
MODELING THE WAVES OF COVID-19

IVAN CHEREDNIK †

Abstract. The challenges with modeling the spread of Covid-19
are its power-type growth during the middle stages with the expo-
nents depending on time, and the saturations mostly due to the
protective measures. The two-phase solution we propose for the
total number of detected cases of Covid-19 describes the actual
curves in many countries almost with the accuracy of physics laws.
Bessel functions play the key role in our approach. The differential
equations we obtain are of universal type; they describe momen-
tum risk-management in behavioral psychology, transient processes
in invasion ecology, etc. Due to a very small number of parame-
ters, namely, the initial transmission rate and the intensity of the
hard and soft measures, we obtain a convincing explanation of the
surprising uniformity of the spread in many different areas. This
theory can be used for forecasting the epidemic spread, evaluating
the efficiency of the protective measures and the vaccinations. For
instance, the early projection for the 3rd wave in the USA was very
exact. Projections for India, South Africa and UK are considered.

Introduction. The evidence is strong that the exponential growth of
the total number of detected infections of Covid-19, denoted by u(t) in
this work, can be detected only during short periods. This is in any
countries and especially when the middle stages are considered. The
corresponding curves are in fact of power type: u(t) ∼ Ctc in terms of
the time t from the beginning of the current wave for some C, c. The
parameters c, C heavily depend on time; the exponent c approaches 1
near the turning point of the spread, and the magnitude C becomes
small near the saturation. Since the epidemic is far from over, the
saturation here is of technical nature. Generally, it is followed by a
period of modest linear-type growth of the total number of infections.

Methodologically, we consider epidemics as ”invasions”, and focus
on ”transiencies”, momentum managing the epidemic in this context,
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2 IVAN CHEREDNIK

which approach results in a very exact modeling of Covid-19. This
is actually similar to [Has]: ”The question of interest was the time
course of the epidemic, rather than the final state, which is always one
where the disease dies out”. The ”predator-pray” system for us is when
the protective measures (including self-imposed ones) play the role of
”predator”, and the ”pray” is the number of infections.

This is different from the SIR-type models, applicable mostly to the
initial periods of exponential spread and to final stages of epidemics.
The SIR model was suggested in early 20th century. Since then, it
was developed, but the exponential growth until the herd immunity
is approached remains its essential feature. As we will show, the as-
ymptotic periodicity of Bessel functions is absolutely relevant here.
Generally, Bessel function and processes are important in mathematics
and physics, but they were not employed for epidemics and in invasion
ecology as far as we know.

Our approach seems promising in ecology. More specifically, Bessel
functions can presumably describe various continuous 2-species mod-
els. Following [Has], the discretization, different time-scales, 3-species
models are natural further steps. See also [HL, LPP]. Generally, basic
hypergeometric functions and their variants are expected to occur.

The discretization will be discussed only a little. We also do not
consider in this paper the concept of Momentum Risk Taking from
[Ch2], somewhat similar to Kahneman’s ”thinking-fast”, which can be
considered as a behavioral counterpart of the ”transiencies” in ecology.

The most ambitious here are the expectations that the same ODE
model the processes of momentum decision making in our brain, but
this is very preliminary. The number of neurons involved in the ”mo-
mentum” analysis of some event is restricted here by the ”predator”,
the expected allocation of (very limited) resources of our brain for this
particular task. The asymptotic periodicity of Bessel functions sets
here some limits. Generally, it is surprising that Bessel functions, in-
vented by Daniel Bernoulli long ago, are not one of the main tools
in mathematical theory of epidemics, ecology, behavioral science, and
beyond. Hopefully this will change.

The usage of the basic and current reproduction numbers R0, R is
common for epidemics. The basic one, R0, is defined as the initial
average number of people infected by one person who contracted the
virus; see [CJLP, Co, CD, DHB, He, HL]. However, R can be used
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MODELING THE WAVES OF COVID-19 3

only qualitatively for Covid-19 and other epidemics of power growth:
the formula u(t) ∼ constRt for the total number of infections will stop
working very quickly and cannot be of real help for the forecasting the
spread of epidemics without very significant corrections.

Even R close to 1 would quickly begin to contradict the actual growth
of infections of Covid-19. However, it is not unusual when they were
reported as 2, 0.7, or so in the middle stages of the waves of Covid-19;
they are provided constantly by Robert Kox Institute (for Germany)
and other centers. This is questionable to us.

One of the possibilities to adjust SIR to the power growth of Covid-19
and other epidemics of non-exponential type (there were many such),
is to assume that R ∼ 1 and that it is non-dominant, i.e. to invoke the
theory of resonances. This provides a polynomial growth of the total
number of infections, but such models are unstable mathematically.
Our modeling is different: a combination of the ”local herd immunity”
with the role of active management.

One of the most efficient protective measures is (and always was)
self-restriction of our contacts. Here the disease control centers are
supposed to provide current information on the spread of the epidemic.
This is of course combined with quite a spectrum of other measures.

It was already intensively discussed in the literature that the herd
immunity can influence the spread of Covid-19 well before it reaches
the levels of 70% or so. See e.g. [BBT]. The protective measure play
a significant role in this reduction. However their relaxation can result
in the recurrence of the waves of infection.

We actually make the next step: claim that local herd immunity be-
gins almost from day one and that it results in the power-type growth of
the total number of infections: u(t) ∼ tc. Here the exponent c depends
very much on the time from the beginning of the wave of infections,
which is addressed in our approach via Bessel functions.

Our theory was posted in the middle of April, when the saturation
of the spread was observed only in several countries; they were mostly
in phase one, under mode (A) in our terminology. We also provided
a variant for phase two, under mode (B), when the hard measures are
significantly reduced. The (B)-mode system of ODE appeared really
necessary for correct modeling the spread. Qualitatively, phase two is
the switch to some less aggressive management due to relatively low
numbers of daily infections, including restricting and self-restricting
our contacts.
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4 IVAN CHEREDNIK

For the initial growth u(t) ∼∼ tc of the number of detected cases,
the second phase is described well by u(t) ∼∼ tc/2 cos(d log(t)) for some
d. The passage from the Bessel-type functions u(t) for phase 1 to such
ones can be clearly seen in many countries. Though the Bessel-type
u(t) worked well almost till the saturation in quite a few, including our
forecast for the 3rd wave in the USA.

The spread of Covid-19 in the USA was mathematically quite a chal-
lenge for us; the results of our prior efforts are systematically reported
in [Ch1]. The first wave in the USA went through several stages, more
than with any other countries we considered. Our understanding is
that it was so mostly because the hard protective measures were con-
stantly relaxed in the USA on the first signs of improvements, well
before the actual saturation. This is in contrast to Europe and several
countries in Asia. It was somewhat similar in UK, but it eventually
reached phase 2 and the saturation of its first wave.

The costs and consequences of hard measures, especially lockdowns,
are huge. However the saturation due to the hard measures is of un-
stable nature and the recurrence of the epidemic is quite likely if they
are reduced or abandoned. Our theory generally provides the way to
evaluate the efficiency of protective measures and employ them prop-
erly, but this is quite a challenge even if advanced mathematical means
are used. See e.g. [FRAF].

Prior approaches. There is increasing number of works where the
power growth of the total number of infections is considered for mod-
eling Covid-19. Let us mention at least [Ch1, MBS, MH, TKH].

Let us begin with [CD] (well before Covid-19). An ambiguity with
the definition and practical calculation of R0, R is discussed there: ”It is
reassuring to know, however, that the sign of R0−1 is independent of the
decomposition used and that the prediction of exponential growth or
decay is therefore correctly made by any of the counting schemes.” This
is our impression too: the sign of R−1 is what is mainly used practically,
not the exact value of R (calculated by some simple formulas). We note
that the spread is mostly assumed of exponential type in [CD]. Let us
quote: ”As far as we know, little can be said in general about the
exceptional case that R0 is not strictly dominant”.

In [MBS], the authors comment on the power growth of the spread
of Covid-19: ”the nature is full of surprises”. In [TKH]: ”this new
contamination regime is hard to explain by traditional models”. In our

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258969doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258969
http://creativecommons.org/licenses/by-nc-nd/4.0/


MODELING THE WAVES OF COVID-19 5

one: ”power law of epidemics must be the starting point of any analysis
if we want our mathematical models to be up to date”. See also [Ray]
and works mentioned there concerning a potential usage of small-world
interaction network, where individuals are assumed to contact (mostly)
local neighbors and have occasional long-range connections.

In a different direction, paper [BBT] and some other works suggest
that the levels of herd immunity sufficient to impact the spread of Covid-
19 can be significantly lower than the ”classical” 70% or so: as low as
40% in some areas due to the population heterogeneity. From this
viewpoint, we make the next step in this direction, which seems quite
natural. Our starting assumption is that local herd immunity shapes
the spread from the very beginning of epidemics and quickly reduces
its exponential growth to the power one. This is related to the concept
of small-world.

Spatial modeling. This approach is actually similar to the one via
”small-world”. The graph of contacts, especially geographically re-
lated ones, is the key for spatial modeling. For instance, Fig. 8 in
[BP] shows the initial spread of Covid-19 in Germany, which is natu-
rally related to the geographic locations. The authors change there the
SEIRD model (susceptible- exposed- infected- recovered- deceased) to
SEIQRD by adding the quarantined compartment. Obviously quaran-
tines and travel restrictions are important to model epidemics. See also
Fig. 2 from [KBLK] (Germany too). The population heterogeneity is
an important consideration here.

The challenge is to produce meso-scale forecasts, with specific infor-
mation and for some concrete locations. See e.g. [JCO] (for Texas).
The total number of detected cases and other general data for the whole
country are insufficient for those in charge of practical managing the
epidemic. Partial differential reaction-diffusion equations are used in
[JCO]; see also [VLAB].

Classical methods ”least-squares”, ”Bayes”, ”k nearest neighbors”,
and various statistical tools can be used for ”meso-forecasts”. Deep
machine learning is a possibility here (which we will not touch upon).
AI-systems generally do not help much with theoretical understanding
the processes. There are too many parameters and the uniqueness of
the optimal ones is not granted. However they ”almost always” provide
satisfactory projections. ODE, PDE, SDE are not strictly necessary
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6 IVAN CHEREDNIK

for machine forecasting, but they are generally in terms of meaningful
parameters, which can be of importance theoretically.

Surprisingly, the dimension of the graph of contacts is basically suffi-
cient for forecasting the number of infections in sufficiently large areas:
states, regions. This is our parameter c; the total number of infections
is then ∼ tc at some early stages. This may hold for small areas, and
even for the viral load in infected individuals (at the middle stages), but
this is a macro-phenomenon in this paper. The uniformity of the curves
of total numbers of detected infections in so many so different coun-
tries is still mysterious to us, though we think that we found proper
mathematical tools to address this.

Power growth. The main problem with modeling Covid-19 appeared
actually not the power growth itself, ”power law of epidemics”, a start-
ing point for us. This alone is insufficient for forecasting. Under-
standing the saturation is the key challenge for modeling epidemics.
However, we must note here that the power growth of the number of
infections is not commonly accepted, in spite of ample evidence during
the Covid-19 pandemic.

Practically, the exponent c and the corresponding scaling coefficient
C heavily depend on the time passed from the beginning of the corre-
sponding wave of the infection. An exact mathematical model of this
time-dependence is necessary here, which was proposed in [Ch1] using
the Bessel functions.

For instance, the approach of [MBS] to the power growth was of
experimental kind. The corresponding exponents depend very much
on the considered periods. So the data in Figure 1 in [MBS] and in
similar papers mainly show qualitatively that the growth is no greater
than power. However the latter is quite convincing!

The parameter c we operate with is quite different from their expo-
nents; it is for the whole period of the wave, even including the 2nd
phase (where no Bessel functions are used). We mention that math-
ematically, the authors used the SEIR model (susceptible- exposed-
infectious- removed), which does not result in the power growth; how-
ever, ”small world” is mentioned there as a possibility.

Paper [TKH] is based on the Poissonian small-world network. This
approach results in the linear growth (c ≃ 1) of the number of in-
fections. The linear growth is indeed present indeed near the turning
points of the curves of total numbers of infections, but it is far from

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258969doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258969
http://creativecommons.org/licenses/by-nc-nd/4.0/


MODELING THE WAVES OF COVID-19 7

linear anywhere apart from these middle portions. The explanation of
the linear growth and the saturation in [TKH] is very different from
what we proposed in [Ch1] and present in this paper.

Among many confirmations of the power growth of the total number
of infections of Covid-19, the period 3/20-10/7 (2021) in India is very
convincing; see Fig. 9. Here u(t) = const tc for c = 3.65 is practically
exact (almost without modifications) for the total number of detected
cases in India for a very long period: for at least 5 months (!).

In this figure, the main parameters were determined on 08/03. This
forecast was posted on 10/07 (2021); to expire on 11/06 (the maximum
of the u-function). It matched very well the actual curve of detected
cases. This was based on our usage of Bessel functions. Here and
almost in any countries, some linear-type growth is expected after the
top of the Bessel-type curve u(t), which can be seen in the graph for
India after 11/06. In our theory, this period is described by the formula
for mode (B); this is phases 2 in our terminology (for any waves).

Saturation due to hard measures. For us, the saturation, followed
by some linear-type growth of the total number of infection, is due to
protective measures, mostly the hard ones. They are those imposed by
authorities in charge, but self-restrictions are equally important here.
The key is detection-isolation-tracing, which includes closing the places
where the spread of infection is the most likely. The societal cost of
hard measures is huge, but they proved to reduced the spread efficiently.
Mathematically, the vaccination is of this type too, a very hard measure
by any standards.

It is not disputed that the saturation of the first waves of Covid-19
was not due to the herd immunity. The latter probably requires about
40%-60% (smaller than ”classical” 70%) of all susceptible population
to be infected and recovered [BBT]. It was far from these levels during
the first waves. Thus, the saturation mechanisms of SIR-type models
are not applicable here, at least for the 1st and 2nd waves.

The timing and the intensity of the second waves clearly confirm
the validity of our approach to modeling, based on the prime role of
protective measures, mostly the hard ones. Recurrence of epidemics is
quite frequent; see e.g. [HL]. However the second waves of Covid-19
began unusually quickly (for epidemics), sometimes even on the top of
the unfinished first waves, as it happened in the USA. The relaxation
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8 IVAN CHEREDNIK

of hard measures closer to the end of the first and further waves seems
the only logical explanation of such sequences of waves.

In 2020, the summer vacations (and closed schools) in Western Eu-
rope were a clear instance of (broadly understood) hard measures.
They did reduce the spread. However, at the end of August, the second
waves began practically everywhere in Europe. Similarly, the number
of new detected infections began to grow quickly (again) in the USA
from the middle of September (2020).

Mathematically, our exponent ”c”, which we call the initial trans-
mission rate, appeared increasing from the first to the second waves in
many countries. This parameter is one of the main on our theory; it
combines the virus transmissibility strength and the number of con-
tacts in the areas at the beginning of the current wave of the infection.
Thus, by reducing the protective measures, c can be expected to be
essentially back to its levels in the beginning of the epidemic, though
with a tendency to increase. The increase of c from the 1st wave to
the 2nd and the 3rd is related to the general reduction of Covid-related
restrictions (including our own behavior). The new strains of Covid-19
contributed too; its evolution is of obvious importance.

The second key parameter of our theory, the intensity a of protective
measures, dropped very significantly for the second waves, which was
expected. The intensity of the hard measures during the 1st wave was
difficult to sustain during the next waves.

Qualitatively the duration of the wave is 1√
a
; quantitatively, Bessel

functions must be used here for exact modeling. So, mathematically,
we essentially repeat the first waves, but now with significantly lower
levels of hard measures, longer periods of intensive infections, and
higher magnitudes of the curves of total numbers of detected infections.
Though, the example of 2 waves in India is somewhat exceptional.

Power Law of Epidemics. With such complex processes as epi-
demics, there can be of course multiple factors contributing to the
power growth, biological ones included [CLL]. The ”justification” from
[Ch1] goes as follows. First, we assume that infected people mostly
transmit the disease to their (susceptible) neighbors, and that the pop-
ulation is distributed uniformly. The second assumption is that the
wave of the infections expands linearly in a proper graph of contacts.
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MODELING THE WAVES OF COVID-19 9

The third assumption, the principle of local herd immunity, is that peo-
ple ”inside the infection zone” do not transmit the disease because they
are surrounded by those already infected or recovered, i.e. the border of
this zone mostly contributes to the spread of this disease. This readily
gives that u(t) ∼ t2 or greater (in the absence of protective measures).
Indeed the lowest c we observed was c = 2.2 (the 1st wave in the USA).

People from infected zones do shopping, travel, visit friends. So the
higher dimensions are needed to imbed the graph of contacts into some
RN providing that the geometric distances between points representing
people are essentially the numbers of links between them, i.e. that
these distances reflect the intensity of the contacts.

Upon this embedding, we assume the uniform distribution of the
points in RN representing people, and the linear spread of the disease
in RN . This is basic physics. Then, indeed, u(t) ∼ Ctc, where c is the
”dimension” of the image of this graph, a number from 2 to N .
Next, we represent such u(t) as a solution of the differential equa-

tion du(t)/dt = cu(t)/t. This is standard when we need to add ”ex-
ternal forces”, which will be protective measures. We argued above
that the exponential growth is generally unsustainable. However the
power growth is unsustainable long term too. This will be ”corrected”
as follows.

Adding protection. Combining the initial power growth of the to-
tal number of detected infections u(t) with the impact of protective
measures we obtain the following two systems of differential equations:

{du(t)

dt
= c

u(t)

t
− p(t),

dp(t)

dt
= a u(t)

}
;(1) {du(t)

dt
= c

u(t)

t
− p(t)

t
,
dp(t)

dt
=

b

t
u(t)

}
.(2)

Here t is the time from the beginning of the intensive growth of
infections, not always the very beginning of the corresponding wave of
Covid-19 but sufficiently close to it. System (1) describes the impact
of hard measures under the most aggressive response to the spread.
The second system describes the impact of the soft measures: some
travel restrictions, wearing the protective masks and social distancing
are typical. We called these two modes (A) and (B) in [Ch1, Ch3].

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258969doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258969
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 IVAN CHEREDNIK

When a = 0, d = 0, we obtain the power growth u(t) ∼ Ctc; so c can
be measured experimentally during the initial stages of Covid-19 and
is supposed to be the same for (1) and (2). Mostly it was in the range
2.2 ≤ c ≤ 2.8 (wave 1), but reached c = 4.5, 5.5 in Brazil and India.

There is a variant of these systems, when the second equation in
(1) is replaced by that from (2), called the transitional (AB)-mode in
[Ch1]. It modeled reasonably the spread in the USA, UK, and Brazil,
but the usage of (1) and (2) in our two-phase solution appeared sufficient
for many countries without mode (AB).

The protection function p(t) for (1) is basically the number of pre-

vented infections. More exactly, p(t) =
∑

i(t − ti) ≃ a
∫ t

0
u(τ) dτ ,

where the sum is over all infected individual isolated at the moments
0 < ti < t for some constant a, the intensity of ”isolations”. We as-
sume that if not isolated, this group of people would contribute p(t) to
du(t)/dt (the transmission rate is taken 1 for them). For (2), p(t) ∼
(the number of infected people wearing the masks before t), and, simi-
larly, for other (self-)restrictions.

SIR-type modification Let us touch upon the modification of system
(2) under the assumption that u(t) is bounded. Assuming that u(t) <
1, we multiply the right-hand side of the 1st equation by (1 − u(t)),
which models the interaction of infected individual with the remaining
(susceptible) ones. We obtain:

d u(t)/dt = (1− u(t))(
c

t
u(t)− 1

t
p(t)).

In the absence of p(t), it is a well-known logistic equation, with the
following modification: the interaction is proportional here to 1/t.

The 2nd equation remains unchanged. The resulting system can be
solved numerically. It is not clear whether the corresponding solutions
are more relevant than those for the original system (2). For the fol-
lowing modification of the 2nd equation, this system can be readily
integrated: dp(t)/dt = b d u(t)/dt. One has:

u(t) = (β +Btr−β)/(r +Btr−β), r = c− b > 0,

p(t) = bu(t) + β, where 0 ≤ β < r, B ≥ 0.

If B > 0, then u(0) = β/r, p(0) = cβ/r, u(∞) = 1, p(∞) = b+ β.

Related processes. Both systems are actually from [Ch2], where
they were used to describe the dynamic of the (relative) stock prices
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MODELING THE WAVES OF COVID-19 11

p(t) under news driven momentum trading. The function u(t) there was
the news propagation triggered by some event. It is of power growth in
terms of time t passed from the event, but the exponent c is generally
significantly smaller than 1, especially for short-term trading.

The arguments there were from behavioral finance. This is actually
related; the behavioral aspects of epidemics are of obvious importance
[St]. However financial news fades, and this happens quickly; this is
very different for the spread of epidemics. System (1) described in
[Ch2] profit taking in stock markets; the second one modeled the ”usual”
news-driven investing.

As a matter of fact, these two systems are of very general nature.
For instance, they are supposed to occur in any momentum risk taking.
This concept, MRT for short, is from [Ch2]; it is somewhat similar to
Kahneman’s ”thinking-fast” [Ka]. Managing epidemics on the basis of
the current data is very much momentum. As in stock markets, people
and authorities in charge must react promptly to any change of the
situation. Another example there is tree growth, though there were no
p(t) and the arguments were somewhat different.

It was expected in [Ch2, Ch1], though without biological evidence,
that both systems of equations may describe real neural processes in
our brain. Here u(t) is the number of neurons involved in the analysis
of a particular event at the moment t, counted from the event, and
p(t) is the expected importance of this event vs. other ones and the
corresponding expected brain resources needed for its analysis. I.e.
p(t) is basically the expected allocation of resources, which are very
limited in our brain. We do not know much about the ways our brain
work, but the confirmation of the power laws and related saturations
are solid in the stock markets and, as we demonstrate, in epidemics.

We note that a significant part of [Ch2] is devoted to the discretiza-
tion. Decision-making always requires some action potentials, i.e. it is
discrete by its nature. With epidemics, the usage of ODE worked very
well so far, though potentially the discretization can become important
for our approach too.

Toward discretization. We begin with some basics. Let un be the
total number of infections at the nth moment from the beginning of some
epidemic. Infected individuals transmit the disease mostly during some
initial period, which we will make the unit of time. Let it be 1 week
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12 IVAN CHEREDNIK

(indeed, about 1-2 weeks for Covid-19). The recurrence relation and
the corresponding quadratic equation are:

un = un−1 +R0 (un−1 − un−2), λ2 = (1 +R0)λ−R0.

Here R0 is the initial reproduction number.
We obtain: λ1,2 = (1+R0)

2
±

√
(1 +R0)2/4−R0 = {1, R0}. Thus,

un = C1 +C2(R0)
n for some C1,2. If C2 ̸= 0 and R0 > 1, the growth of

the total number of infections will be exponential.

This is unless the herd immunity is expected to be reached, when a
difference version of SIR is needed. We will not address this here.

Power growth. Basically, there are 3 main mathematical possibilities
to ensure a power growth:

(i) the presence of ”predators”, forces restricting the epidemic spread,
for example, various protective measures,

(ii) when R approaches 1, which results in ”resonances” and can
potentially provide some linear growth,

(iii) when the ”birth rate”, the transmission rate in this context,
becomes inversely proportional to time.

Obviously (i) is applicable: we do fight epidemics. The resonances
and linear growth occur when R ≈ 1, but this is unstable and does
not seem of actual importance for modeling epidemics. We think, a
combination of (i) and (iii) is the key in epidemics.

The spread of any disease is the growth of the ”circles” of those in-
fected; these are combinatorial circles, not geometric ones (in a map of
the affected area). The contacts of infected people are not only with
their immediate neighbors; people work, study, do shopping, travel.
This is the concept of ”small world” and the basis of spatial modeling.
Our main assumption is that the rate of change of the radii of these cir-
cles can be expected constant. However they are not planar ones. The
combinatorial distance is in the graph of connections (links) between
people: ”your co-worker” (the distance is 1), ”a family member of your
co-worker” (the distance is 2), and so on. The geographic connections
are of course important here, but there are other links too.

The individuals at the frontier of such a circle transmit the disease
the most because:

(a) they are the ”latest” and therefore in their most infectious stages,
(b) people inside the circle are ”surrounded” by those with immunity.
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MODELING THE WAVES OF COVID-19 13

We assume that the infected people ”inside the circle” contribute to
the transmission of the disease significantly smaller than those at its
boundary. Then the circle of infected people can be presented as a ball
of dimension c; accordingly, the growth of un will be ∼ nc. Here c can
be any positive number, not only an integer. For instance, c ≈ 2 if
our contacts are mostly with those who live near us, but c ≈ 3.65 in
Fig. 9. We never saw countries with c < 2 during the 1st and the
2nd waves. Recall that c, the initial transmission rate, reflects the virus
transmissibility strength and the number of contacts in the area at the
beginning of the wave.

Disregarding ”maturity”, a period when people are already infected
but not infectious, the number of ”newly infected people” is basically
the area of the boundary of this ”ball”, i.e. the area of the correspond-
ing sphere. Presenting this number as c un−1/(n − 1), we arrive at
the following recurrence: un − un−1 = c un−1

(n−1)
. Asymptotically, nc is a

solution of this recurrence. Let us comment on this.
We have un = (1 + c

n−1
)(1 + c

n−2
) · · · (1 + c)u1. Therefore, log(un) ≈

log(u1) + c
∑n

m=1
1
m

≈ log(u1) + c log(n) and un ≈ ncu1. More exactly,

un ≈ nc

Γ(c+1)
u1 for the Gamma function Γ. When c = r for a positive

integer r: un = u1
1+r
1

2+r
2

· · · 1+2r
1+r

· · · n−1
n−r+1

· · · n+r−1
n−1

=
(
n+r−1

r

)
u1.

Tree growth. We mention that the equation un = un−1+un−2/(n−
2) describes reasonably middle stages of tree growth; here the time-
unit is naturally 1 year and the ”maturity” is set to 1. Its obvious
solution is un = n. Under the initial conditions u1 = 0, u2 = 1, the
corresponding solution tends to n/e. This solution is directly related
to the derangements Dn in combinatorics: un = Dn/(n− 1)!.

The rationale for this model is that the volume of a tree is approx-
imately proportional to r3, when the area of the root system is es-
sentially proportional to r2, where r is the tree radius, which can be
assumed to grow linearly. Thus the nutrition provided by the root sys-
tem to one cubic unit of a tree is proportional to 1/r and to 1/(time).
We omit the experimental support for this approach.

The following recurrence is convenient to model the saturation stage

of tree growth: un = un−1+
(n−1)

(n−2)n(n+1)
un−2. Its solution with the initial

conditions u1 = 0, u2 = 1
3
tends to 2J0(2) ≈ 0.447782 as n → ∞, for

J0(2) = 1− 1 + 1
(2!)2

− 1
(3!)2

+ . . . ; un = n
n+1

is another solution.
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Figure 1. Discrete modeling the number of infections.

Adding protective measures. In the most aggressive variant of protec-
tive measures, we have:

un − un−1 = c
un−1

n− 1
− pn−1, pn − pn−1 = a un−1,(3)

where a is the intensity of ”hard measures”, pn is essentially the number
of people protected from the virus due to the measures until n. So
we subtract the number of ”preventions” from the total number of
infections in the first equation.

This is parallel to the differential case; see (1). The main point here
is that the ”isolation” of one infected individual prevents the number
of future virus transmissions roughly proportional to the time passed
from this isolation.

The second equation is that the increase of pn, which is basically the
increase of the number of preventions, is proportional to the current
total number of infections, which is a very aggressive type of epidemic
management.
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MODELING THE WAVES OF COVID-19 15

Let us eliminate pn from these relations. We obtain that pn−1 =
(1 + c

n−1
)un−1 − un, pn = (1 + c

n
)un − un+1, and

pn − pn−1 = (1 +
c

n
)un − un+1 − (1 +

c

n−1
)un−1 + un

= (2 +
c

n
)un − (1 +

c

n−1
)un−1 − un+1 = aun−1.

Finally, we obtain the recurrence relation:

un+1 = (2 +
c

n
)un − (1 + a+

c

n−1
)un−1.(4)

When a = 0, we have the solution un = n for any c. This is for
u1 = 1, u2 = 2. For a = 0 and arbitrary initial conditions u1, u2,
the ”function” un is essentially proportional to nc, which follows from
(3). When c = 0, this equation is not applicable: pn = un − un+1,
the protective measures, cannot be negative. Recall that un, the total
number of cases, cannot decrease.

Fig. 1 is an example of the calculation with (4), where a = 0.1, c =
2.2, and we begin with u1 = 1, u2 = 3. We must stop at n = 8 (week
8), which is the saturation; the total number of cases cannot decrease.
Near and after the maximum of u, a different recurrence must be used,
which is a difference counterpart of (2), describing mode (B); see also
uB(t) below. We will omit it.

Two-phase solution. The solutions of (1) and (2) we need are

u1,2(t) = t(c+1)/2J± c−1
2
(
√
at),

uB(t) = tc/2 cos(d log(Max(1, t))).

Here Jα(x) =
∑∞

m=0
(−1)m(x/2)2m+α

m!Γ(m+α+1)
are Bessel functions of the first kind;

[Wa] (Ch.3, S 3.1). The solution u1(t) is the main, though the second
(non-dominant) solution u2(t) is important too. The function uB is for

d=
√

b−c2/4 > 0; it will be used to model later stages of the waves of
Covid-19.

Our two-phase solution is the usage of a proper linear combination of
u1,2 for phase 1, till its saturation, and then the usage of uB for phase
2. It proved to be quite exact for modeling the curves of total numbers
of detected infections of Covid-19. For t ≈ 0: u1(t) ≈ tc and u2(t) is
approximately ∼ t. I.e. u1 dominates; it is the key for forecasting.

The second fundamental solution of system 2 is with sin instead of
cos. We note that when the protective measures are modest, we obtain
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16 IVAN CHEREDNIK

D = c2/2 − b > 0. The leading fundamental solution is tr in this case

with r = c/2+
√
D, i.e. tc in the beginning of the spread diminishes to

tc/2 and then remains unchanged. This is of importance, but we will
not touch the range D > 0 in this work.

The following examples of the 1st waves in 2020. mainly follow [Ch1].

Italy: 2/22-5/22. Figure 2. The starting point was 2/22/2020, when
the total number of infections was 17. We subtract this initial value
here and below when calculating our dots, the total numbers of detected
infections. One has:

u1,2(t) = 0.8 t(c+1)/2J± c−1
2
(
√
at), u(t) = u1(t)− u2(t), and

uB(t) =2.85 tc/2 cos(d log(Max(1, t))), c=2.6, a=0.2, d=0.5.

We use here both fundamental solutions u1,2(t) of system (1).

Germany: 3/07-5/22. See Figure 3. We began with the initial num-
ber of total infections 684 (subtracted). This was approximately the
moment when a systematic management began. One has:

u(t) =1.3 (t(c+1)/2(J+ c−1
2

− 0.7J− c−1
2
)(
√
at) for c=2.6,

uB(t) =2.95 tc/2 cos(d log(Max(1, t))), a=0.35, d=0.56.

Japan: 3/20- 5/22. See Figure 4. There was some prior stage; we
subtract 950, the total number of infections on March 20. The curve for
Japan is not too smooth, which is not unusual. However it is managed
well by our 2-phase solution :

u(t) =1.5 t(c+1)/2(J+ c−1
2

− 0.4J− c−1
2
(
√
at), c=2.6,

uB(t) =3.15 tc/2 cos(d log(Max(1, t))), a=0.3, d=0.6.

UK: 03/16-06/13. This country was a challenge for us, though it
”eventually” managed to reach phase 2. Actually the red dots for
UK are modeled better with the transitional (AB)-mode. However, we
prefer to stick to the ”original” u(t) determined for the period till April
15. The two-phase solution is a combination of two phases separated
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Figure 2. Italy: c=2.6, a=0.2, d=0.5.
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Figure 3. Germany: c=2.6, a=0.35, d=0.56.
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Figure 4. Japan: u = 1.5t1.8(J0.8 − 0.4J−0.8)(t
√
0.3).

2 4 2.2

u(t)=u1(t)

UK: 03/16-06/13

4 t       cos(0.465 log(t))
c/2

Figure 5. UK: u = 2.2t1.7J0.7(t
√
0.2).
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Figure 6. The Netherlands: u = 0.5t1.7J0.7(t
√
0.2).

by a linear period, about 10 days. See Figure 5. The formulas are:

u(t) = 2.2 t(c+1)/2 J c−1
2
(
√
at), c=2.4, a=0.2,

uB(t) =4 tc/2 cos(d log(Max(1, t))), d=0.465.

The Netherlands: 03/13-5/22. The u-function here is with the same
a, c as for UK. The parameter d = 0.54 is different from that for UK
(d = 0.465). This could be expected; the process toward the saturation
of phase 2 was slower for UK.

See Figure 6. The number of the total case was 383 on 3/13, the
beginning of the intensive spread from our perspective. The usage of
the dominant u1 appeared sufficient:

u(t) = 0.5 t(c+1)/2J c−1
2
(
√
at), c=2.4, a=0.2,

uB(t) =0.86 tc/2 cos(d log(Max(1, t))), d=0.54.

Further waves. The mathematical similarity of the second and 3rd
waves to the first waves is very remarkable, a strong confirmation of
our approach. The parameters a, c, b though change, which is generally
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in a quite understandable way. We will begin with the 2nd wave in the
Netherlands, from 08/24/2020.

The Netherlands: the 2nd wave, 2020. The second waves were quite
uniform in Western Europe. The Netherlands is convenient to demon-
strate the evolution of our parameters, because the corresponding u-
function does no involve too much of the second, non-dominating,
Bessel-type solution. Generally, both are present.

In December of 2020, almost all Western Europe switched to a linear-
type growth of the total number of detected infections. Later, the 3rd
waves began there on top of the unfinished 2nd waves. The usage
of protective measures became less stable, which can be partially due
to the holiday season and the new strain, Alpha, of Covid-19, which
was on its way to dominance. Within our modeling, the intensity
parameters a diminished anywhere in Europe and the USA vs. those
for the 1st waves, which is a clear indication for us of the significant
reduction of the protective measures.

The similarity of Fig. 7 and Fig 6 is obvious. This is similar to the
qualitative similarity of the 1st, the 2nd, and the 3rd waves in the USA
to be discussed below.

The parameter c significantly increased in the Netherlands: from 2.4
(the 1st wave) to 3.4 (the 2nd). The intensity of the hard measures
understandably dropped: from 0.2 to 0.085. Such changes are actually
common for the second waves in Europe. The parameter d = 0.43
diminished from 0.54. Our projection worked well until the beginning
of December, actually until the pause between the 2nd and 3rd waves.

For the second wave in the Netherlands, one has:

u(t) =0.7 t(c+1)/2(J+ c−1
2
(
√
at), c=3.4,

uB(t) =1.65 tc/2 cos(d log(Max(1, t))), a=0.085, d=0.43.

In Europe and the USA, there were significant fluctuations of the
spread during the winter. Some hard measures were re-introduced in
October-January. The vaccinations began in Spring, certainly very
hard measures. This made and will make us closer to the herd immunity
(for these particular strains). The self-imposed restrictions are of course
of obvious importance here; their reduction can be one of the reasons
for the increase of the initial transmission rates c during the 2nd waves
vs. those for the 1st ones.
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Figure 7. The 2nd wave in the Netherlands.

Japan: the 4th wave (in process). It began in March, 2021. We take
the period 03/15-5/25, 2021. The formula for u(t) is:

u(t) = 0.23 t c/2+0.5
(
J c/2−0.5(

√
at) + 0.53 J0.5−c/2(

√
at)

)
,

where c = 2.8, a = 0.08.

The tendency for c to somewhat increase and for a to drop is similar
for that in other countries we considered. Here we did not create the
control period; all dots are red. It is clear from our modeling that the
1st phase of the 4th wave approaches its end in Japan, and there is a
switch in process to the 2nd phase.

The 1st wave in India: 3/20-10/07-11/20, 2020. This country pro-
vide important mathematical patterns of the dynamic of the spread of
Covid-19. The (clear) first wave was later than in quite a few countries,
but it was with the greatest c we observed. The starting number of
detected cases was 191, which was subtracted.

The power function 0.0125(t+ 0.07)3.65 gave a surprisingly good ap-
proximation for more than 5 months; see Fig. 9. The parameter c
began to decrease much faster in other countries. Obviously, the size
of population is a factor here. This unusual stability the exponent can
be also linked to a relatively low level of the active management in this
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Figure 8. The 3rd wave in Japan.

country during the first wave. Of course the density of the popula-
tion (which is huge in many parts of India) and the general number of
contacts are very significant factors too. This is in India and anywhere.

Such a clear power growth is a very convincing argument in favor of
the power law of epidemics. It is like this can be seen in all countries.
It was mistakenly called exponential in some publications, which was
of course not the case.

In Fig. 9, the parameters were determined around 08/03. Generally,
the parameters determined before the turning point of the curves of total
cases must be considered conditional, though we did it successfully in
several cases before these points. The forecast posted on 10/07 was
that the curve of the total number of detected infections would reach
its technical saturation on November 6 with the number 8.25M of the
cases. It matched the actual number of cases well.

As always, a linear-type growth (mode (B)) is expected after the
top of the Bessel-type curve u(t), which can be seen in the graph. This
period is described by uB. The parameter c is the same for phase 2 as
it was for phase 1 (in the Bessel-type u(t)). Also, uB begins from the
starting point of the wave: ”as if it were no 1st phase”.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258969doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258969
http://creativecommons.org/licenses/by-nc-nd/4.0/


MODELING THE WAVES OF COVID-19 23

0 5 10 15 20 25

200

400

600

800

03/20-

(main parameters)

Inidia:

8 3-  (blue)
10/07-11/20(black)

Forecast: 

at day (11/06)

11/06

total cases

coincide 

with  the

forecast

till 11/06

Figure 9. India: 3/20-10/7, c=5.75, a=0.035, C=0.55.

We omit uB for India. Let us mention here that our computer fore-
casting programs are for the 2nd phase only. They find the best uB

(from point 0) approximating the last 20 points. See below.
Here y =cases/10K; similarly, y is the total number of cases divided

by proper powers of 10 in the other charts we will consider. Say, divided
by 100K for the USA. The x-axis is always time in days from the
beginning of the curve. The red-blue-black dots give the corresponding
actual total numbers of the detected cases. The u-function for India is:

u(t) = 0.55 tc/2+0.5
(
Jc/2−0.5(

√
at)+0.2J0.5−c/2(

√
at)

)
,

where c= 5.75, a = 0.035. It matched very well the actual numbers of
cases till the middle of December (till the 2nd phase of the 1st wave).

The 2nd wave in India: 03/25-05/25, 2021. The corresponding u-
function is

u(t) = 15 t c/2+0.5
(
J c/2−0.5(

√
at) + 0.4 J0.5−c/2(

√
at)

)
,

where c = 2.85, a = 0.14.

We note that the parameter c, which is the key, became smaller than
during the 1st wave in India, though there is a somewhat greater con-
tribution of the second solution u2, the term 0.4J0.5−c/2(·). Generally,
this term affects C, but does not influence much c, a. Its ”role” is to
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adjust better the early stage of the wave. At later stages J0.5−c/2 be-
comes negative. This is why C must become greater in its presence
with positive coefficient; this term was 0.2J0.5−c/2(·) for the 1st wave.

The coefficient a for the 2nd wave is quite similar to those for the 1st
waves in Europe, better than those for further waves in Europe and the
USA. Recall that the duration of the wave is qualitatively proportional
to 1/

√
a; he duration of the 2nd wave in India was smaller than that

of the 2nd-3rd waves in the USA and Europe.
The coefficient c coincides with that for the 3rd wave in the USA;

it is much smaller than the one for the 1st wave in India, which was
5.75. Generally, this means that the population of India reacted faster
(reduced the number of contacts) when the 2nd wave arrived. The self-
imposed restrictions are very efficient hard measures. Biologically, the
strain became more virulent. For instance, the likelihood increased dra-
matically for the whole family to become infected if one of its members
is infectious vs. the 1st wave according to Indian medical officials.

We conclude thatmuch greater number of detected cases is obviously
related to the jump of the magnitude C. This is generally simply a
scaling coefficient. However, when comparing different waves in the
same country, it contains valuable information. Our theory results in
the following output: between the waves, the virus in India acquired
significantly greater ability to penetrate practically all strata and age
groups of this very large and diverse country.

The control period was until 06/26/2021. The accuracy of the Bessel
part of our 2-phase solution was very high. As it was with many coun-
tries, the first phase smoothly switched to the 2nd one (mode (B)).
The formula for the 2nd phase is : uB(t) = 20.1tc/2 cos(0.53 log(t)).

In the USA and Europe, the changes between the first 2 waves
were mostly due to the relaxation of the hard measure (including self-
restrictions), i.e due to a very significant drop of the coefficient a. Some
increase of c was of the same origin. However in India, c diminished and
a increases, so the virus itself evolved: became a ”broader one”. Gen-
erally, the changes of c, a, C can be used to analyze the trends in the
virus’s evolution. Though they are very much linked to our response
to the threat in our modeling.

USA: waves 2 and 3. We use them heavily to adjust the forecasting
component of our theory, especially the 3rd wave. The latter was used
for (relatively) long-term forecasting, which appeared quite possible.
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Figure 10. India: 2nd wave, c=2.85, a=0.14, C=15.

0 2 4 6 8

50

100

150

Figure 11. India: 2-phase solution until 06/26/2021

The 2nd wave in the USA: 06/16 - 9/12, 2020. The two-phase so-
lution worked well for the second wave in the USA. The accuracy is
comparable with what we had above for the first waves in Japan, Italy,
Germany, the Netherlands and UK. Upon subtracting 2.1M , the second
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Figure 12. 2-phase solution for the 2nd wave in the USA.

phase matched well the following functions:

u(t) =3.4 t(c+1)/2(J+ c−1
2

+ 0.6J− c−1
2
(
√
at), c=2.65,

uB(t) =4.1 tc/2 cos(d log(Max(1, t))), a=0.06, d=0.435.

We note that the initial transmission rate was c = 2.2 for the USA
during the first wave. The parameters c, C and 0.6 in the first formula
were determined for the period marked by red dots; the black dots
form a control period. See Figure 12. The projected saturation for uB

is given by the formula tend = exp
(
1
d
tan−1( c

2d
)
)
. Numerically, tend =

17.8463, which is 178 days from 06/16: December 11, 2020. Though
this did not materialize since the USA entered the 3rd wave in the
middle of September.

USA: the 3rd wave, 2020-21. This wave deserves a detailed analy-
sis. It was used for long-term forecasting, which we will describe in
consecutive steps, following the corresponding projections.

This wave was on top of the unfinished 2nd wave, so we subtract
the starting total number of infections, which was about 6.9M on 9/24,
when our curve begins. The red dots used to determine the parameters
of u(t) were taken from 9/24 to 11/17/2020, when the 3rd wave in the
USA still did not reach the turning point.
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Figure 13. The 3rd wave in the USA.
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Figure 14. The 3rd wave in the USA.

The 1st control period (black dots) was till 12/13. The match was
already very good, See Fig. 13. However the accuracy became even bet-
ter in March. Possibly some early signs of herd immunity contributed.
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Figure 15. The end of the 3rd wave in the USA.

The formula for u(t) for the 3rd wave was as follows:

u(t) =5.5 t(c+1)/2(J+ c−1
2

+ 0.65J− c−1
2
(
√
at), for c=2.85, a=0.02.

The new c increased from c = 2.65 for the 2nd wave to 2.85 in a way
similar to the passage from the 1st wave to the 2nd. The parameter a
significantly dropped from a = 0.06 for the 2nd wave to 0.02, 3-fold.
We note that a = 0.06 was about 1/3rd of a = 0.2 for the 1st wave, so
the same tendency persisted. Recall that the duration of phase (A) is
qualitatively ∼ 1√

a
.

The projection was 03/05/2021 for the saturation of the 3rd wave
in the USA. It was supposed to be followed by some period of modest
(essentially linear) growth under the (B)-mode (the second phase).
This projection was posted on 11/17/2020; see Fig. 14. The match
during the first control period (black dots) was good.

The next control period is presented in Fig. 15. It shows that the ac-
curacy of this forecast appeared even better in March. This is remark-
able, because the previous waves in the USA were with some ”unusually
long” linear-type periods in the middle. Forecasting was more difficult
with the USA than in almost any other countries we considered. Note
that the massive vaccination began in the USA somewhat later, after
the saturation on 03/05/2021: mostly from the end of March.
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Figure 16. South Africa: 05/04-06/26, 2021 .

The 3rd wave in the USA was followed by some break until the 4th
wave began. The 4th one was exceptionally short (for the USA). The
country already reached the first stages of the herd immunity (for the
current strains) in the middle of March, and the vaccination program
contributed very much, as it happened in Israel, UK, etc. The current
cycle of this pandemic in the USA and in quite a few other countries
is hopefully on its way to the end, though this is of course only for the
strains of Covid-19 that dominate now and with various reservations.
The waves were ”back-to-back” so far with Covid-19, so the cycles can
be without significant breaks between them too.

The spread of Delta-strain in ZAF and UK. Let us discuss conditional
projections for the latest waves in South Africa (ZAF ) and UK.

Fig. 16 and 17 provide the projections for ZAF based on the data
until 06/26/2021 and until 07/16/2021. The latter date is presumably
after the turning point for this country. For UK, the projections we pro-
vide are well before the expected turning points. Obviously such early
projections are subject to many factors, including the general political
and economic situation. There are of course several emerging factors
in both countries that can predictably make the spread greater than
our projections, but we try to produce them in a formal mathematical
manner (the algorithms will be made available later).
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Figure 17. South Africa: 05/04-07-15, 2021 .
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Figure 18. UK: 05/19-07/15, a possible lower bound.

The curves of the (actual) total number of cases for South Africa and
UK were with 2 clear stages, approximately before and after 06/20/2021.
The most probable explanation of these stages is that the Delta-strain
established its dominance during the first segment, so the other strains
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Figure 19. UK: 05/19-07/15, a possible upper bound.
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Figure 20. UK: 05/19-07/15, focus on the 2nd stage.

reduced its spread. Also, it takes time for any strain or virus to ”find
optimal niches”. Actually, we did not observe such transitional stages
in the prior Covid waves (before the spread of the Delta-strain).

The corresponding evolution of the parameter c was as follows: from
c = 2.65 calculated for the data until 06/09, then to 2.95 calculated for
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Figure 21. UK: 05/19-07/15, the power approximation.

the data until 06/26, and to c = 3.0 determined for the period before
07/15. Interestingly, these values of c appeared coinciding for both
countries, ZAF and UK.

For UK, we provide three Bessel-type u(t) obtained for the period
05/19-07/15: Fig. 18, 19, 20. The first 2 are with the upper and lower
projections based on the best approximations for this period (they are
with c = 3.0). The 3rd, Fig. 20, is with greater focus on the second
stage (after 06/20); it appeared with c = 3.1, the worst case scenario.
We note that the vacations in July, 15 - August are generally supposed
to diminish the spread in UK, but there are other factors too.

The corresponding power approximation matches the real numbers
of detected cases perfectly from 06/20-07/15. It is given by 10(t/2.8)2.9;
see Fig. 20 and Fig. and 21 for some higher resolution.

According to our theory, the power growth of the curves of total
numbers of detected cases is an indication that there is insufficient
”resistance” against the spread of the infection (for all cases, including
mild and asymptomatic). The ”resistance” includes all kinds of the
protective measures, the presence of other strains and so on. The
power growth persisted in UK during the first 2 months (at least) in
spite of the vaccination, though obviously it could be worse without it:
the Delta-strain is very infectious.

The comparison of UK and ZAF indicates that the impact of the
vaccination on the total (asymptomatic, mild and severe) number of
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infections is weaker than it was expected; this is in spite of very high
efficacy of the employed vaccines against the Delta-strain. It is indica-
tive us that the c-parameters, the transmission coefficients, coincide in
both countries. However, the vaccines do what they are supposed to
do: effectively reduce the number of severe cases.

Generally speaking, the parameters and projections calculated before
the turning points are not too reliable. They are quite sensitive to
fluctuations of the data and there can be ”stages” of different nature
during phase 1. Though the projections for the durations of the 1st
phase (governed by Bessel functions) are more reliable than those for
the corresponding magnitudes.

Recall that the dots, red (when the parameters were determined) and
black (the control periods), present the corresponding total numbers of
detected cases diminished by that at day 1. The ”forecasts” for UK and
ZAF are provided in terms of the absolute total numbers of detected
cases (from the very beginning of the epidemic).

Auto-forecasting. We mostly did this for the USA and Western Eu-
rope, but any countries can be ”processed” during their second phases
of any waves, which under mode (B). Currently, there is no software
for the 1st phases, i.e. the periods ”under” the Bessel-type modeling.

The USA: from 03 to 05, 2020. We will provide the automated fore-
cast for 50 states based on the period 03/17-05/27; the data were from
https://github.com/nytimes/covid-19-data . Every state was pro-
cessed individually with the interaction; see [Ch1]. Our approach to
incorporating the interaction is of independent interest: we allow the
curves for individual states to become decreasing as far as the total sum
increases, which is motivated by physics.

Our program focuses on the last 20 days; however, the match with
the total number of detected infections appeared perfect almost from
03/17/2020. See Figure 22 and compare it with Fig. 24.

Such a high level of stability is rare in any forecasting, which made
the chances good for reaching the saturation around 9/19/2020. This
was our projection based on Fig. 22 and on the assumption that the
level of protective measures would remain essentially unchanged. Recall
that the saturation for phase 1 is of technical nature: it does not mean
the end of the wave. Normally, it is followed by a period of modest
linear growth of the total number of infections, which we model using
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Figure 22. USA, the sum of the curves for individual states.

uB(t); this is the 2nd phase. Also, there are always remaining and
new clusters of infection and no country is really isolated. In some
countries we analyzed, mode (A) alone was almost sufficient to model
a wave until its end in several countries. However mode (B) (and the
second phases) were mostly present,

Concerning the projection 9/19/2020 in the USA, the hard measures
were significantly reduced there at the end of May practically in all 50
states. As a result, the number of states that reached phase 2 dropped
from about 22 at 5/27 to 8 at 7/12 (2020). Then, in the second half of
June, the USA entered the second wave.

Similarly, the program was quite stable for phase 2 for the 2nd wave
in the USA ... before it entered the 3rd wave in the middle of Septem-
ber of 2020. We recall that the program is written for the 2nd phase
only, when constant (daily) monitoring and tuning the process of man-
agement is more relevant. This is the period when the hard measures
are being reduced and the constant adjustment are needed. However a
posteriori, using the data for the whole wave, we never had difficulties
with finding the parameters b, d for the whole second phase.

Europe: summer 2020. The situation was quite stable in Europe
in summer of 2020. We provide in Figure 23 a sample forecast our
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Figure 23. An auto-forecast for Europe as of 7/14 (2020)

automated system produced for Western Europe till the end of July,
2020. It was for 45 countries.

Here and below the curve average is the maximum and the corre-
sponding value of the average of the 9 last curves uB(t) for the country
or the region. I.e. we consider the average of 9 curves we obtain for 9
consecutive days and then determine its maximum. The 9-day average
is the simple average of the corresponding maxima for these 9 curves;
i.e. it is the moving average. The main source of Covid-19 data we
used was: https://ourworldindata.org/coronavirus.

As of July 8, 2020, the forecasts were sufficiently stable, though
Sweden, Poland, Portugal and some other countries did not reach phase
2 at that time. Such stability changed in fall 2020 due to the end of
the vacation periods and the beginning of the school year.

Summer 2021. Fig. 24 provides an auto-generated projection for the
USA as of 06/09/2021. This is without the state-by-state analysis: the
total numbers of detected infections for the whole country are used.
The projections are supposed to be constantly renewed during phase 2.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258969doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258969
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 IVAN CHEREDNIK

The fact that the curve of (actual) detected cases was very well approxi-
mated by our uB(t) for the whole period of 90 days is very remarkable.
Only the last 20 days are used for finding the (current) parameters.
This is a strong confirmation of our two-phase solution. The USA was
in the middle of the intensive vaccination program during this period.
Also, it was already close to the initial levels of herd immunity (for the
current strains) in March-May. The aggressive vaccination program
and continued restrictions of contacts (though significantly relaxed in
May-June) influenced this period.

For Europe during summer 2021, a similar projection is provided in
Fig. 25. As with the USA, a perfect match with the actual data is for
the whole period of 90 days; only the last 20 days are used to find the
parameters so this is an indication of the stability of such forecasts.

The growth of the number of the cases is expected in Fall 2021 due
to the impact of the Delta-strain and the end of summer vacations.
This strain already heavily influenced UK, South Africa and a growing
list of other countries; see Fig. 19, 17.

The Delta-strain can be some transition between cycles. However
more significant modifications and recombinations of the existing strains
are more likely to dominate the next cycle. Really new strains can be
expected to emerge, including those ”responding” to the vaccination
programs.

The situation with Covid-19 remains far from ”normal” in many
countries. However the levels of herd immunity for the current strains
reach sufficiently high levels and there are intensive vaccination pro-
grams in quite a few countries. These factors can be expected to end
the current cycle, but this is of course conditional. Much will depend
on the evolution of the strains of Covid-19 and there are already some
new waves with a potential to trigger a new global cycle, which can
be close-by. The ”classical” seasonal periodicity of waves/cycles is not
really applicable to Covid-19.

Obviously, a combination of protective measures, herd immunity,
and the vaccination programs began to work. According to the latest
data, the hard measures remain the key factor in controlling the spread
of Covid-19; the periodic vaccination of the population is such, but this
alone seems insufficient without other protective measures, including
the self-imposed ones. We did not really observe exponential growth
of the total number of cases (unless during short initial periods), but
unrestricted power growth with exponents c > 2 is very devastating.
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Figure 24. A sample forecast in the USA: 06/09/2021.
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Figure 25. A sample forecast in Europe: 06/08/2021.
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Detection-isolation-tracing, the classical complex of hard measures, re-
mains of great importance even upon the extensive vaccination.

Hopefully we will be better prepared to new cycles of Covid-19, in-
cluding improved mathematical tool for forecasting the spread of epi-
demics, better understanding the uniformity of the waves of the infec-
tions, automated methods for finding the parameters that determine
the spread. The purpose is of course to making solid mathematical pre-
dictions for the durations and magnitudes of the waves of infections.

Summary. Modeling Covid-19 appeared quite a challenge for exist-
ing mathematical methods, which are mostly based on the SID-type
approach, suggested in the early 20th century. The following features
of Covid-19 obviously require new methods.

(1) The curves of total numbers of detected infections are mostly of
power-type for Covid-19, where the exponent diminishes over time.

(2) The saturation of the initial waves of Covid-19 is mostly because
of the protective measures, not due to the herd immunity.

(3) The range and intensity of the protective measures used to fight
Covid-19 are exceptional in the history of epidemics.

These factors are not really new in epidemics, but they do require a
new mathematical theory. The prior approaches appeared insufficient
for modeling the spread of Covid-19. For instance, the power-type
growth of the total number of infections cannot be addressed within
the SID-type models.

Our theory seems the first one when the power growth of the spread
and the active epidemic management, including self-imposed restric-
tions, are considered the major factors. These assumptions result in
differential equations depending only on the initial transmission rate
and the intensity of the protective measures. These parameters make
perfect sense theoretically and practically, and can be measured reli-
ably during relatively early stages of the waves of Covid-19.

The actual graphs of the total numbers of detected cases in many
countries (all we considered) are described uniformly and with surpris-
ingly high accuracy by our curves. The 2-phase solution is a combination
of the Bessel-type curve for phase 1, which is the key in our approach,
and its certain version for phase 2 (in terms of elementary functions).
We note that the corresponding saturations were mostly due to the
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active management till summer 2021. They are of unstable nature: re-
ducing the protective measures may result in the recurrence. Modeling
and forecasting this kind of saturations requires sharp mathematical
tools, which we hopefully provide.

Methods. The starting point of our approach to modeling the total
number of infections during epidemics is the power growth hypothesis,
which has solid confirmations with Covid-19, practically in all countries
(apart of small initial periods). This is without considering epidemic
management; we deduce it from the principle of local herd immunity.

The saturation of the corresponding waves of the spread of Covid-19
within this cycle (at least) is mainly due to the protective measures,
the process of active management of the epidemic including our own
actions. Protective measures are of course not unique for Covid-19,
but their range and intensity reached unprecedented levels. Our model
connects this kind of saturation with the asymptotic periodicity of Bessel
functions, one of the deepest results in their theory.

This is very different from the classical approaches based of SID, SIR,
SIER models and their variants, and the approaches in the neighboring
segments of ecology: invasion and interaction between species. The sat-
uration for us is a dynamic equilibrium between the virus invasion and
our protective measures, including very important self-imposed ones.
This is not because of the classical herd immunity and is actually par-
allel to invasion ecology.

Due to a very limited number of parameters, actually 3 for our two-
phase solution, our model is much more rigid than any other ones. The
curves we obtain match very well the actual graphs of the total numbers
of infections practically in all countries we examined (many). These
parameters are quite meaningful mathematically and epidemiologically.
The key are c, the initial transmission rate, and a, the intensity of hard
protective measures, which can be determined reliably at relatively early
stages of particular waves of the epidemic.

Concerning forecasting the waves, it can be reduced to ”predicting”
c, a, C and the coefficient of the non-dominant solution u2 of (1). The
challenge is to do this at early stages of the waves. We can do this
”manually”, but deep machine learning is natural here.

Our parameters are generally different for different waves, but we
see some patterns here. The second waves are almost always for some-
what higher c and significantly lower a, the intensity of hard protective
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measures. The 2nd wave in India was exceptional: c dropped and a
increased. The number of contacts was reduced faster during the 2nd
wave, much broader than the 1st one, and the protective measures, in-
cluding important self-imposed restrictions, were significantly stronger.
As for the 1st wave, the match with our u(t) was almost perfect.

We obtain a very good match practically for the whole periods of
the waves of Covid-19 in many countries. It is actually surprising for
such stochastic processes as epidemics, and of course this is a strong
confirmation of our assumptions. In spite of various simplifications, it
appeared that equations (1) and (2) capture very well the dynamic of
the waves of Covid-19. We present our motivation for their usage for
modeling epidemics, however the key for this surprising discovery can
be in the universality of these equations.

Since our theory was created and posted in the middle of April 2020,
which was mostly in the middle of the 1st waves of Covid-19, we had
a unique opportunity to test it in the course of epidemics. Namely,
we systematically determined the parameters of our curves during rel-
atively early stages and then tested the corresponding projections ex-
tensively for sufficiently long control periods.

Our usage of control periods is similar to routine testing the qual-
ity of the models used for forecasting share-prices in stock markets,
where no approach can be accepted without real-time runs and care-
fully crafted historic experiments that exclude any ”usage of future” as
far as possible. This kind of ”discipline” is not present in forecasting
the epidemics, at least by now.

The results of checking our theory during the control periods, includ-
ing the outputs of the automated forecasting programs we developed,
are an important part of papers [Ch1, Ch3].

An example of a long term forecast is the 3rd wave in the USA
discussed above. It shows that potentially our tools can be used to
obtain reasonable projections at relatively early stages of the waves.

Conclusion. We demonstrated that Bessel-type functions describe
very well the growth of the total number of detected cases in many
countries. Mathematically, we successfully model the passage from
∼ tc, describing the initial growth of the total number of detected
cases, to ∼ t near the turning point, when the number of new (daily)
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cases stabilizes, and then almost all the way to the saturation of the
current wave. This is mode (A).

At the late stages of the waves of Covid-19, we generally switch to
mode (B), the differential equations describing more relaxed manage-
ment (soft measures begin to dominates); their solutions are in terms
of elementary functions.

Here c is the initial transmission rate, which can be captured at rela-
tively early stages of the waves of Covid-19, though it is more reliable
to determine it near the turning point. It remains the same for both
modes, (A) and (B).

Our differential equations describe the epidemics under active man-
agement, the system of protective measures, where hard measures play
the key role. The self-imposed restrictions on the contacts during the
epidemic are and always were important protective measures. Constant
receiving reliable information on the course of the epidemic by the pop-
ulation is of obvious significance here. The travel restrictions, closing
the places where the spread is the most likely, and the vaccination are
classical state controlled measures.

The saturation due to active protection measures is of unstable na-
ture, unless the herd immunity (for the current strains) becomes a
significant factor. Its forecasting requires an exact mathematical the-
ory, which we try to provide. There will be an endless discussion of the
efficiency of different measures and different management approaches
until verifiable trustworthy mathematical models and the correspond-
ing software are developed and implemented practically.

The verification of any models, including this one, does require al-
gorithms that can be used by anyone, not only by their creators, the
ultimate test of their validity. This is one of the reasons why we wrote
our programs. They are posted in [Ch1, Ch3] and can be used by any-
one to model any countries and regions, though only for the late stages
of Covid-19 so far (mode (B)).

The new theory seems a solid basis for reaching the next level, which
is forecasting. It already describes the curves of total numbers of de-
tected infections with high accuracy and with surprisingly high level
of forecasting and stability of the auto-projections for later phases.
Though forecasting is always a challenge.

Basic parameters. The small number of the parameter we employ
explains well the uniformity of the curves of total numbers of detected
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infections of Covid-19 in many so different countries, as well as the
mathematical similarity of different waves. They are:
(1) the initial transmission rate c, which can be determined at relatively
early stages of the current wave,
(2) the intensity of hard measures a, which become sufficiently stable
near and after the turning point,
(3) the intensity b of the measures during the second phase, which
begins near the end of phase 1.
In contract to c, the intensity of the measures is of course more

time-dependent, but a appeared sufficiently stable for long periods.
Concerning b, it must be adjusted constantly at the later stages, be-
cause no country is really isolated and the management of the epidemic,
including the self-imposed protection measures, becomes more flexible
at these stages, so less predictable mathematically.

The scaling coefficient C of u(t) is adjusted to match the real num-
bers of cases. The coefficient of u2, the non-dominant solution of our
system of ODE, is another parameter. It is mainly responsible for
the ”effects of the second order” and does not seem really critical for
forecasting; the dominant Bessel-type solution u1 is expected to be suf-
ficient for this. There are technical reasons why C increases when u2

is added with a significant positive coefficient: u2(t) becomes negative
for sufficiently large t and contributes greatly for such t.

The coefficient C is generally a technicality, to make the output con-
venient to present as a graph. However it provides valuable information
when different waves of the epidemic are compared in the same coun-
try. An example is our analysis of the 1st and 2nd waves in India.
The whole country was affected during the 2nd wave, when only some
strata of this huge and diverse country were mostly infected during
the 1st wave. The coefficient C dramatically increased during the 2nd
wave there, when the coefficients c, a became similar to those in Europe
during the 1st-2nd waves. The match of our u(t) and the total number
of detected cases was very good with the 2nd waves.

Mathematically, u2 to captures some features of the curves of total
numbers of detected infections, especially during the initial stages. It
can be ”seen” in quite a few countries, though u2 mostly influences the
effects of second order. From the view point of our approach, u1 and
u2, both, could be expected to occur, which was really confirmed. See
[Ch1] for some discussion.
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The fact that we were able to describe such complex stochastic pro-
cesses as epidemics with only 3 basic parameters seems a real discovery.
This worked very well almost everywhere (in all countries we consid-
ered), but it will take time to understand the scope of this new theory
and to begin using it practically. Obviously such a remarkable univer-
sality can have deep roots in general biology and the theory of random
processes. The same system of ODE serves quite a different situations,
including momentum trading in stock markets. It models MRT, mo-
mentum risk-taking. Its ”deduction” is different for epidemics (and in
invasion ecology). The price function in momentum trading is replaced
by the protection function p(t) for (1).

Beyond this paper. Needless to say that the vaccinations makes us
closer to the herd immunity, at least for the current strains of Covid-19.
There are many challenges here [AVTC], and, anyway, the control of
the efficiency of the vaccination programs requires exact mathematical
tools; there are other factors. In our approach, this means measuring
their impact on the parameters, especially on c, the transmission rate.

The current waves of Covid-19 can be hopefully the last for this
particular cycle, assuming some stabilization of the strains involved.
The forecast we posted in November 2020 for the USA and presented
in Fig. 14 was with the expected saturation (of phase 1) on March 5,
2021. Its accuracy appeared very good. The total number of all cases,
detected or not, is of course greater; the impact of herd immunity was
and can be expected at such levels of detected cases. The vaccination
did not play a significant role in the beginning of March, but certainly it
does now (Summer, 2021). This is a major protective measure; however
its success requires forecasting future strains, which is difficult.

Concerning the new strains, presumably about 6 months are neces-
sary for them to reach a significant presence counting from their ”first
appearance”. The latter can be the moment of their creation, which
can be expected at late stages of the prior waves, or when new strains
are ”imported” from other regions. Also, the immunity upon the re-
covery from Covid-19 or upon the vaccination is expected to begin to
fade after about 6 months, which is preliminary too.

Covid-19 demonstrated a robust potential for creating various VOC,
variants of concern. Its ability to evolve resisting the vaccines and the
treatment remains to be seen, but it can be expected to be ample. Ge-
nerally, it can take only several infected individuals where the virus can
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”stay” for 1-3 months to generated many mutations, but fortunately
very few of them are stable and have a chance to reach any domi-
nance. The protective measures greatly restrict their spread (always
did); a mathematical theory of their impact combined with power-law
of epidemics is the purpose of [Ch1, Ch3] and this paper.

Basically, the end of a cycle is when the current strains become less
infectious due to growing immunity, vaccinations, the change of the
season and similar factors. The epidemic can continue between the
cycles in other places, zones, and zoonotic reservoirs, which generally
results in a significant renewal of the strains.

We hopefully approach the end of the 1st cycle in the Northern
Hemisphere within the current dominant strains, though this is far
from certain. The leading factors here are sufficiently high levels of
the herd immunity (not everywhere), the vaccinations (not everywhere
too), and the summer time. This is of course not a prediction. The
new strains of Covid-19 and other biological aspects are of obvious
importance here, which are beyond this paper.

A natural challenge is to understand the formation of waves within
one cycle. Recall that we stop the usage of Bessel functions when the
corresponding u(t) begins to diminish, which is impossible for the total
number of cases our u-functions describe. Then we switch to mode (B)
and use uB(t) till its own maximum.

Given a country, the waves and their periodicity certainly follow some
patterns. However the pauses between them and the parameters c, a, C
fluctuate significantly. If the next wave is due to the relaxation of the
protective measures at the end of the previous one then the problem can
be addressed mathematically: the changes of the main parameters have
some tendencies. However there can be many other factors influencing
new waves, including new strains. Anyway, 2-4 waves (in one country)
are insufficient for modeling their recurrence and the corresponding
evolution of the parameters.

Main practical applications. They seem for modeling individual waves.
Namely, the natural aims are as follow:

(1) Forecasting the duration and the amplitude of the waves of Covid-
19 and similar epidemics of ”power-type”; the main parameters can be
reliably determined near or even before the turning points of the spread.
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(2) Creating software for monitoring the dynamic of the epidemic.
This is especially needed at the later stages of its waves (2nd phases in
our terminology), when tuning the management becomes important.

(3)When comparing different waves in the same country, conclusions
can be made about the changes in the epidemic management (including
self-imposed restrictions), and the changes of the virus behavior.

(4) Extending this theory from modeling epidemics to Invasion Ecol-
ogy, more specifically, to transient processes of the invasion and inter-
action between 2-3 species; applying it to momentum risk-taking.
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