
Date of introduction and epidemiologic patterns of

SARS-CoV-2 in Mogadishu, Somalia: estimates from

transmission modelling of 2020 excess mortality data

Authors

Mihaly Koltai1,2, Abdihamid Warsame1, Farah Bashiir3, Terri Freemantle4, Chris Williams4,

Mark Jit1,2, Stefan Flasche1,2, Nicholas G. Davies1,2, CMMID COVID-19 working group2, Ahmed

Aweis3, Mohamed Ahmed3, Abdirisak Dalmar3, Francesco Checchi1

1 Department for Infectious Disease Epidemiology, London School of Hygiene & Tropical

Medicine, London, United Kingdom
2 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene &

Tropical Medicine, London, United Kingdom

3 Somali Disaster Resilience Institute, Mogadishu, Somalia

4 Satellite Applications Catapult, Didcot, United Kingdom

Address correspondence to: mihaly.koltai@lshtm.ac.uk

Abstract

Introduction

In countries with weak surveillance systems confirmed COVID-19 deaths are likely to

underestimate the death toll of the pandemic. Many countries also have incomplete vital

registration systems, hampering excess mortality estimation. Here, we fitted a dynamic

transmission model to satellite imagery data on burial patterns in Mogadishu, Somalia

during 2020 to estimate the date of introduction, transmissibility and other epidemiologic

characteristics of SARS-CoV-2 in this low-income, crisis-affected setting.

Methods

We performed Markov chain Monte Carlo (MCMC) fitting with an age-structured

compartmental COVID-19 model to provide median estimates and credible intervals for the

date of introduction, the basic reproduction number (R0) and the effect of

non-pharmaceutical interventions in Mogadishu up to September 2020.

Results

Under the assumption that excess deaths in Mogadishu February-September 2020 were

directly attributable to SARS-CoV-2 infection we arrived at median estimates of

October-November 2019 for the date of introduction and low R0 estimates (1.3-1.5)

stemming from the early and slow rise of excess deaths. The effect of control measures on

transmissibility appeared small.

Conclusion
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Subject to study assumptions, a very early SARS-CoV-2 introduction event may have

occurred in Somalia. Estimated transmissibility in the first epidemic wave was lower than

observed in European settings.

Introduction

By May 2021, more than 3.5 million people were confirmed to have died from the COVID-19

pandemic caused by the novel SARS-CoV-2 coronavirus. While the cumulative rate of

confirmed deaths has exceeded 1 per 1000 persons in the United States and many countries

in Europe and Latin America, it has remained one or even two orders of magnitude lower in

most of Africa(1).

While some of this difference can be potentially explained by a lower infection fatality ratio

(IFR) for the entire population due to a lower median age (2–4), evidence suggests that at

least critically ill COVID-19 African patients experience higher, not lower mortality than

elsewhere (5), as plausibly expected due to weaker health infrastructure (6). News reports

(7), studies using seroprevalence (8,9), PCR testing in morgues (10), as well as indirect data

sources such as obituaries on social media (11) point to substantial under-ascertainment of

cases and deaths in low-income countries, potentially ten-fold (suggested by excess

mortality data from Egypt (12)) or even nearly hundred-fold (13) in crisis-ridden regions.

While in high income countries (12) confirmed COVID-19 deaths are approximately in line

with excess death statistics, in many African countries there are no reliable mortality

statistics, precluding the use of excess deaths to infer the true scale of the pandemic.

Additionally, while the first COVID-19 cases in sub-Saharan African countries were

recognised in late February (14) (16th of March in Somalia), there is considerable

uncertainty about the true date of introduction, often estimated to be in January 2020 for

Western Europe (15), or as early as December 2019 according to retrospective PCR on

routine patient samples (16). For these reasons, alternative data sources such as the number

of obituaries(11) and satellite imagery(17) of cemeteries have been leveraged to estimate

the true scale of COVID-19 mortality and its early spread in African and other low- and

middle-income countries.

In this study we used a dynamic transmission model to analyse a time series of excess

deaths in Mogadishu (Somalia) inferred from satellite images of the six main cemeteries in

the city (18). Our aim was to estimate the probable date of introduction of SARS-CoV-2, as

well as the basic reproduction number (R0) and the effect of non-pharmaceutical

interventions.

Methods

Data sources and statistical analysis

Details of the method for inferring excess mortality from satellite images are described in an

accompanying article (18). Briefly, cemeteries in the Banadir administrative region, which

contains Mogadishu, were identified via open source location data and satellite imagery

(OpenStreetMap, Google Earth, GoogleMaps) by a combination of automatic image
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recognition and manual annotation, in addition to key informant interviews and field visits

to identified cemeteries. We identified and analysed six cemeteries (Barakaat 1 and 2,

Calamada, Iskool Bolisii, Kahda, Moallim Nuur). We excluded from the analysis five smaller

private and family-owned cemeteries estimated to account for less than 20% of all burials

because of lack of images and vegetation cover. One cemetery (Calamada) included in the

analysis falls outside of Banadir region limits, but largely caters to Mogadishu residents and

was therefore included.

Sixty-eight archive satellite images from the period February 2017 - September 2020 were

selected on the criteria that they were cloud-free, of high radiometric quality and with a

spatial resolution of 30-40 cm per pixel, were analysed through manual and semi-automated

image processing to extract surface area and number of graves. An exhaustive grave count

by either of these two methods was possible for 40 out of 68 satellite (58.8%) images. For

the remaining images, the number of graves was extrapolated from visible areas or imputed

through a generalised additive mixed model of the association between graves and surface

area. Results for each image were then interpolated and summed across all cemeteries to

yield a single time series of burials for the city.

To compute the baseline (pre-pandemic) crude death rate (CDR), population denominators

for Mogadishu (Banadir region) were estimated using the WorldPop project’s database (19),

using either the 2015 or 2019 estimates, while also adjusting for in- and out-displacement

to/from the city (20). The two alternative base estimates correspond to a ‘high’ and a ‘low’

scenario with nearly identical trends (SI Figure 1) and marginally different levels (0.04-0.05

deaths/10.000 person-days) of baseline (i.e. pre-pandemic) CDR.

This level is significantly lower than previous CDR estimates for Somalia (21) between

0.2-0.6/10.000 person-days. Assuming that the level of under-estimation remains constant,

we can scale the crude death rate estimated from our time series up to previous estimates

(using the lower end of the estimates from (21), 0.1-0.4 deaths per 10.000 person-days). In

terms of modelling transmission dynamics, such scaling of deaths merely shifts the IFR,

while leaving other parameter estimates largely unchanged (SI Figure 14), and hence

provides little additional information. We therefore used the observed time series of burials

directly for model fitting, without scaling. To isolate excess mortality (which we assumed to

be entirely attributable to SARS-CoV-2 infection: see Discussion), we extrapolated pre-2020

burial rates into the pandemic period and subtracted this baseline from the total (SI Figure

1). For excess burials (mortality) we then took the daily number of burials in the dataset and

subtracted the mean level of daily burials in the four months period 01/07/2019-01/11/2019

(9.3 burials/day). We chose this pre-pandemic period as a basis of comparison as burial rates

in the preceding period had been likely affected by the drought-triggered crisis 2017-2018

(21). The model output of incident deaths were fitted to this baseline-subtracted number of

burials per day.

Transmission model

We used CovidM, an age-stratified dynamic transmission model initially developed to model

the spread of COVID-19 and the effect of non-pharmaceutical interventions in the UK
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(22,23). The model has a susceptible-exposed-infectious-recovered structure with

individuals stratified into 5-year age bands. When susceptible individuals are infected they

move into an exposed (incubating) compartment (E), becoming either infectious with

symptoms (Ic) following a pre-symptomatic phase (Ip) or remaining asymptomatic (Is) with a

lower level of infectiousness (set to 50% as in previous studies (22,24)). We used existing

age-dependent estimates (22) for the proportion of individuals who are symptomatically

infected (clinical fraction), as well as for the susceptibility to infection (SI Figure 7). Both of

these estimates are age-dependent, with the clinical fraction 29% in the 0-9y age group and

69% above 70 years, and susceptibility among individuals aged 0-19y half of that among

adults. Deaths occur in the model with a gamma-distributed (shape=22, scale=1) delay of 22

days (25,26) following the transition from exposed (E) to pre-symptomatic (Ip) state. Other

parameters of disease progression were fixed to consensus estimates in the literature (see SI

Table 1). The model was parameterised with the demographic structure and contact

patterns of Somalia (19), and the total population fixed to that of Mogadishu (2.2 million as

of mid-2020).

Estimates on infection fatality ratio

We used existing age-specific IFR estimates (24) demonstrating a log-linear relationship

between age and the IFR. To account for the uncertainty in the IFR, we fitted the data both

with the original IFR estimates from high-income countries and with upwardly adjusted IFR

estimates to reflect the effect of a weak public health infrastructure. For the latter, we

calculated the logit of the original IFR at each age group and increased its value (SI Figure 8),

raising the mean IFR for those 75 or older from the original 11.6% to 26-70%. A possible

upward shift of IFR values by age groups is supported by recent findings of substantially

higher in-hospital mortality in several African countries (5). Due to its young population, the

population-average IFR (calculated for a randomly chosen infected person) for Somalia

would still be lower than in most high-income countries, being 0.15% with the original

estimates, and population-average IFRs of 0.36%, 0.79%, 1.13% and 1.6%, respectively,

under the adjusted values.

Fitting parameters and input parameters

We estimated three epidemiological parameters of the model: the date of introduction into

Mogadishu, the basic reproduction number (R0) and a scaling factor (NPI_scale) that

converts the nominal stringency of non-pharmaceutical interventions (NPIs) into a relative

reduction of transmissibility. We held two other parameters, the IFR and the size of the

initial seeding event (defined as the number of infected individuals in compartment E), fixed

and re-ran the fitting process for a range of values. Fitting all five parameters simultaneously

results in strong correlations for the parameter pairs NPI_scale and IFR, R0 and IFR and R0

and seed size (SI Figure 6), suggesting they are not separately identifiable. Similarly, the seed

size and the date of introduction are inversely related parameters, therefore we fitted only

the date of introduction for a range of different seed sizes between 20 and 500. For

simplicity we placed the seeding event on a single day; in our deterministic modelling

framework a more gradual introduction does not have a significantly different effect. Initial
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importations were assumed to be adults between 30 and 70, an importation of younger

adults leads to somewhat lower R0 estimates, but otherwise similar results SI Figure 15).

The effect of NPIs was accounted for by using the Oxford COVID-19 Government Response

Tracker (OxCGRT) (27), using the StringencyIndex variable for the strength of the

non-pharmaceutical interventions (NPI). Since we have no independent data source such as

mobility data on the actual effect of NPIs in Somalia, we scaled the value of the stringency

index by the free parameter (NPI_scale) that represents the effectiveness of the

intervention. We distinguished three periods in terms of NPIs (SI Figure 3). The value of

StringencyIndex increased abruptly (in three days) from 0 to 41% of its maximum at the 18th

of March and stayed above 50% until the 30th of June. From the 1st of July to the 29th of

August a number of relaxations followed. From the 30th of August the StringencyIndex

started to increase again and did not decrease until the end of our fitting period. To

minimise over-parameterisation, instead of using the full time series of StringencyIndex that

could introduce significant additional complexity to model dynamics we only took the mean

value of StringencyIndex in these three periods (0.59, 0.26 and 0.41; SI Figure 3), and

implemented the effect of NPIs by reducing transmission coefficients for all age groups by

the product of stringency (mean value per period) and the scaling factor (NPI_scale). For

example, if NPI_scale=0.5, then in the first period when stringency was equal to 0.59 the

reduction in transmission is proportional to StringencyIndex*NPI_scale=0.59*0.5, ie. 29.5%,

whereas in the second period the reduction is 13% (StringencyIndex*NPI_scale=0.26*0.5).

Time window of fitting

All fits presented in the main text were done with the time window 23/02/2020 to

24/08/2020, excluding the first smaller spike of deaths in January as well as the late spike in

September. We removed the early January spike in excess burials to avoid any confounding

from the two continuous weeks of reported cholera deaths in Banadir (28) that coincided

with this period. Moreover this early spike of deaths is in general inconsistent with a

gradually rising epidemic curve from late February. Including the deaths in late January leads

to even earlier estimates for the date of introduction, but poorer fits (SI Figure 10), as the

epidemiological model cannot capture this early non-monotonic dynamics.

Fitting procedure

To estimate the unknown parameters, we fitted the CovidM model to the excess deaths time

series using a Monte Carlo Markov chain (MCMC) algorithm, minimising the log-likelihood of

incident deaths (assumed to be Poisson-distributed). We introduced informative prior

assumptions for the date of introduction (normal distribution with mean: 01/03/2020,

standard deviation: 20 days) and R0 (truncated normal distribution with mean=3, SD=1,

bounded at 1 and 5), and an uninformative uniform distribution for the NPI scaling factor

(U(0,1)). We used a differential evolution MCMC algorithm with 10 chains, with a burn-in of

at least 500 iterations followed by at least 2000 samples.
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Results

Satellite imagery of the six main cemeteries in Mogadishu showed a first spike in the number

of burials in late January, followed by a more sustained rise from late February (Figure 1).

The weekly number of excess burials rose to approximately 60 in April and to a peak of 85 in

mid-June, falling back to values near zero only in August.

Estimates for date of introduction and initial spread (R0)

The slow rise in deaths from February to mid-June and the long plateau lasting until late July

results in R0 estimates substantially lower than those for Wuhan (29) and European

countries (23) for the initial phase of the pandemic. Fitting our data with a range of IFR

values (between 0.15% and 1.13%) and seed sizes resulted in median R0 estimates between

1.3 and 1.5 (Figure 2, Table 1). The best fits as expressed by DIC (deviance information

criterion) values are for a population-wide IFR of 0.36% and 0.79% (Figure 4). These IFR

values are above the high-income country-specific base assumption of 0.15% for Somalia

and result in a median R0 estimate of 1.34-1.38 depending on the seed size (Table 1).

Due to the 3-week delay from infection to death (Figure 5) and the relatively low

population-average IFR values in Mogadishu’s young population, the early rise in deaths

coupled with the very low estimates of R0 lead to early introduction date estimates of

October-November 2019 (Figure 5, Table 1). The date of introduction shifts to late

November 2019 only if a large seeding event (n=500) is assumed (SI Figure 9).

Estimates for the effect of NPIs

The estimates for the effectiveness of NPIs show strong positive correlation with the

population-average IFR and strong negative correlation with the seed size (Figure 2). For the

first NPI period when StringencyIndex was the highest (19/March to 30/June) we obtained

median estimates of transmissibility reduction below 1% (0.32-0.4%, NPI_scale=0.005-0.007)

when using the literature-derived IFR estimate. The NPI-caused transmissibility reduction is

10-17% for IFR=0.36%, 22-25% for IFR=0.79% and 25-28% for IFR=1.13% (Figure 3). These

values are substantially lower than NPI-induced reductions in contact rates in high income

countries (30), however they have an effect on the growth of cases for the fits with IFR

values of 0.79% and above, as they break the exponential growth of cases and result in the

long plateau of deaths that we observe in our burial data (Figure 5). This breakpoint in the

dynamics of infections due to the stronger effect of NPIs that we obtain for the fits with IFR

above 0.36% shifts the date of introduction to a later date by approximately three weeks.

Uncertainty in estimates due to parameter correlations

There are strong positive correlations between all three fitting parameters (SI Figure 11),

nevertheless 50% and 95% confidence intervals for all three are relatively narrow (Figure 2).

A higher assumed IFR value and a larger seed size both shift the date of introduction to later

dates, while lowering the estimates for the basic reproduction number (Figure 2-3). The best

fits in terms of DIC values are obtained with intermediate values of the IFR (Figure 3), while
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larger seed sizes only marginally improve the fit quality for a given IFR while arguably less

likely themselves.

Deaths from political violence in 2020

Since Somalia is heavily affected by political violence, including armed conflicts and terror

attacks (31), we also investigated if a rise in violent deaths could explain the sustained rise in

burials observed February-July 2020. We analysed the number of fatalities due to political

violence documented for Somalia in the Armed Conflict Location & Event Data Project

(ACLED) database for the years 2018, 2019 and 2020. Compared to 2018-2019, for the year

of 2020 we found no increase, but rather a reduction, in the number of fatalities due to

political violence in the Banadir region (SI Figure 4-5). While there was one major terrorist

attack claiming 85 lives on the 28th December 2019, this was followed by a long period of

deaths below the level of the previous year, followed by two major incidents (resulting in 20

and 26 deaths, respectively) in August 2020. In the period from February to July, when the

daily burial rate doubled from its baseline, there was no increase of fatalities due to political

violence, therefore it is unlikely the rise in burials could be explained by this exogenous

factor.

Discussion

Fitting excess mortality in Mogadishu from 23/02/2020 by a validated SARS-CoV-2

age-structured compartmental model (22,24) we arrived at date of introduction estimates of

October-November 2019, more than two months earlier than previous estimates (32).

Additionally, our estimates of the basic reproduction number between 1.3 and 1.5 are also

markedly lower than previous estimates (33). These two findings are not only due to the

early appearance of excess mortality from late January (and more consistently from late

February), but also the slow rise of deaths and their sustained plateau from April to July,

leading to the low R0 estimate and a consequent dating-back of the introduction date to very

early time points. While the epidemiological model can fit the deaths data relatively well

(Figure 4-5), the introduction dates of October-November 2019 and large seed sizes of

100-500 infecteds entering the region are surprising based on the current understanding of

the early phase of the COVID-19 pandemic, dating the introduction of the pathogen to Africa

around January 2020 (14,34).

This study has several limitations. Our model fitting of excess deaths is predicated on the

strong assumption that the unexplained rise in burials from late January 2020 was due to

deaths caused by SARS-CoV-2 infection. We investigated a number of alternative hypotheses

other than COVID-19 that could explain the observed excess mortality.

There was an ongoing cholera epidemic in Somalia following floods since 2017 (28), resulting

in 19 confirmed deaths in Banadir (mostly children) from January to October 2020. In the

four weeks of 20 January to 06 February, approximately coinciding with the first transient

increase of excess burials in our dataset, there were four confirmed cholera deaths in the

whole of Somalia, after a preceding period of no reported deaths. In the period from 16

February to 12 April there were 8 further cholera deaths reported Somalia-wide, and
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another 12 deaths in June-July. These numbers are much lower than the observed increase

of burials between February and October 2020: approximately 1500 excess burials were

directly identified from satellite imagery and we estimated total excess deaths in Banadir to

be between four and twelve thousand. While some underestimation of cholera-related

deaths is possible, due to its well-identifiable pathology we consider it unlikely that a major

cholera outbreak was almost entirely missed and could explain a substantial proportion of

the excess mortality.

The very early date of introduction estimates are due both to the early rise of excess deaths

and the low R0 estimate stemming from the slow rise and long plateau of the curve. It is

possible that the real peak of deaths was in fact higher and the curve had a sharper

exponential rise, but the number of burials underestimates excess deaths during the peak

period of the pandemic, perhaps because of out-migration from the city (as observed in

India (35)) during the pandemic or opening of new burial sites not included in our satellite

data. While field visits and interviews did not identify new burial sites and we therefore

cannot ascertain the veracity of this hypothesis, we nevertheless approximated it by

re-fitting the model to the pre-peak period up to 13 April only. This led to a small shift in the

date of introduction to a later date, but still resulted in estimates of late October to

mid-November for seed sizes of 30 or 100 (SI Figure 12-13), with median R0 estimates rising

to 1.4-1.6 for a seed size of 30 (1.3-1.4 for a seed size of 100).

There are two, non-exclusive ways to interpret these findings. On the one hand, given

uncertainties about the earliest phase of the pandemic in Wuhan (36), it is possible that

SARS-CoV-2 was imported to Mogadishu at a much earlier date than most consensus

estimates. Mogadishu, the only international airport in Somalia, received flights with over

thirty thousand seats in total per month in the period before the COVID-19 pandemic (34).

The country has connecting flights with multiple countries (UAE, Turkey, Kenya, Ethiopia,

Qatar) that have several daily flights with China and in two cases (Turkey, UAE) with Wuhan

(37). Moreover, news articles reported at least 34 Somali students in Wuhan (38), with the

entire Somali diaspora likely to be larger, as trade and general economic relations between

China and Somalia have been expanding in the last two decades, resulting in a growing

Somali (and other African) diaspora in China (39). Larger neighbouring countries Kenya and

Ethiopia have far more extensive trade (40,41) and travel (42,43) flows with China, making

indirect importation to Somalia possible, but implying that earlier introduction dates could

have happened for those countries as well. SARS-CoV-2 positive routine samples from

mid-December 2019 were also found in Italy (16), France (44) and the United States (45),

suggesting the pathogen was circulating in small numbers by the end of 2019 outside of

China, but not resulting in excess mortality until Spring 2020. Phylogenetic analysis (46)

suggests that a progenitor of the SARS-CoV-2 variant first identified in Wuhan might have

been spreading outside of China months before the known beginning of the city’s outbreak.

In the compartmental-deterministic framework we used, superspreading events can only be

incorporated as static model inputs (ie. an injection of cases into the model), although the

large seed sizes used as input parameters can be interpreted as proxies for early

superspreading events that followed smaller seeding events. In Somali society,
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superspreading events such as large funerals or marriages may be more likely than in

Europe, such that the importation of even a few seed cases in late 2019 might have resulted

in extensive early propagation.

If some of the excess mortality observed in our dataset was due to causes other than

COVID-19, a more sharply rising epidemic curve might be hidden within the curve of all

excess deaths, which, if disentangled, would lead to a higher R0 estimate and therefore a

later date of introduction. Conversely, if a very early introduction did occur, leading to a rise

in deaths from February 2020, behavioral adaptation by the general population might have

reduced contact rates and resulted in the lower R0. During 2020 Mogadishu was not affected

by large-scale armed conflict, influx of displaced people or food insecurity, as in previous

phases of the protracted crisis in Somalia. Differential under-ascertainment of burials over

time in the satellite imagery analysis may therefore provide a more plausible explanation.

Burials in the deceased’s village of origin outside the capital and a potential decrease in the

number of these burials (and thereby an increase of burials within city limits) due to mobility

restrictions could have also played a role. Either way, it is also plausible that some of the

excess mortality is in fact due to the NPIs themselves and other socio-economic disruptions

due to the pandemic, though they cannot explain the rise in excess burials starting from

February 2020.

Our best fits were obtained at IFR values higher than if age-specific IFRs were identical to

consensus estimates from high-income countries. With the above qualifications in mind,

this finding can be interpreted as supporting a higher IFR than expected from age

demographics only, which could be due to untreated comorbidities and limited access to

COVID-19 treatment (47).

The R0 estimates between 1.3-1.5 are substantially lower than consensus estimates for

SARS-CoV-2 for China (48,49), Europe (23,50) or the United States (51). We note there is no

empirical contact matrix or real-time mobility data available for Somalia, it is therefore

possible that contact structures are in reality somewhat different from the projected contact

matrix (52) for its neighbour (Ethiopia) that we used for model fitting, contributing to a

lower reproduction number. Another possibility is that susceptibility to infection in younger

individuals (SI Figure 7) is lower than estimates inferred for middle and high-income

countries (22), i.e. that the lower median age in Somalia reduced the R0 further. Relatively

high ventilation of houses and proportion of time spent outdoors due to warm weather may

also have reduced transmissibility. Other factors such as cross-immunity have also been

proposed (53).

Finally, we note that our model fitting resulted in attack rates between 15-50% (Figure 6),

which would have left a large pool of susceptibles for a second wave to develop if the

reproduction number increased due to introduction of new variants in late 2020. Indeed, a

reportedly sharp pandemic wave was observed in Somalia (54) from late February to May

2021.

In summary, our analysis was based on the assumption that the rise in excess mortality

observed via satellite imagery of cemeteries in Mogadishu early 2020 was due to deaths
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caused by SARS-CoV-2 infection. Under this assumption, model fitting of the time series of

deaths suggests that SARS-CoV-2 could have been introduced to Somalia’s capital

substantially earlier than previously thought and had a reproduction number lower than

consensus estimates from middle and high income countries, leading to an effective

reproduction number around 1 from April to July and a long plateau of excess deaths. If

these excess deaths were indeed due to SARS-CoV-2 infections, this raises several questions

about the pathogen’s introduction to Africa and the true burden of the pandemic on the

continent. Further investigation of mortality trends and SARS-CoV-2 epidemiology in Somalia

and other low-income countries is warranted to paint a more conclusive picture, and help to

better predict future waves of the pandemic in these settings.
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Figures

Figure 1. Weekly burials above the pre-pandemic baseline (excess burials) in Mogadishu
compared to reported COVID-19 deaths in Somalia.
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Figure 2. Median values and credible intervals for the fitting parameters (introduction date,
NPI_scale, R0) and quality of fits at different assumed values of the infection fatality ratio
(x-axis) and seed size (colors). In the top panel, labels below the lines show median
estimates of the date of introduction. Shaded areas around the median (black) are 50%
(darker) and 95% credible intervals.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.15.21258924doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258924
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Goodness of fit as measured by DIC (deviance information criterion) at different
values for seed size and population-wide IFR. The labels above the colored lines show
median estimates for R0 and the date of introduction, and the NPI-induced reduction in
transmissibility during the first NPI period below.

Figure 4. Dynamics generated by sampling the posterior distributions of fitting parameters,
at a seed size of 200 and four IFR values from 0.15% to 1.13%. The best fit (lowest DIC value)
is at IFR=0.36%. The dashed black line and circles show the daily number of excess burials.
Only the period from 23 February to 24 August was used for fitting.
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Figure 5. Simulated dynamics of cases (solid lines) and deaths (dashed, colored) for different
seed sizes (colors) and IFR values (subplots) using the mean values of fitted parameters,
compared to daily number of excess burials (black dashed line and circles).

Figure 6. Cumulative attack rates for different seed sizes and IFR values, fitting the period

23/02/2020-24/08/2020. Different IFR values lead to different estimates of R0 and NPI_scale,

resulting in different herd immunity thresholds and attack rates.
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Table 1: mean values and 95% credible intervals for fitting parameters at different values of
IFR and seed size

IFR=0.15% IFR=0.36% IFR=0.79% IFR=1.13% IFR=1.6% seed size

date of
introduction

2019-10-12
(10-05, 10-18)

2019-09-13
(08-30, 09-28)

2019-09-29
(09-10,10-16)

2019-10-06
(09-18, 10-21)

2019-10-12
(09-27,10-27)

20

2019-10-24
(10-18, 10-31)

2019-09-21
(09-06, 10-05)

2019-10-10
(09-22,10-24)

2019-10-15
(10-01,10-30)

2019-10-23
(10-06,11-10)

50

2019-11-01
(10-26, 11-06)

2019-09-30
(09-11, 10-19)

2019-10-20
(10-07,11-03)

2019-10-24
(10-08, 11-05)

2019-10-31
(10-14,11-16)

100

2019-11-10
(11-05, 11-14)

2019-10-07
(09-19,10-21)

2019-10-27
(10-12,11-09)

2019-11-01
(10-19, 11-15)

2019-11-11
(10-27,11-22)

200

R0 1.48
(1.45, 1.5)

1.38
(1.35,1.42)

1.38
(1.33,1.42)

1.37
(1.32,1.41)

1.35
(1.32,1.4)

20

1.48 (1.46,
1.5)

1.37
(1.33, 1.4)

1.37
(1.32,1.41)

1.35
(1.31, 1.4)

1.34
(1.3,1.4)

50

1.47
(1.45,1.49)

1.36
(1.31,1.41)

1.35
(1.32, 1.4)

1.33
(1.3, 1.37)

1.32
(1.28,1.37)

100

1.47
(1.45,1.49)

1.35
(1.31,1.38)

1.34
(1.3, 1.38)

1.32
(1.28,1.36)

1.31
(1.27,1.35)

200

NPI_scale 0.006
(0,0.022)

0.17
(0.12, 0.24)

0.44
(0.4, 0.5)

0.5
(0.45, 0.55)

0.53
(0.49,0.58)

20

0.006
(0, 0.031)

0.14
(0.07, 0.2)

0.43
(0.37, 0.48)

0.477
(0.43, 0.54)

0.51
(0.45,0.58)

50

0.007
(0, 0.028)

0.12
(0.03, 0.21)

0.42
(0.37, 0.48)

0.46
(0.41,  0.51)

0.49
(0.43,0.55)

100

0.005
(0, 0.018)

0.1
(0.02, 0.18)

0.39
(0.34, 0.45)

0.44
(0.39, 0.5)

0.48
(0.42,0.53)

200

Data

The data on burials, stringency index, deaths due to political violence and epidemiological

parameters used for the CovidM model are available in the github repository:

https://github.com/mbkoltai/covid_lmic_model along with the scripts to reproduce figures.

SI Figure 1 was produced with the scripts available at

https://github.com/francescochecchi/mogadishu_burial_analysis where satellite imagery

data are also uploaded.
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