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ABSTRACT 

The app-based COVID Symptom Study was launched in Sweden in April 2020 to contribute to real-

time COVID-19 surveillance. We enrolled 143,531 study participants (≥18 years) who contributed 

10.6 million daily symptom reports between April 29, 2020 and February 10, 2021. Data from 19,161 

self-reported PCR tests were used to create a symptom-based model to estimate the individual 

probability of symptomatic COVID-19, with an AUC of 0.78 (95% CI 0.74–0.83) in an external dataset. 

These individual probabilities were used to estimate daily regional COVID-19 prevalence, which were 

in turn used together with current hospital data to predict next week COVID-19 hospital admissions. 

We found that this hospital prediction model demonstrated a lower median absolute percentage 

error (MdAPE: 25.9%) across the five most populated regions in Sweden during the first pandemic 

wave than a model based on case notifications (MdAPE: 30.3%). During the second wave, the error 

rates were similar. When applying the same model to an English dataset, not including local COVID-

19 test data, we observed MdAPEs of 22.3% and 19.0%, respectively, highlighting the transferability 

of the prediction model. 
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INTRODUCTION 

Real-time and accurate COVID-19 disease surveillance data is critical for adequate public health 

decision making and evaluation, as well as for healthcare system preparedness. The WHO guidelines 

for COVID-19 surveillance highlight the importance of combining data from multiple surveillance 

systems, and how participatory syndromic surveillance, where participants self-report symptoms of 

possible infection, may constitute a useful tool in early detection of disease outbreaks1. The 

European Centre for Disease Prevention and Control further notes that the utility of COVID-19 

participatory syndromic surveillance may be enhanced if symptom data can be combined with 

information on testing2. Expanding knowledge on the feasibility of large-scale syndromic surveillance 

may thus enable tailored population-based participatory surveillance initiatives in future pandemics 

and epidemics.  

Several novel eHealth solutions aimed at real-time monitoring and prediction of the dynamics of 

COVID-19 transmission were introduced early in the pandemic3, 4, 5, 6, with app-based technologies 

quickly recognized as a potentially powerful surveillance tool. One of these technologies was the ZOE 

COVID Symptom Study app, designed to collect baseline health data as well as daily reports on 

symptoms and test results from study participants. The app was launched in the United Kingdom and 

in the United States in late March 20207, 8, 9. 

Community transmission of SARS-CoV-2 was confirmed in Sweden in early March 2020. However, 

during the first pandemic wave in the spring of 2020, PCR testing was only available for hospital 

inpatients and healthcare workers10 in Sweden and assessments of national COVID-19 prevalence 

were based on two PCR surveys performed by the Public Health Agency of Sweden in April (n=2,571) 

and May (n=2,957)11. Nationwide PCR testing for symptomatic adults was later introduced in June 

202010, but suffered from various issues such as long analysis times during periods of high demand12. 

In response to the limited surveillance during the first pandemic wave, the COVID Symptom Study 

was launched in Sweden in April 2020. 
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The aims of this study were to develop and evaluate a syndromic surveillance-based framework to 

estimate the regional prevalence of COVID-19 and to evaluate if these could be used to accurately 

predict subsequent trends in COVID-19 hospital admissions. We showed that a model trained on 

symptoms and test data could provide informative prevalence estimates, and contribute to 

predictions of hospital burden the following week. Without using any additional test data, the 

hospital prediction model further performed well outside Sweden in a second country, England. 
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RESULTS 

Descriptive characteristics  

In this nationwide study on COVID-19 during the first year of the pandemic, we included data from 

143,531 COVID Symptom Study Sweden (CSSS) participants ≥18 years from April 29, 2020 to February 

10, 2021, who had contributed with at least one daily report in the app (Table 1). The median 

duration of study participation was 151 days (inter-quartile range [IQR] 52–252), with a median of 43 

days with submitted reports (IQR 13–119). Of all participants, 30% reported at least one COVID-19 

PCR test, and 6% of women and 4% of men reported at least one positive test result. The cohort 

included a larger proportion of women, fewer people ≥65 years, and fewer smokers than the general 

population, while the prevalence of obesity was similar. Participants further resided in postal code 

areas with less deprivation, similar proportions of inhabitants with foreign background, and higher 

population densities, as compared to the general population. The frequency of participants across 

regions is depicted in Supplementary Figure 1. CSSS was led by researchers at Lund University and 

Uppsala University, and the highest CSSS participation rates were observed in the regions of Skåne 

and Uppsala where these universities are located, as well in the most populated region in Sweden, 

Stockholm (Supplementary Table 1).  

The most common symptoms reported in participants with PCR-confirmed COVID-19 were loss of 

smell and/or taste, headache, fever, and sore throat (Figure 1a). The prevalence of loss of smell 

and/or taste peaked at five days after the test date. Among participants who tested negative, 

headache and sore throat were most common, whereas loss of smell and/or taste was rarely 

reported (Figure 1b). The non-adjusted prevalence of different symptoms was considerably higher in 

the symptom data collected by the Swedish company NOVUS than in CSSS, with the exception of loss 

of smell and/or taste, but temporal trends were similar (Supplementary Figure 2). This discrepancy 

was likely due to the different approach in CSSS, where participants were asked questions about 

symptoms only if they responded negative to the first gate-keeper question, namely whether they 

felt healthy as normal.  
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Step 1. Training of model for estimation of individual probability of COVID-19 

Our analysis strategy consisted of five steps, as illustrated in Figure 2. In the first step, we developed 

a model to estimate individual probability of symptomatic COVID-19, utilizing information from 

19,161 CSSS participants who reported at least one PCR test (of whom 2,586 were COVID-19 

infection positive) between April 29 and December 31, 2020; these individuals also reported at least 

one candidate symptom within seven days before or on the test date. The final model selected by 

LASSO included 17 symptoms and sex, as well as 2-way interactions between loss of smell and/or 

taste and 14 symptoms, and a 2-way interaction between loss of smell and/or taste and sex. The AUC 

for this main model was 0.76 (95% CI 0.75–0.78) during the training period April 29 to December 31, 

2020; n=19,161) and 0.72 (95% CI 0.69–0.75) during the evaluation period (January 1 to February 10, 

2021; n=1,753) and 0.78 (95% CI 0.74–0.83) in the external dataset of 943 symptomatic individuals 

from the CRUSH Covid survey (144 positive; test positivity 15.3%; October 18, 2020 to February 10, 

2021). Calibration graphs are available in Supplementary Figure 3.   

Step 2. Estimation of daily individual probability of COVID-19 in CSSS 

We applied the model from Step 1 to estimate the daily individual probability of symptomatic COVID-

19 in all CSSS study participants, including non-tested individuals, across the entire study period from 

May 10, 2020, through February 10, 2021. Non-symptomatic individuals were assigned a probability 

of 0 for that day.  

Step 3. Daily regional COVID-19 prevalence estimates in the general population 

The individual probabilities from Step 2 were then used to estimate the daily regional COVID-19 

prevalence in the general population in Sweden, accounting for differences in age and sex 

distributions of the participants as compared to the general population in each region. We calibrated 

the intercept of the model generated in step 1 so that the estimated prevalence of May 27, 2020 

matched the estimated prevalence from a national COVID-19 prevalence survey (n=2,957). The 

resulting CSSS prevalence estimates of symptomatic COVID-19 showed similar waves as the first and 
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second waves of COVID-19 hospitalization (Figure 3a, Supplementary Figure 4a). In contrast, data 

from SmiNet, the national Swedish register on laboratory-confirmed cases of COVID-19, did not 

capture the first wave (Figure 3b, Supplementary Figure 4b).  

During the autumn of 2020, we observed a peak in CSSS-based COVID-19 prevalence estimates in 

September 2020 with no corresponding peak in other COVID-19 national case notification rates or 

hospital admission data. We therefore constructed a retrospective time-dependent model for 

individual probability of symptomatic COVID-19, based on the main model in Step 1 and validated 

correspondingly (additional information and calibration graphs available in the Supplementary 

Material). Retrospective national COVID-19 prevalence estimates based on the time-dependent 

model showed higher concordance with national COVID-19 case notification and hospital admission 

trends than the main model (Figures 3c and 3d). 

We further observed a higher estimated prevalence of symptomatic COVID-19 in women than in men 

across the entire study period, which was most apparent in those ≤64 years (Supplementary Figure 

5a). Post-hoc analyses revealed that this difference was mainly generated by participants who were 

healthcare professionals, where women were over-represented (Supplementary Figure 5b). 

Step 4. Prediction of regional COVID-19 hospital admissions the following week 

We developed an iterative time-updated prediction model to assess if the regional prevalence 

estimates from Step 3 could be used together with current hospital data for prediction of regional 

COVID-19 hospital admissions seven days ahead. The parameters were estimated on available data 

through June 1, 2020 with larger weights applied to more recent observations, to predict admissions 

on June 8, 2020. This procedure was repeated to calibrate the coefficients throughout the study 

period. Weights and model specifications were based on exploratory analyses using data from May 

11 to November 29, 2020. Overall, 16,752 individuals (≥18 years) were admitted to hospital with a 

diagnosis of COVID-19 from May 11 through November 29, 2020, and the number of daily new 

COVID-19 hospital admissions ranged from 0–104 across the 21 Swedish healthcare regions.  
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Across the five most populated regions in Sweden, the CSSS hospital prediction model demonstrated 

a median absolute percentage error (MdAPE) of 25.9% between daily predicted and observed 

number of hospital admissions for the first pandemic wave (May 11 to July 3, 2020; Figure 4 and 

Table 2), while the MdAPE for the second wave (October 19 to November 29, 2020) was 26.8%, 

which was lower than, or similar to, the predictions from a  similar prediction model combining daily 

case notifications from SmiNet with hospital admissions yielded MdAPEs of 30.3% and 25.9% for the 

five most populated regions (first and second wave, respectively; Supplementary Table 2).   

The MdAPEs were lowest in the most populated region in Sweden (Stockholm, population ≥18 years 

n=1.85 million) with 12.2% and 16.6% (SmiNet-based MdAPEs 13.5% and 24.5%) for the first and 

second waves, respectively. When we pooled data from all 21 Swedish regions, MdAPEs for the first 

and second waves were higher for both the CSSS hospital prediction model (37.0% and 42.4%, 

respectively; Supplementary Figure 6) and the SmiNet-based model (38.7% and 38.5%, respectively). 

Overall, we noted that the accuracy of the hospital prediction model as measured on the relative 

scale was lower when regional daily number of hospital admissions was low (Supplementary Figure 

7a). 

Step 5. Validation of the hospitalization prediction model in England 

We sought to validate the CSSS-based hospitalization prediction model in England by repeating Steps 

2 and 3 and parts of Step 4. The English dataset encompassed daily reports from 2,638,536 ZOE 

COVID Study (CSS UK) English study participants from March 30, 2020 to January 31, 2021 (study 

population characteristics and regional participation rates are available in Supplementary Tables 3 

and 4). We extracted information on all COVID-19 hospital admissions (n=318,232) in individuals ≥18 

years across the seven English healthcare regions from April 6, 2020 through February 7, 2021 from 

National Health Service England data. The number of new daily COVID-19 hospital admissions ranged 

from 0–958 across the English regions during this period.  
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We applied the exact same model that was developed in Step 1 in CSSS to estimate daily individual 

probability of COVID-19 in the English dataset, and then estimated the daily age- and sex-weighted 

COVID-19 prevalence across the English regions. We further applied the same iterative time-updated 

prediction model as in the Swedish dataset to predict hospital admissions the following week in the 

seven English regions. We used available outcome data up to April 27, 2020 to tune the parameters 

and to predict admissions a week later on May 4, 2020 and then repeated this daily throughout the 

study period (until February 7, 2021).		

Across the seven English regions, we observed an MdAPE of 22.3% for the part of the first English 

pandemic wave captured in the data (April 6 to June 19, 2020) and an MdAPE of 19.0% for the 

second English wave (September 20, 2020 to February 7, 2021; Figure 5, Supplementary Table 5). As 

in Sweden, we observe lower error in the most populated English healthcare region (West and East 

Midlands; population ≥18 years n=10.8 million) with MdAPE of 16.1% and 14.0%, respectively. 

Overall, the predicted number of hospital admissions were overestimated when daily regional 

hospital admissions were low (Supplementary Figure 7b).  
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DISCUSSION 

Adequate and continuous regional COVID-19 surveillance is challenging and requires multiple sources 

of data. Here, we developed an app-based framework that allowed for syndromic surveillance of 

COVID-19 at the national and regional level in Sweden across the first two pandemic waves. We 

found that CSSS prevalence estimates could be used to monitor COVID-19 disease trends, and that 

they were particularly informative in times of limited PCR testing capacity. The accuracy of the 

prevalence estimates was, however, lower in September 2020 when other respiratory infections 

peaked. We further showed that combining app-based regional prevalence estimates with previously 

recorded hospital data could, with moderate accuracy, predict regional levels of COVID-19 hospital 

admissions the following week both in Sweden and in England.  

A previous study from ZOE COVID Study demonstrated how app data from the first pandemic wave 

from March through September 2020 could be utilized to successfully identify emerging COVID-19 

hotpots in England, with findings validated in UK Government test data13. The present study 

confirmed the utility of app-based COVID-19 syndromic surveillance, encompassing the full second 

pandemic wave in the Swedish population and expanding the scope to include predictions of 

subsequent hospital admissions. The validation of the CSSS-based hospital prediction model in 

English data highlights the potential transferability of our approach, without using any PCR test data 

in the English data. Syndromic surveillance of COVID-19 may thus provide early warnings of surges in 

hospital admissions, thereby helping guide the allocation of precious healthcare resources in times of 

crisis. 

A strength of the CSSS was that the syndromic surveillance using daily reports from study 

participants, which enables rapid data analysis and quick dissemination of results. The prevalence 

estimates were continuously disseminated to the study participants and the general public via the 

CSSS dashboard14. In contrast, the official COVID-19 disease surveillance in Sweden has suffered 

delays even after PCR testing was made available to the general public in June 2020. The time 

interval from booking a PCR test to confirmation of test result exceeded six days across several 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2021.06.16.21258691doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.16.21258691
http://creativecommons.org/licenses/by/4.0/


12 
 

regions during our study period12, with additional time delays in the reporting of COVID-19 

notification rates on regional and municipality levels by the Public Health Agency of Sweden15.  

The accuracy of the CSSS-based hospital prediction model during the first and second wave was 

higher for more populated regions in Sweden. Moreover, when the Swedish model was applied in 

England across healthcare regions, MdAPEs were lower than those derived in the Swedish setting. 

Although we cannot discern the separate influences of larger total population size, higher absolute 

number of study participants, and higher study participation rates, it is likely that all these factors 

enhance the accuracy of the hospital prediction model. 

When we compared the CSSS-based hospital prediction model with the SmiNet-based (PCR test-

based) hospital prediction model, we observed that the accuracy of the CSSS-based model was 

higher during the first wave, while the SmiNet-based model was similar in the second wave. The 

higher accuracy of CSSS during the first pandemic wave is likely due to the limited availability of PCR 

testing in Sweden at that time, when tests where only available to hospital inpatients and healthcare 

workers.10 We conclude that in addition to the expansion of the national PCR testing programme 

introduced in June 2020 and subsequent delays in PCR testing, local factors may also influence how 

well the CSSS app and PCR testing efforts reflect regional and/or local outbreaks. However, the 

successful application of the non-test dependent hospital prediction model in England shows great 

promise for future efforts in syndromic surveillance, where models can be trained in one country 

with dense test data and adjusted to local trends of hospitalizations in a second country without the 

need for additional test data.  

More than 166,000 participants (2.4% of the adult population in Sweden) joined CSSS in the first five 

weeks after launch, supporting the feasibility of large-scale app-based syndromic surveillance and the 

power of citizen science, which can be rapidly scaled-up without needing additional staff or large 

financial resources. However, although the use of a smart device app was intended to minimize 

barriers to enrolment16, a lesser proportion of CSSS participants were male, ≥65 years, or smokers, or 
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obese, as compared to the general population, indicating an overrepresentation of healthy 

individuals. Further, owing to limited resources the CSSS app was in Sweden only available in 

Swedish, which precluded participation of non-Swedish speakers, a group that may be at higher risk 

of COVID-19 infection17, 18. We also observed that the CSSS participants resided in postal code areas 

with on average less deprivation than the general public. Together, these factors may have limited 

the ability of the CSSS to detect local outbreaks in vulnerable neighbourhoods, areas where lower 

community testing rates were also observed during the pandemic12. In future epidemic surveillance 

efforts, combining syndromic surveillance with non-participatory data sources, such as number of 

calls regarding specific complaints to nurse telephone consultation services19, measurements of virus 

occurrence in wastewater20, 21, monitoring of mobility patters in the population22, and aggregate data 

on vaccination rates across neighbourhoods, may constitute a cost-efficient way to characterize 

community infection trends and predict increased demands on healthcare resources.  

Additional potential limitations to the data collection also apply. Firstly, participants may have been 

more likely to join the study and report daily if they experienced symptoms perceived to be linked 

with COVID-19 than if they had been healthy, potentially inflating COVID-19 prevalence estimates. 

We sought to reduce this risk by excluding the first seven days of data collected for each participant, 

but we cannot exclude the risk of residual participation bias. Secondly, all data collected in the COVID 

Symptom Study app are self-reported. We had no means of linking the self-reported data to national 

population or health registers, so we could not validate information on COVID-19 tests or baseline 

health survey questions. We were able to overcome this limitation by validating the model predicting 

COVID-19 PCR test positivity in the independent CRUSH Covid dataset. Lastly, some questions in the 

COVID Symptom Study app were updated during the study period, potentially influencing data 

collection and analyses. The baseline health survey questions that were modified and/or updated 

during this time were, however, not included in our analyses and did not affect the prevalence 

estimates or the accuracy of the hospitalization prediction model. The symptom questions were 

updated on November 4, 2020. This update was implemented at the same time as incidence was 
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increasing sharply, but the national prevalence estimate curve and the regional prevalence estimate 

curves remained smooth, indicating that these updates did not materially influence our findings. 

We observed a peak in app-based COVID-19 prevalence estimates in mid-September 2020 with no 

corresponding peak in any disease-specific COVID-19 national register data. The prevalence of loss of 

smell and/or taste, sore throat, and headache were similarly elevated in NOVUS. The Public Health 

Agency of Sweden also noted high occurrence of symptoms of acute respiratory infections at this 

time23. Laboratory analyses of respiratory viruses later indicated a high incidence of common colds 

caused by rhinoviruses in September 202024. Hence, the specificity of the CSSS data was 

compromised when prevalence of other pathogens with similar symptomatology to COVID-19 was 

elevated. We therefore added time as a variable in the model developed in Step 1, allowing 

estimated probabilities to vary depending on the PCR test positivity rate during a given period. This 

second model yielded results more consistent with the national COVID-19 incidence data but is 

strongly influenced by the proportion of positive COVID-19 tests. The model is thus rather insensitive 

to a sudden increase or decrease in the reporting of symptoms, and change in prevalence will not be 

fully captured until this trend is also reflected in the test results reported in the app. The more static 

main model will, conversely, react more quickly to an increase of reported symptoms, raising the 

sensitivity of the model but also the risk of false positive healthcare alerts. Because of the delay 

inherent in this type of analysis, the time-dependent model is not suitable for real-time COVID-19 

surveillance; it is also ineffective when test positivity varies greatly across regions, unless regions are 

modelled separately. An intermediate solution would be to retrain the model at known events that 

affect the relationship between symptoms and positive PCR tests, such as when vaccinations are 

introduced, new variants or other concurrent epidemics emerge. Very few cases of seasonal 

influenza were confirmed in Sweden in the winter season of 2020/2021 compared with previous 

years25, which rendered the lower specificity during this period less problematic. 
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As the study period ended in February 2021, this study encompassed pandemic waves characterized 

in Sweden mainly by the early SARS-CoV-2 strains, with the variant of concern Alpha being detected 

in late December 202026. Moreover, less than 150,000 inhabitants (<2% of the total population) had 

been inoculated with two doses of vaccine by early February 202127. Further studies on prediction of 

COVID-19 hospital admissions, including subsequent variants of concern as well as higher vaccination 

rates in the general population, are therefore warranted.  

Conclusion 

App-based syndromic surveillance and citizen science may represent a powerful and rapid asset 

when assessing the early spread of a pandemic virus. The findings from COVID Symptom Study 

Sweden and validation in the English setting suggest that app-based technologies could contribute to 

national and regional disease surveillance and early warnings to healthcare systems.  
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METHODS 

COVID Symptom Study Sweden (CSSS) 

COVID Symptom Study Sweden (CSSS) was launched in Sweden on April 29, 2020 to provide COVID-

19 syndromic surveillance data and to build a large-scale repeated measures database for COVID-19 

research. More than 166,000 participants (2.4% of the adult population) joined CSSS in the first five 

weeks after launch. The non-commercial mobile application used in the study was initially developed 

by health data science company ZOE Limited in partnership with King’s College London and 

Massachusetts General Hospital7, 8, and adapted for use in Sweden by ZOE Limited in collaboration 

with Lund University and Uppsala University. The app has been used to study the contemporary 

disease burden and to predict consequences of COVID-199, 13, 28.  

All individuals ≥18 years living in Sweden with access to a smart device were eligible to participate in 

the CSSS after downloading the app and providing informed consent. Participants are asked to report 

year of birth, sex, height, weight, postal code, whether they work in the healthcare sector, and to 

complete a health survey including pre-existing health conditions. Subsequently, participants were 

asked daily (with voluntary response frequency) if they felt “healthy as normal” or not, and to report 

the date and result of any COVID-19 PCR or serology test. If they did not feel healthy, they were 

asked about an array of symptoms potentially associated with COVID-19. The symptoms that 

participants could report included, but were not limited to, loss of smell and/or taste, fever, 

persistent cough, fatigue, abdominal pain, chest pain, hoarse voice, shortness of breath, headache, 

muscle pains, skin rashes, nausea, chills, eye soreness, diarrhoea, and confusion. Unspecified 

symptoms could be added as free text.  

The symptom questions were updated on November 4, 2020. The original question related to loss of 

smell and/or taste was then branched into a) loss of smell and/or taste, and b) altered smell and/or 

taste. This update was made to improve the specificity with which symptom severity was assessed. 

Several other new symptom questions were also introduced at this time, including for example 
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unusual hair loss and earache. Questions pertaining to COVID-19 vaccinations were added on March 

27, 2021, and are not included in the current analysis. Information on all questionnaire variables both 

from the baseline health survey and the daily report, including information on whether the questions 

were available at launch, or the date when the questions were added and/or removed, are presented 

in Supplementary Table 6.  

Study population and data management 

In this study, we included data from April 29, 2020 to February 10, 2021. Participants were in this 

study excluded from the analyses if they: 1) never submitted a daily report (n=5,931), 2) had missing 

age or reported an age <18 years or >99 years (n=801), or 3) stated their sex as other or intersex 

(n=236) as this sample size was insufficient for a further analysis (Supplementary Table 7). 

Participants whose last report was within seven days of joining the study (n=45,483) or did not 

provide a valid postal code (n=7,310) were excluded from the prevalence estimation, but included in 

model training if they reported a PCR test and submitted at least one symptomatic daily report 

within seven days preceding or on the test date (n=967). The final study population consisted of 

143,531 individuals (Figure 6). We labelled self-reported height, weight, and body mass index (BMI) 

as “missing” if <130 or >210 cm, <35 or >300 kg, and <15 or >70kg/m2, respectively. “Obesity” was 

defined as BMI ≥30kg/m2. 

Symptom trajectories in study participants with negative and positive COVID-19 PCR tests 

We described symptom prevalence and trajectories in all CSSS participants from the perspective of 

their positive (n=5,178) or negative (n=32,089) PCR test. We included all symptoms reported in the 

15 days preceding or following the test date. If a participant reported multiple PCR tests during the 

study period, only one randomly selected test was included. 

Representativeness of the study population 
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We assessed the representativeness of the CSSS study population as a sample of the Swedish general 

population. We obtained data from the Living Condition Surveys in Sweden from 2018–2019 on 

prevalence of current smoking and BMI in the general adult population29. We further extracted 

aggregate adult population sociodemographic information for all postal code areas in Sweden from 

Statistics Sweden, which included proportion of women, proportion of inhabitants ≥65 years, highest 

achieved education level, proportion engaged in work or studies in the population 20–64 years, 

median yearly net income for the population ≥20 years, and proportion of population ≥18 years with 

foreign background. Foreign background is here in defined as birth in a country other than Sweden, 

and/or birth in Sweden but with both parents born in a country other than Sweden. We then 

calculated a neighbourhood deprivation index (NDI, lowest corresponds to most disadvantaged) for 

each postal code area based on the proportion of adult inhabitants employed or studying, the 

proportion with a university education, and the median yearly net income30. We also calculated 

population density for all postal code areas in Sweden as the total number of inhabitants per square 

kilometres. The surface area of each postal code was estimated using shapefiles originating from an 

external company, Postnummerservice Norden AB, that contained detailed information on five-digit 

postal code area boundaries. 

NOVUS 

We compared overall daily symptom prevalence in CSSS during the study period with symptom data 

collected by NOVUS, a private company that conducts opinion polls and other surveys using panels 

recruited by random sampling of the Swedish population31. Since March 2020, NOVUS has carried 

out repeated surveys on COVID-19-related symptoms and healthcare contacts, not including PCR test 

results, with a response rate of approximately 70%32. While in the CSSS participants report symptoms 

on the same day they experience them, NOVUS participants report any symptoms experienced over 

the past 14 days even if these reflect their baseline health status (for details, see Supplementary 

Material).  
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Statistical analyses strategy 

Our analysis strategy consisted of five steps, as illustrated in Figure 2. Each step is detailed below.   

Step 1. Training of model for estimation of individual probability of COVID-19 

We trained a model to estimate the individual probability of a symptomatic COVID-19, defined as 

having symptoms and a positive PCR test result. The model training set consisted of data from 19,161 

participants who reported at least one PCR test result (of which 2,588 were positive) between April 

29 and December 31, 2020, and who reported at least one reported candidate symptom within 

seven days before or on the test date. As we observed that a higher proportion of study participants 

reported symptoms within the first week of joining the study than thereafter (Supplementary Figure 

8), we excluded all reports submitted during the first week to reduce participation bias from 

increased motivation among symptomatic individuals in the general population. For participants who 

had not submitted reports every day, we assumed the last reported observation to be valid for no 

more than seven subsequent days. If a participant submitted more than one report on a given day, 

all reports were combined into a single daily report; a symptom was treated as reported if it was 

mentioned in at least one of these reports.   

We used an L1-penalized logistic regression model (LASSO) to select variables predicting 

symptomatic COVID-19. The starting set of predictors included all symptoms introduced through May 

7, 2020 (excluding hay fever and chills or shivers), as well as their interaction with loss of smell 

and/or taste, as the latter constituted the strongest predictor of COVID-199. Predictors in the final 

model were: fever, persistent cough, diarrhoea, delirium, skipped meals, abdominal pain, chest pain, 

hoarse voice, loss of smell and/or taste, headache, eye soreness, nausea, dizzy or lightheaded, red 

welts on face or lips, blisters on feet, sore throat, unusual muscle pains, fatigue (mild or severe), and 

shortness of breath (significant or severe), interaction terms between 14 of those and loss of smell 

and/or taste, as well as age and sex (see Supplementary Table 8 for model coefficients). After the loss 

of smell and/or taste symptom question was branched (November 4, 2020) into loss of smell and/or 
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taste and altered smell and/or taste, we combined these two new questions into a single variable, 

which we subsequently used interchangeably with the original loss of smell and/or taste variable.  

As the primary aim was to provide individual probabilities of symptomatic COVID-19, rather than 

creating a classification rule, we followed the TRIPOD explanation and elaboration document 

(https://www.equator-network.org/reporting-guidelines/tripod-statement/) guidelines to report 

discrimination and calibration for the model. Discrimination and calibration were internally evaluated 

by applying nested tenfold cross-validation within the dataset from April 29 to December 31, 2020. 

We further assessed discrimination and calibration in CSSS data (1,753 participants, of which 339 

tested positive) from January 1 to February 10, 2021, the period not included in model training. The 

nested tenfold cross-validation is described in detail in the Supplementary Material. Discrimination 

was quantified using the ROC area under the curve (AUC) as this metric is robust to differences in 

prevalence. Model calibration was assessed by plots with estimated probabilities divided into deciles. 

To externally validate the model, we used data from the CRUSH Covid study, which invited all 

individuals (≥18 years) to complete a symptom survey when they did a COVID-19 PCR test in Region 

Uppsala, the fifth largest healthcare region in Sweden. Using data from October 18, 2020 to February 

10, 2021, the classification ability of the model for individual probability of symptomatic COVID-19 

was assessed using ROC analysis among individuals who had completed the survey on the day of the 

test, reported at least one symptom, and had a conclusive test result (n=943; see Supplementary 

Material and Supplementary Table 9). 

Step 2. Estimation of daily individual probability of COVID-19 in CSSS 

We used the model from Step 1 to estimate the daily individual probability of symptomatic COVID-19 

in the full CSSS study population, including individuals not reporting any PCR test, across the entire 

study period, from May 10, 2020, to February 10, 2021. Participants not reporting any of the 

symptoms included in the prediction model were assigned a probability of zero. Participants with 

long-lasting COVID-19 symptoms were excluded after their 30th day of reporting loss of smell and/or 
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taste to ensure that the estimates were not inflated due to post-acute sequelae of COVID-19. As in 

Step 1, we a) excluded symptoms reported during the first seven days after a participant had joined 

the study, b) assumed the last report to be current for no more than seven days, and c) combined all 

reports on a given day into a single report.  

Step 3. Daily regional age- and sex-weighted COVID-19 prevalence estimates 

We estimated the daily regional prevalence of symptomatic COVID-19 infection in real-time using a 

weighted mean of individual predicted probabilities for each of the 21 administrative healthcare 

regions in Sweden re-weighted by age (<50 and ≥50 years) and sex in the total adult population using 

direct standardization. Demographic data from 2021 was available from Statistics Sweden. The 95% 

confidence intervals (95% CI) for predictions were generated using the function ageadjust.direct from 

the epitools package in R33, using the method of Fay and Feuer34. This function accommodates the 

sum of the model-generated probabilities, number of participants for each of the four age- and sex 

strata on a given day, and the total population of Sweden. The method assumes that the sum of the 

model-generated probabilities is Poisson-distributed using an approximation based on the gamma 

distribution.  

The odds ratios for all variables in the prediction model were assumed to be generalizable to the 

background population. Because the model was trained in a dataset with higher prevalence of 

COVID-19 compared to the general population, the intercept was inflated. We therefore recalibrated 

the intercept of the model generated in Step 1 until the nationwide app-based predictions for May 

27, 2020, matched the estimated nationwide prevalence of 0.3% (95% CI 0.1–0.5%) from a survey 

performed by the Public Health Agency of Sweden between May 25–28, 202011. In that survey, self-

sampling nasal and throat swabs with saliva samples were delivered to a random sample of 2,957 

individuals (details provided in the Supplementary Material). We assumed both the sensitivity and 

the proportion of symptomatic COVID-19 in the Public Health Agency of Sweden survey to be 70%35, 

36. Although the method of Fay and Feuer34 used to calculate the confidence intervals may be 
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regarded as conservative, we assumed the Public Health Agency of Sweden point estimate for May 

25–28, 2020, PCR sensitivity, and proportion of asymptomatic individuals to be known quantities. 

To compare CSSS prevalence estimates with reported confirmed cases in Sweden, we extracted a 

pseudonymised dataset of all COVID-19 cases ≥18 in individuals ≥18 years from SmiNet. SmiNet is an 

electronic notification system of communicable diseases maintained by the Public Health Agency of 

Sweden, to which all PCR-confirmed cases of COVID-19 are by law reported (details provided in the 

Supplementary Material). We also acquired data on all COVID-19 hospital admissions in Sweden from 

the National Patient Register from January 1, 2020 to January 4, 2021, including all individuals ≥18 

years hospitalized with a first diagnosis of COVID-19: International Statistical Classification of 

Diseases and Related Health Problems Tenth Revision [ICD-10] codes U07.1 and U07.2 (for details see 

Supplementary Material). The delay in registering COVID-19 hospital admissions in the National 

Patient Register was up to one month. We therefore utilized data from the register until December 4, 

2020. We evaluated the agreement of a) CSSS-estimated prevalence (main model) b) CSSS-estimated 

prevalence (time-dependent model) with official case notification rates from SmiNet and daily new 

hospital admissions per 100,000 inhabitants ≥18 years (seven-day moving average) on national and 

regional levels by inspecting trend plots. 

We observed a peak in app-based COVID-19 prevalence estimates in mid-September 2020 with no 

corresponding peak in any disease-specific COVID-19 national register data. However, this peak 

coincided with regional reports of rhinovirus surges. To better estimate the time course of 

symptomatic COVID-19 retrospectively from the app data, we constructed a time-dependent model 

for individual probability of symptomatic COVID-19, based on the variables utilized in Step 1 and with 

data from the same time period (from April 29 to December 31, 2020) with the addition of restricted 

cubic splines for calendar time with six knots placed according to Harrell's recommendations37 

(coefficients in Supplementary Table 10). Discrimination and calibration were assessed in CSSS data 

from January 1 to February 10, 2021, which is a period that was not included in model training. 
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Consistent with the main model, we also performed nested tenfold cross-validation, described in 

detail in the Supplementary Material, and independently validated the model in the CRUSH Covid 

dataset.  

Step 4. Predictions of regional COVID-19 hospital admissions the following week 

We assessed the ability of the CSSS prevalence estimates to predict the following week’s COVID-19 

hospitalizations during the first and second pandemic waves in Sweden. We defined the end of the 

first pandemic wave as when the rate of daily new hospital admissions in Sweden dropped below 0.5 

individuals per 100,000 inhabitants ≥18 years (July 3, 2020), and the beginning of the second wave as 

when the hospital admission rate again rose above that threshold (October 19, 2020). 

We utilized data from the entire study period in Swedish data to assess which variables to include in 

the model predicting hospital admission seven days ahead. The candidate variables were: daily 

regional CSSS prevalence estimate on day 0 or -1; current regional rate of COVID-19 hospitalizations 

per 100,000 inhabitants ≥18 years on day 0 or -1; weekday of hospitalization (Monday through 

Sunday); mean age in region; and mean regional Neighbourhood Deprivation Index (NDI). The final 

model was a weighted linear regression model, including daily regional CSSS prevalence estimate on 

day 0 and daily regional rate of COVID-19 hospitalizations per 100,000 inhabitants ≥18 years on day 

0, assuming both variables to have a linear relationship with the outcome. Mean age and mean NDI 

did not notably influence the predictions and were therefore not included. To create weights for the 

linear regression we multiplied the number of inhabitants ≥18 years in each region with a density 

assigned to each day. The density was created using a Gaussian kernel function, with the highest 

density for the most recent observation. The standard deviation for the kernel function was set to be 

two days by trial-and-error. Weights for days more recent than seven days prior to the observation 

being forecasted was set to zero. 
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The model can be portrayed with the following equation, where β0 represents the intercept, 

“prevalence” the CSSS prevalence and “hospital” the admissions/100,000 inhabitants ≥18 years. The 

subscript t0 represents day 0 and the subscript t7 day 7. 

Equation 1.  

hospital_t7 = β0 + βprevalence x prevalence_t0 + βhospital x hospital_t0 

We developed an iterative time-updated prediction model process by first training the model in 

available outcome data up to the first day 0 (June 1, 2020) to derive the coefficients β0, βprevalence and 

βhospital for Eq. 1. We inserted the CSSS prevalence estimate and daily regional rate of COVID-19 

hospitalizations per 100,000 inhabitants ≥18 years on June 1, 2020 into the equation, applying the 

derived coefficients to predict hospitalization rates on June 8, 2020. We then repeated the model fit 

and prediction from June 2 to November 29, 2020, with past data influencing the daily new intercept 

as well as the daily new two betas.   

To evaluate the prediction model performance, we transformed both observed and predicted rates 

to number of hospitalizations per day and region. We then calculated the median absolute 

percentage error (MdAPE) between predicted and observed number of hospitalizations across the 

first wave (May 11 to July 3, 2020), the summer period (July 4 to October 18, 2020), and the second 

wave (October 19 to November 29, 2020), for each of the 21 healthcare regions as well as for the five 

most populated regions combined (Stockholm, Västra Götaland, Skåne, Östergötland and Uppsala). If 

a region had zero new hospitalizations on any day, that data point was excluded when calculating the 

absolute percentage error. 

For comparison, we further created a second regression model, where we instead of the regional 

CSSS prevalence estimates inserted the daily regional case notification rates as registered in SmiNet 

(on day 0) in the equation. We evaluated both date of PCR test and date of registration in SmiNet in 

the model. When using date of PCR test, we only counted tests that were registered before or on day 

0 in each time-updated iteration. Using the date of registration provided better predictions. We 
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found the same density and weights suitable for the SmiNet model as for the CSSS-based model. 

Model fit was repeated daily across the same period. We further plotted the relative error in % per 

day and region in hospital admission predictions over the range of observed admissions.  

Step 5. Validation of hospital prediction model using external data from England by repeating 

Steps 2–4 

We repeated Step 2 in English data by applying the Swedish model for estimation of individual 

probabilities from Step 1, applying the same symptom coefficients as in Sweden, and thereby 

assessed the daily individual probability of symptomatic COVID-19 in ZOE COVID Study (CSS UK) 

English participants ≥18 years from March 30, 2020 to January 31, 2021. We included participants 

residing in all postal code areas (n=2,261) within any of the seven English healthcare regions (South 

East, London, North West, East of England, South West, West and East Midlands, Yorkshire and the 

Humber and North East; total population ≥18 years n=43.2 million). If postal code areas overlapped 

two or more regions the postal code area was randomly assigned to one of them in our analyses.  

We further repeated Step 3 and assessed daily age- and sex-weighted averages of the individual 

probabilities to estimate daily COVID-19 prevalence across the seven English healthcare regions. 

Demographic data was extracted from the UK Office for National Statistics38.  

We concluded by seeking replication of Step 4 by applying Eq. 1 in the English dataset using the 

equivalent variables used in the analysis of CSSS data. We trained the model in available outcome 

data up to the first day 0 (April 27, 2020) to derive the coefficients β0, βprevalence, and βhospital. We 

inserted the ZOE COVID Study prevalence estimate and daily regional rate of COVID-19 

hospitalizations per 100,000 inhabitants ≥18 years on April 27, 2020 into the equation, applying the 

derived coefficients to predict hospitalization rates on May 4, 2020. We then repeated the model fit 

and prediction from May 5, 2020 to February 11, 2021, with past data influencing the daily new 

intercept as well as the daily new two betas. 
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Information on COVID-19 hospital admissions from April 6, 2020 to February 7, 2021, was obtained 

from the UK government COVID-19 dashboard39. We defined the end of the first wave (June 19, 

2020), and the start of the second (September 20, 2020), using the same threshold as in Swedish 

data. We calculated the MdAPEs between predicted and observed number of hospitalizations for 

each of the seven English healthcare regions during the first wave (April 6 to June 19, 2020), the 

summer period (June 20 to September 19, 2020), and the second wave (September 20, 2020 to 

February 7, 2021).  

 

Ethical approvals 

The Swedish Ethical Review Authority has approved both the CSSS (DNR reference number 2020-

01803 with addendums 2020-04006, 2020-04145, 2020-04451, 2020-07080, and 2021-02316) and 

CRUSH Covid (DNR reference number 2020-07080, and DNR 2020-04210 with addendum 2020-

06315). In the United Kingdom, the CSS UK has been approved by King’s College London (KCL) ethics 

committee REMAS ID 18210, review reference LRS-19/20-18210. 

 

Data availability  

Primary data in this study were collected by ZOE Limited and provided to CSSS under a data-sharing 

agreement. Additional anonymized data originated from the National Board of Health and Welfare, 

the Public Health Agency of Sweden, Statistics Sweden, and NOVUS. Restrictions apply to the 

availability of these data, which were used under license and ethical approval and are not publicly 

available. Pseudonymized individual-level data are, however, available from the authors upon 

reasonable request and with written permission from the Swedish Ethical Review Authority. Group-

level prevalence estimates calculated from individual-level data, hospitalization data, and cases of 

COVID positivity are available as the Source Data (Figures.zip), which were used to generate Figures 
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2–5. We provide mock CSSS individual level datasets, that can be used together with the code. These 

data do not represent real observations. The Source Data that support the findings of this study are 

available on GitHub at https://github.com/ulfha881/App-based-COVID-19-syndromic-surveillance-

and-prediction-of-hospital-admissions-The-COVID-Symptom-S, or, in archived form, at 40. 

Code availability  

All code necessary for the replication of our results, including reproducibility instructions, is available 

on GitHub at https://github.com/ulfha881/App-based-COVID-19-syndromic-surveillance-and-

prediction-of-hospital-admissions-The-COVID-Symptom-S, or, in archived form, at 40. R and Stata 

codes are provided that will allow readers to generate Figures 2–5 from Source Data (Figures.zip). 

Codes to calculate prevalence estimates and the prediction models are provided, but without 

unmodified individual level datasets, they can't be executed in full. 
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Table 1. Study population characteristics in COVID Symptom Study Sweden.  

 All Women Men 
N (%)1 143,531 (100) 89,545 (62.4) 53,986 (37.6) 
Age, years2 48 (37, 59) 47 (35, 57) 50 (38, 61) 
 ≥65 (%) 22,272 (15.5) 11,641 (13.0) 10,631 (19.7) 
Pregnant (%) .. 1251 (1.4) .. 
BMI, kg/m2 2 25 (23, 28) 25 (22, 28) 26 (24, 28) 
 Obese, BMI ≥30 

kg/m2 (%) 
25,131 (17.6) 16,355 (18.4) 8,776 (16.3) 

Current smoker (%) 9,291 (6.5) 6,650 (7.4) 2,641 (4.9) 
Cardiovascular disease (%) 6,950 (4.8) 3,100 (3.5) 3,850 (7.1) 
Antihypertensive medication (%) 23,526 (16.4) 12,168 (13.6) 11,358 (21.0) 
Kidney disease (%) 1,107 (0.8) 594 (0.7) 513 (1.0) 
Diabetes mellitus (%)  
 Yes, type 1 941 (0.7) 515 (0.6) 426 (0.8) 
 Yes, type 2 3,432 (2.4) 1,423 (1.6) 2,009 (3.7) 
 Yes, gestational 9 (<1) 9 (<1) 0 (0.0) 
 Yes, other 107 (0.1) 60 (0.1) 47 (0.1) 
 Yes, type not 

specified 
838 (0.6) 341 (0.4) 497 (0.9) 

Lung disease (%)  
 Yes, asthma only 13,787 (9.6) 10,022 (11.2) 3,765 (7.0) 
 Yes, both asthma 

and lung disease 
913 (0.6) 664 (0.7) 249 (0.5) 

 Yes, lung disease 
only 

1,389 (1.0) 828 (0.9) 561 (1.0) 

 Yes, type not 
specified 

2,056 (1.4) 1,444 (1.6) 612 (1.1) 

Current cancer (%) 1,476 (1.0) 644 (0.7) 832 (1.5) 
Immunosuppressive medication3 (%) 5,817 (4.1) 3,926 (4.4) 1 891 (3.5) 
Healthcare professional (%)  
 Interacts with 

patients 
15 120 (10.5) 12 816 (14.3) 2,304 (4.3) 

 Does not interact 
with patients 

6,742 (4.7) 5,539 (6.2) 1,203 (2.2) 

Months entering the study (%)  
 April-May 2020 122,765 (85.5) 76,039 (84.9) 46,726 (86.6) 
 June-July 2020 11,016 (7.7) 7,307 (8.2) 3,709 (6.9) 
 August-

September 2020 
2,229 (1.6) 1,455 (1.6) 774 (1.4) 

 October-
November 2020 

5,761 (4.0) 3,638 (4.1) 2,123 (3.9) 

 December 2020-
January 2021 

1,726 (1.2) 1,089 (1.2) 637 (1.2) 

 February 2021 28 (<1) 14 (<1) 14 (<1) 
Number of daily reports2 43 (13, 119) 43 (14, 116) 43 (13, 124) 
Duration of study participation, 
days2,4 

151 (52, 252) 154 (53, 253) 147 (50, 252) 

PCR test5 (%) 43,501 (30.3) 30,702 (34.3) 12,799 (23.7) 
Antibody test5 (%) 29,208 (20.3) 19,216 (21.5) 9,992 (18.5) 
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NDI6,7  0.37 (0.95) 0.36 (0.94) 0.41 (0.96) 
Foreign background,1,7 % 19 (13, 27) 19 (12, 27) 19 (13, 27) 
Population density, inhabitants/km1,7 1,706 (357, 

5,244) 
1,686 (334, 
5,190) 

1,729 (389, 
5,340) 

 

1Row percentage, 2Median (first and third quartile), 3Corticosteroids, methotrexate and/or biological 
agents (treatment of cancer and/or rheumatic disease), 4From first to last daily report, 5At any time 
during follow-up, 6Aggregate data on postal code area level, 7Mean (standard deviation) 
BMI: Body Mass Index; NDI: Neighbourhood Deprivation Index; Foreign background is defined as 
born outside of Sweden and/or with both parents born outside Sweden.  
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Table 2. Median absolute percentage errors (MdAPEs) for prediction of new daily hospitalizations, 
across the first pandemic wave (May 11 to July 3, 2020), the summer period (July 4 to October 18, 
2020), and the second pandemic wave (October 19 to November 29, 2020). The iterative prediction 
model used current regional COVID Symptom Study Sweden prevalence estimates and hospital 
data to predict hospital admissions seven days ahead.  

 

* Stockholm, Västra Götaland, Skåne, Östergötland, Uppsala 

 

 

  

 Median absolute percentage errors (%) 
 First wave 

May 11 to July 3, 2020 
Summer period 
July 4 to October 18, 
2020 

Second wave 
October 19 to 
November 29, 2020 

All 21 regions 
combined 

37.0 48.2 42.4 

Top 5 most populated 
regions * 

25.9 38.6 26.8 

    
Blekinge 41.4 67.6 55.8 
Dalarna 58.5 49.4 47.7 
Gotland 48.3 83.5 49.2 
Gävleborg 29.4 54.1 44.0 
Halland 39.4 49.8 73.4 
Jämtland 31.9 74.5 51.6 
Jönköping 32.4 45.5 28.5 
Kalmar 52.5 53.7 44.7 
Kronoberg 53.4 69.4 52.5 
Norrbotten 40.3 50.3 68.6 
Skåne 24.3 46.8 18.9 
Stockholm 12.2 31.6 16.6 
Södermanland 54.2 37.6 44.8 
Uppsala 40.5 60.1 31.1 
Värmland 41.0 55.1 43.7 
Västerbotten 60.9 48.2 34.2 
Västernorrland 36.3 54.1 42.9 
Västmanland 39.3 49.1 30.2 
Västra Götaland 20.4 35.3 22.4 
Örebro 27.0 46.1 67.9 
Östergötland 55.2 40.2 43.9 
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Figure 1. The prevalence of symptoms reported by participants in COVID Symptom Study Sweden 
with a) a positive PCR test for COVID-19 (n=5,178), and b) a negative PCR test for COVID-19 
(n=32,089), across the study period April 29, 2020 to February 10, 2021.  
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Figure 2. Analysis strategy and data sources 
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Figure 3. National prevalence estimate, with 95% confidence interval, of symptomatic COVID-19 in 
COVID Symptom Study Sweden (main model utilized for real-time prediction estimates, and 
retrospective time-dependent model), combined in a) and c) with retrospective data on daily 
number of new hospital admissions registered in the National Patient Register per 100,000 
inhabitants ≥18 years, and in b) and d) with daily number of new COVID-19 cases registered in 
SmiNet, per 100,000 inhabitants ≥18 years.  

 

 

* Time-point for recalibration of CSSS national COVID-19 prevalence estimate using national point 
prevalence survey findings from the Public Health Agency of Sweden 
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Figure 4. Predicted number of daily hospital admissions seven days ahead across the five most 
populated regions in Sweden ordered by population size. The median absolute percentage errors 
(MdAPEs) of the predictions are denoted for the first pandemic wave (May 11 to July 3, 2020), the 
summer period (July 4 to October 18, 2020), and the second pandemic wave (October 19 to 
November 29, 2020).  
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Figure 5. Predicted number of daily hospital admissions seven days ahead across the seven English 
healthcare regions. The median absolute percentage errors (MdAPEs) of the predictions are 
denoted for the first pandemic wave (April 6 to June 19, 2020), the summer period (June 20 to 
September 19, 2020), and the second pandemic wave (September 20, 2020 to February 7, 2021). 
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Figure 6. Cumulative number of study participants (n total=143,531), and number of daily reports 
from these participants stratified by sex and age (<50 and ≥50 years), in COVID Symptom Study 
Sweden during the study period April 29, 2020 to February 10, 2021. 
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