 

patients were made available in the latest version of MIMIC-IV 1.0. Because of deidentification, the 

requirement for Institutional Review Board approval was waived.  

 

Cohort 

Each patient’s timeline in MIMIC-IV is anchored to a shifted (deidentified) year with which a year 

group and age are associated. The year group reflects the actual 3-year range (for example 2008–2010) 

in which the shifted year occurred, and age reflects the patient’s actual age in the shifted year. There are 

four available year groups in MIMIC-IV: 2008–2010, 2011–2013, 2014–2016 and 2017–2019. We 

included patients who were 18 years or older and randomly selected one ICU admission that occurred in 

the year group for each patient. As a result, each patient is represented once in our dataset and is 

associated with a single year group. We excluded ICU admissions less than 4 hours in duration. 

 

Outcomes 

We defined four clinical outcomes. For each outcome, the task was to perform binary predictions 

over a time horizon with respect to the time of prediction, which was set as 4 hours after ICU admission. 

Long length of stay (Long LOS) was defined as ICU stay greater than three days from the prediction 

time. Mortality corresponded to in-hospital mortality within 7 days from the prediction time. Invasive 
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ventilation corresponded to initiation of invasive ventilation within 24 hours from the prediction time. 

Sepsis corresponded to the development of sepsis according to the Sepsis-3 criteria13 within 7 days from 

the prediction time. For invasive ventilation and sepsis, we excluded patients with these outcomes prior 

to the time of prediction. Further details on each outcome are presented in the eMethods in the 

Supplement. 

 

Features 

Our feature extraction followed a common procedure14 and obtained six categories of features 

including diagnoses, procedures, labs, prescriptions, ICU charts and demographics. Demographic 

features included age, biological sex, race, insurance, marital status and language. Clinical features 

were extracted over a set of time-intervals defined relative to the time of ICU admission as follows: 0-4 

hours after ICU admission, 0-7 days prior, 7-30 days prior, 30-180 days prior, and 180 days-any time 

prior. For each time interval, we obtained counts of unique concept identifiers for diagnoses, procedures, 

prescriptions and labs with the exception that identifiers for diagnoses and procedures were not obtained 

in the 0-4 hours interval after admission as they were not available. We also obtained measurements for 

lab tests for each time interval, and measurements for chart events in the 0-4 hours interval after 

admission. In addition, we mapped each measurement variable in each time interval to the patient-level 

mean, minimum and maximum. Number of extracted features for each category and time interval are 

listed in the eMethods in the Supplement.  

 Feature preprocessing pruned features that had less than 25 patient observations, replaced non-

zero count values with 1s, encoded measurement features to quintiles, and one-hot encoded all but 

count features. This process resulted in binary feature matrices that were extremely sparse. All feature 

preprocessing procedures were fit on the training set (e.g., to determine the boundaries of each quintile) 

and were subsequently applied to transform the validation and test sets.  

 

Model and Learning Algorithms  
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In all experiments, we leveraged fully connected feedforward neural network (NN) models for 

prediction, as they enable flexible learning for differentiable objectives across algorithms. The standard 

algorithm to learn models is the empirical risk minimization (ERM) algorithm in which the objective is to 

minimize average training error15 without considerations of environment annotations (year groups in our 

case).  

Algorithms for DG and UDA differ on the types of invariance they assume. Invariant risk 

minimization (IRM)16 is a DG algorithm that learns a latent representation (i.e., hidden layer activations) 

where the optimal classifier leveraging that representation is the same for all environments. Group 

distributionally robust optimization (GroupDRO)17 is a DG algorithm that does not “learn” invariances but 

instead minimizes training error in the worst-case training environment by increasing the importance of 

environments with larger errors. Algorithms that learn to match latent representation across 

environments can be leveraged for DG as well as UDA since these algorithms do not require outcome 

labels. These include correlation alignment (CORAL),18 which seeks to match the mean and covariance 

of the distribution of the data encoded in the latent space across environments, and domain adversarial 

learning (AL),19,20 which matches the distributions using an adversarial network and an objective that 

minimizes discriminability between environments. The adversarial network used in this study is a NN 

model with one hidden layer of dimension 32.  

 

Model Development 

We conducted baseline, DG and UDA experiments. The baseline experiment consisted of several 

aspects. First, to characterize temporal dataset shift on model performance, we trained models with ERM 

on the 2008–2010 group (ERM[08-10]) and evaluated these models in each subsequent year group. 

Next, to describe the extent of temporal dataset shift, we compared the performance of ERM[08-10] in 

each subsequent year group with models trained using ERM on that year group. Difference in 

performance in the target year group (2017-2019) between ERM[08-10] and models trained and 

evaluated on the target year group (ERM[17-19]) described the extent of temporal dataset shift in the 

extreme scenario in which models were developed on the earliest available data and were never 
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updated. All models in the baseline experiment used ERM.  

For DG and UDA experiments, model training was performed on 2008–2016, with UDA also 

incorporating unlabelled samples from the target year group. Performance of DG and UDA models were 

compared with ERM models trained using 2008-2016 (ERM[08-16]) as these are the fairest ERM 

comparators for DG and UDA models. For models in the DG and UDA experiments, we focused on their 

performance in the target year group, but also described their performance in 2008-2016. 

 

Data splitting procedure: Data splitting procedure was performed separately for each task and 

experiment (see Figure 1). The baseline experiment split each year group into 70% training, 15% 

validation and 15% test sets. In DG and UDA experiments, the training set included 85% data from 

2008–2010 and 2011–2013, and 45% of data from 2014–2016. The validation set included 35% of data 

from 2014–2016 (chosen because of its temporal proximity to the target year group). The test set 

included the same 15% from each year group as the baseline experiment, which allowed us to compare 

model performance across experiments and learning algorithms on the same patients. For UDA, training 

year groups were combined into one group, and unlabeled samples of various sizes (100, 500, 1000, 

and 1500) from the target year group (2017–2019) were leveraged for unsupervised distribution 

matching.  

 

Model training: We developed NN models on the training sets of each experiment for each task and 

selected hyperparameters based on performance in the validation sets. DG and UDA models used the 

same model hyperparameters as ERM[08-16], but involved an additional search over the algorithm-

specific hyperparameter that modulated the impact of the algorithm on model learning. For all 

experiments, we trained 20 NN models using the selected hyperparameters for each combination of 

outcome, learning algorithm and experiment-specific characteristic (for example, year group in baseline 

experiment and size of unlabeled samples for UDA). Further details on the models, learning algorithms, 

as well as hyperparameter selection and model training procedures are presented in the eMethods in 

the Supplement. 
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Model evaluation: We evaluated models on the test sets of each experiment. Model performance was 

evaluated using area-under-receiver-operating-characteristic curve (AUROC), area-under-precision-

recall curve (AUPRC) and the absolute calibration error (ACE).21 ACE is a calibration measure similar to 

the integrated calibration index22 in that it assesses overall model calibration by taking the average of the 

absolute deviations from an approximated perfect calibration curve. The difference is that ACE uses 

logistic regression for approximation instead of locally weighted regression such as LOESS.   

To aid clinical interpretation of the impact of temporal dataset shift and its mitigation strategies, 

we translated change in performance to interpretable threshold-based metrics (including sensitivity and 

specificity) across clinically reasonable threshold levels. We chose the task with the most extreme 

temporal dataset shift. We setup a scenario with 100 hypothetical ICU patients and estimated the 

number of patients with and without a positive label using average prevalence from 2018 to 2019. We 

then illustrated the number of false-positive- (FP) and false-negative predictions (FN) for: (1) ERM[08-10] 

in 2008-2010, illustrating the results of initial model development with training and test sets in 2008-2010, 

and representing performance anticipated by clinicians applying the model to patients admitted in 2017-

2019 if the model is not updated; (2) ERM[08-10] in 2017-2019, illustrating the actual performance of the 

earlier model on patients, or the impact of temporal dataset shift; (3) ERM[08-16] in 2017-2019, 

illustrating the ERM comparators for DG and UDA models; (4) models trained using a representative 

approach from DG or UDA; and (5) ERM[17-19] in which training and test sets are both using 2017-2019 

data.  

 

Statistical Analysis 

For each combination of outcome, experiment-specific characteristic (e.g., year group in the 

baseline experiment), and evaluation metric (AUROC, AUPRC and ACE), we reported the median and 

95% confidence interval (CI) of the distribution over mean performance (across 20 NN models) in the 

test set obtained from 10,000 bootstrap iterations. To compare models (for example, learned using IRM 

vs. ERM[08-16]) in the target year group, metrics were computed over 10,000 bootstrap iterations and 
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the resulting 95% confidence interval of the differences were used to determine statistical significance.23  

 Model training was performed on an Nvidia V100 GPU. Analyses were implemented in Python 

3.8,24 Scikit-learn 0.2425 and Pytorch 1.726. The code for all analyses is open-source and available 

onlinea.  

 

RESULTS  

Cohort characteristics for each year group and outcome are presented in Table 1. Figure 2 

shows performance measures (AUROC, AUPRC and ACE) of ERM[08-10] models in each year group 

vs. models trained on that year group. Largest temporal dataset shift was observed for sepsis predictions 

in 2017-2019 (drop in AUROC, 0.090; 95% CI, 0.080-0.101).  

 Figure 3 illustrates change in the performance measures of DG and UDA models in the target 

year group (2017 – 2019) relative to ERM[08-16]. In addition, change in performance measures of 

ERM[08-10] and ERM[17-19] are plotted in grey for comparison. ERM[08-16] performed better than 

ERM[08-10] (largest gain in AUROC, 0.049; 95% CI, 0.041-0.057; eTable 1 in the Supplement), but 

performed worse than ERM[17-19] (worst drop in AUROC, 0.071; 95% CI, 0.062-0.081) with some 

exceptions in mortality and invasive ventilation predictions (eTable 2 in the Supplement). Performance of 

DG and UDA models was similar to ERM[08-16] and while some models performed significantly better 

than ERM[08-16], others performed significantly worse with all differences being relatively small in 

magnitude (eTable 3 in the Supplement). In addition, increasing the magnitude of the algorithm-specific 

hyperparameters of the DG and UDA algorithms did not result in performance gains (see eFigures 1, 2, 

and 3 in the Supplement). 

Table 2 illustrates a clinical interpretation of temporal dataset shift in sepsis prediction using a 

scenario of 100 consecutively admitted patients to the ICU between 2017-2019 with a risk threshold of 

10% and an estimated outcome prevalence of 11% (see eTable 5 in the Supplement for results across 

thresholds from 5% to 45%). ERM[08-10] applied to 2017-2019 was associated with one additional FN 

among 11 patients with sepsis and 7 additional FP among 89 patients without sepsis when compared to 

                                                 
a

 https://github.com/sungresearch/mimic4ds_public 
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the model applied to 2008-2010. FN with AL, as the representative mitigation approach, was similar to 

ERM[08-16].  

 

DISCUSSION 

Our results revealed heterogeneity in the impact of temporal dataset shift across clinical prediction 

tasks, with the largest impact on sepsis prediction. When compared to ERM[08-16], DG and UDA 

algorithms did not substantially improve model robustness. In some cases, DG and UDA algorithms 

produced less performant models than ERM. We also illustrated the impact of temporal dataset shift and 

the effect of mitigation approaches for clinical audiences so that they can determine whether the extent 

of dataset shift precludes utilization in practice.  

The heterogeneity of impact by temporal dataset shift as revealed by our baseline experiment 

echoes the mixed results in model deterioration across several studies that made predictions of clinical 

outcomes in various populations.5 This calls for careful investigation of potential model degradation due 

to temporal dataset shift at both the population and task level. In addition, these investigations should 

translate model degradation, typically measured as change in AUROC, into change in clinically relevant 

performance measures27 or utility in allocation of resources,28 and place its impact in the context of 

clinical decision making and downstream processes.29-32  

This study is one of the first to benchmark the capability of DG and UDA algorithms on EHR data 

across multiple clinical prediction tasks to mitigate the impact of temporal dataset shift. Our findings align 

with recent empirical evaluations of DG algorithms demonstrating that they do not outperform ERM 

under distribution shift across data sources or hospitals in real-world clinical datasets.33,34 The reasons 

underlying the failure of DG algorithms are topics of active research, with several recent works offering 

theory to explain why models derived with IRM and groupDRO are typically not more robust than ERM in 

practice.35,36 Furthermore, other work has demonstrated that UDA objectives based on distribution 

matching, such as AL and CORAL, failed to improve generalization to the target domain under shifts in 

the outcome rate or in the association between the outcome and features37,38. These findings highlight 

the difficulty of improving robustness to dataset shift with purely data-driven techniques that do not 
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leverage prior knowledge of the nature of the shift. Future research should explore methods that learn 

robust models by incorporating domain knowledge as to which causal mechanisms are likely to be stable 

or change across time39. 

Strengths of this study include the use of multiple clinical outcomes and the illustration of temporal 

dataset shift and its mitigations using more clinically relevant metrics. There are several limitations in this 

study. First, the coarse characterization of temporal dataset shift did not offer insight about the rate at 

which model performance deteriorated. This was due to the deidentification in the MIMIC-IV database 

that left year group as the only time information that followed a correct chronological order across 

patients. Second, using data from the target year group to estimate best-case models is not realistic in 

real-world deployment as such data might not be available. Third, our assessment of clinical implications 

did not consider clinical use-cases in which the model alerts physicians of patients with the highest risks 

(i.e., acting on a threshold that is adaptively selected)40. In those scenarios, the amount of agreement in 

the ranking of risks between models need to be additionally considered.  

In conclusion, DG and UDA failed to produce more robust models compared to ERM in the setting of 

temporal dataset shift. Alternate approaches are required to preserve model performance over time in 

clinical medicine.  
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Figures and Tables 

 

Figure 1. Data Splitting Procedure for baseline, domain generalization (DG) and unsupervise
domain adaptation (UDA) experiments. Different shades of the same color indicate that they 
were used to train or evaluate different models. For instance, in the baseline experiment, the
training set of each year group was used to learn models for that year group. In the DG 
experiment, the training year groups were kept separate to allow DG algorithms to estimate 
invariance across the year groups. In comparison, in the UDA experiment, data from the train
year groups were pooled, and unlabeled samples from the target year group were leveraged
unsupervised distribution matching between training and target year groups. In addition, 
ERM[08-16] models were learned on pooled data from the training year groups (2008-2016) 
be used as ERM comparators for DG and UDA models. 
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Figure 2. Mean performance (AUROC, AUPRC, and ACE) of models in the baseline experiment. S
blue lines depict models trained using 2008-2010 (ERM[08-10]) and evaluated in each year group. 
Dashed lines depict models trained and evaluated in each year group separately (comparators). Erro
bars indicate 95% confidence interval obtained from 10,000 bootstrap iterations. Black circles indicate
statistically significant differences in performance based on the 95% confidence interval of the differe
over 10,000 bootstrap iterations when comparing ERM[08-10] and comparators for each year group. 
figure shows temporal dataset shift that is larger for Long LOS and Sepsis tasks. Abbreviations, ERM
empirical risk minimization; LOS: length of stay; AUROC: area under the receiver operating 
characteristics curve; AUPRC: area under the precision recall curve; ACE: absolute calibration error. 
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Figure 3. Difference in mean performance of DG and UDA approaches relative to ERM[08-16] in the 
target year group (2017-2019). Performance of ERM[08-10] (train set 2008-2010 and test set 2017-2019, 
dashed line) and ERM[17-19] (train and test sets 2017-2019, solid line) models are also shown for 
comparison. Error bars indicate 95% confidence interval obtained from 10,000 bootstrap iterations. Here, 
we show results from three of the four experimental conditions using differing number of unlabelled 
samples for UDA – we did not observe meaningful differences across the number of unlabelled samples 
evaluated. Numerical representation of the performance measures relative to ERM[08-16] are presented 
in eTable 3.  

Abbreviations, LOS: length of stay; ERM: empirical risk minimization; IRM: invariant risk minimization; 
AL: adversarial learning; GroupDRO: group distributionally robust optimization; CORAL: correlation 
alignment; AUROC: area under the receiver operating characteristics curve; AUPRC: area under the 
precision recall curve; ACE: absolute calibration error; domain generalization: DG; unsupervised domain 
adaptation: UDA.   
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Table 1. Cohort Characteristics by Year Group 

  2008 – 2010 2011 – 2013 2014 – 2016 2017 - 2019 
Mortality     
 Patients, No. (% pos) 9042 (7.4%) 9476 (7.1%) 10289 (7.4%) 10060 (7.2%) 
 Age, mean ± SD 63±18 63±18 64±17 64±17 
 Sex, No. (%)     
  Female 3864 (43%) 4090 (43%) 4430 (43%) 4170 (41%) 
  Male 5178 (57%) 5386 (57%) 5859 (57%) 5890 (59%) 
 Race, No. (%)     
  White 6784 (75%) 6217 (66%) 6468 (63%) 6129 (61%) 
  Other 2258 (25%) 3259 (34%) 3821 (37%) 3931 (39%) 
Long Length of Stay      
 Patients, No. (% pos) 9042 (29.8%) 9476 (28.4%) 10289 (31.0%) 10060 (35.2%) 
 Age, mean ± SD 63±18 63±18 64±17 64±17 
 Sex, No. (%)     
  Female 3864 (43%) 4090 (43%) 4430 (43%) 4170 (41%) 
  Male 5178 (57%) 5386 (57%) 5859 (57%) 5890 (59%) 
 Race, No. (%)     
  White 6784 (75%) 6217 (66%) 6468 (63%) 6129 (61%) 
  Other 2258 (25%) 3259 (34%) 3821 (37%) 3931 (39%) 
Invasive Ventilation     
 Patients, No. (% pos) 6692 (10.2%) 7181 (10.1%) 7447 (12.1%) 7311 (11.4%) 
 Age, mean ± SD 64±18 64±18 64±17 64±17 
 Sex, No. (%)     
  Female 2947 (44%) 3133 (44%) 3318 (45%) 3124 (43%) 
  Male 3745 (56%) 4048 (56%) 4129 (55%) 4187 (57%) 
 Race, No. (%)     
  White 5078 (76%) 4839 (67%) 4920 (66%) 4727 (65%) 
  Other 1614 (24%) 2342 (33%) 2527 (34%) 2584 (35%) 
Sepsis     
 Patients, No. (% pos) 5410 (12.7%) 5557 (10.2%) 6217 (10.8%) 7161 (10.6%) 
 Age, mean ± SD 62±19 62±18 62±18 63±17 
 Sex, No. (%)     
  Female 2334 (43%) 2442 (44%) 2809 (45%) 2948 (41%) 
  Male 3076 (57%) 3115 (56%) 3408 (55%) 4213 (59%) 
 Race, No. (%)     
  White 4032 (75%) 3648 (66%) 3945 (63%) 4447 (62%) 
  Other 1378 (25%) 1909 (34%) 2272 (37%) 2714 (38%) 

Abbreviations. pos: positive labels; SD: standard deviation.  
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Table 2. Clinical Interpretation of Temporal Dataset Shift in Sepsis Predictiona 

a
Sepsis was chosen as this task exhibited the most discrimination deterioration due to temporal dataset shift.  

b10% threshold for sepsis was chosen as a clinically reasonable value although results across thresholds from 5% to 45% are 
shown in eTable 5 in the Supplement. 
cERM[08-16] models are the fair ERM comparators to DG and UDA models given they were trained using 2008-2016.  
d,eOutcome prevalence was estimated based on average sepsis prevalence from 2008 to 2019. The table illustrates the results 
of initial model development with training and evaluation in the earliest period or 2008-2010 (first column), which represents 
performance anticipated by clinicians applying the model to patients admitted in 2017-2019 if the model is not updated. The 
second column shows actual performance of that model on their patients, or the impact of temporal dataset shift. In other words, 
the first two columns illustrate the clinical impact of temporal dataset shift for the task with the most extreme dataset shift, 
namely sepsis. It shows that for the 11 patients who developed sepsis, the false negative rate increased by 1 patient. The table 
also shows the impact of retraining with the more updated data (third column), and one approach to mitigate dataset shift, 
namely AL (UDA) (fourth column). Results of AL (UDA) was almost identical to third column (ERM[08-16]). For illustrative 
purposes, it also shows the ERM[17-19] in which training and test sets are both 2017-2019 data. 

 

Abbreviations: ERM: empirical risk minimization; AL: domain adversarial learning; UDA: unsupervised domain adaptation 

 

Scenario  

Set-up 

There are 100 consecutive patients admitted to the ICU between 2017-2019. Management will 
differ depending on whether the risk of sepsis is greater than 10%b at 4 hours after admission. 
The table below illustrates the anticipated performance metrics of ERM[08-10] based on their 

performance in 2008-2010 (first column), the implications of dataset shift on ERM[08-10] 
indicated by their actual performance in 2017-2019 (second column),  results of updating the 

model ERM[08-16]c and mitigation by a representative UDA approach (third and fourth 
columns), and the ERM[17-19] (last column). 

Training set 2008-2010 2008-2010 
 

2008-2016 
 

2008-2016 
+ 1500 unlabelled 

samples from 
2017-2019 

2017-2019 

Test set  2008-2010 2017-2019 2017-2019 2017-2019 2017-2019 

Learning Algorithm  ERM  ERM  ERM  AL (UDA) ERM 

Diagnostic Properties in Test Set 

 Sensitivity 0.65 0.57 0.76 0.75 0.61 

 Specificity 0.72 0.64 0.68 0.68 0.74 

 PPV 0.22 0.16 0.22 0.22 0.23 

 NPV 0.94 0.92 0.95 0.95 0.94 

False Positives for 
89d Patients who 
did Not Develop 
Sepsis 

 

25 

 

32 

 

29 

 

28 

 

23 

False Negatives for 
11e Patients that 
Developed Sepsis 

 

4 

 

5 

 

3 

 

3 
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