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Abstract 
 

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that 

is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and 

sensory dysfunction, sleeping disturbances, orthostatic intolerance and gastrointestinal problems. The 

pathogenesis is not fully understood. Using regression, Bayesian and enrichment analyses, we 

conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples 

of 106 ME/CFS cases and 91 frequency-matched healthy controls. In ME/CFS cases, the regression, 

Bayesian and enrichment analyses all revealed abnormal levels of several membrane lipids indicating 

dysregulation of the Kennedy pathway: decreased plasma levels of plasmalogens, phosphatidylcholines, 

phosphatidylethanolamines, sphingomyelins, and phospholipid ethers. Enrichment analyses revealed 

decreased levels of cholines, ceramides and carnitines, and increased levels of long chain triglycerides, 

dicarboxylic acids, hydroxy-eicosapentaenoic acid, and the tricarboxylic acid cycle intermediates alpha-

ketoglutarate and succinate. Using machine learning algorithms with selected metabolites as predictors, 

we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and 

ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS 

(highest AUC=0.873). Our findings are consistent with earlier ME/CFS work indicating compromised 

energy metabolism and redox imbalance, and highlight specific abnormalities that may provide insights 

into the pathogenesis of ME/CFS. 

 

Introduction 
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown cause that is 

defined by impairment from fatigue lasting longer than six months, unrefreshing sleep, post-exertional 

malaise, and either cognitive dysfunction or orthostatic intolerance
1
. People with ME/CFS often report 

additional symptoms, such as gastrointestinal disturbances, influenza-like symptoms, and chronic pain
2
. 

It is estimated that ME/CFS affects between 0.4% to 2.5% of the global population, and 1.5 to 2.5 million 

people in the United States alone
1, 3

. There are no approved diagnostic tests for ME/CFS; medical 

providers must assess medical history, conduct a physical examination and exclude other disorders for 

diagnosis
4, 5

. 

 

Prior metabolomic studies of patients with ME/CFS have provided insights into the potential 

pathogenesis and course of the disease, demonstrating disturbances in energy, lipid, amino acid, and 

redox metabolism
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

. Studies continue in the ongoing pursuit of identifying a 

metabolomic signature as biomarker for ME/CFS. However, there is a lack of consistency in the 

metabolites that are altered in ME/CFS patients across these studies. This may be the result of the 

heterogeneity of this disease. 

 

Metabolic dimensions of ME/CFS may be related to sex; women are disproportionately affected by 

ME/CFS
1, 17

. Naviaux et al. (2016) found differences in metabolic pathway disturbances and altered 

metabolite levels when stratifying ME/CFS cases by sex
15

. Other have also reported sex-specific 

differences in plasma biomarkers
14, 18, 19

. 

 

Comorbid gastrointestinal (GI) symptoms constitute a potential subtype in ME/CFS 
11, 12, 14, 15, 19, 20, 21, 22, 23

. 

Among those with ME/CFS, the presence or absence of self-reported physician diagnosed irritable bowel 

syndrome (sr-IBS), in particular, has highlighted differences in the plasma proteome relating to immune 

dysregulation and altered levels of metabolites within the metabolome
14, 19

. In a fecal metagenomics 

study, Nagy-Szakal et al. (2017) identified eleven bacterial species delineating differences between 
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ME/CFS patients with and without sr-IBS and found relations between bacterial taxa and symptoms 

relating to fatigue and pain
23

. 

 

In this study, we report targeted and untargeted analyses of 888 metabolic analytes comprising of 

primary metabolites, biogenic amines, complex lipids, and oxylipins in plasma of ME/CFS cases and 

controls. We identified altered metabolomic profiles between ME/CFS patients, controls, and subgroups 

within ME/CFS patients based on sex and sr-IBS. 

 

Materials and Methods 
 

Study population. 

 

Our starting population comprised 177 ME/CFS cases and 177 controls in ME/CFS clinics in Incline Village, 

NV; Miami FL; New York, NY; Salt Lake City, UT; and Palo Alto, CA. All ME/CFS cases met the 1994 CDC 

Fukuda
24

 and Canadian consensus criteria for ME/CFS
25

. All ME/CFS cases completed standardized 

screening and assessment instruments including medical history and symptom rating scales as well as a 

physical examination. Controls were matched to cases on age, sex, race/ethnicity, geographic/clinical 

site, and date of sampling (±30 days). Based on screening criteria, we excluded 5 ME/CFS cases that met 

any exclusion criteria from the 1994 CDC Fukuda and/or Canadian consensus criteria for ME/CFS such as 

having chronic infections, rheumatic and chronic inflammatory diseases, neurological disorders, 

psychiatric conditions, or were taking any immunomodulatory medication. Controls underwent the 

same screening process as ME/CFS subjects and were excluded if they reported ME/CFS or other 

conditions deemed by the recruiting physician to be inconsistent with a healthy control population. 

Controls were also excluded if they had a history of substance abuse, psychiatric illness, antibiotics in 

the prior three months, immunomodulatory medications in the prior year, and clinically significant 

findings on physical exam or screening laboratory tests. One control was excluded after prescreening 

based on these criteria. Additionally, 21 participants were excluded prior to baseline due to withdrawal 

from the study (n=18), loss to follow-up (n=2), and enrollment capacity (n=1). The baseline 

questionnaire was completed by with 327 participants. During the study, an additional 63 participants 

were excluded for study protocol deviations (n=25), loss to follow-up (n=25), and withdrawal from the 

study (n=13), resulting in a total of 264 participants. 

 

For the analysis reported here, a sub-cohort was established based on complete survey and 

biospecimen data (blood, saliva and stool) at the first and last time points of the study and key 

demographic characteristics were frequency-matched to ensure that the nested cohort was similar to 

the full cohort. This sub-cohort consisted of 106 ME/CFS cases and 91 controls; the derivation of the 

sub-cohort is summarized in Figure 1. All participants provided informed written consent in accordance 

with protocols approved by the Institutional Review Board at Columbia University Irving Medical Center. 

 

Plasma collection. 

 

Blood samples were collected into BD VacutainerTM Cell Preparation Tubes (CPT) with 

ethylenediaminetetraacetic acid (EDTA) anticoagulant between January, 2016 and June, 2016, and 

centrifuged to pellet red blood cells. The plasma was shipped to Columbia University at 4°C. After 

aliquoting, samples were stored at −80°C until thawed for metabolomics analyses. All the samples were 

analyzed within two years of collection. 
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Clinical assessment. 

 

Clinical symptoms and baseline health status were assessed on the day of physical examination and 

biological sample collection from both case and control subjects using the following instruments: the 

Short Form 36 Health Survey (SF-36), the Multidimensional Fatigue Inventory (MFI), DePaul Symptom 

Questionnaire (DSQ)
26

, and Pittsburgh Sleep Quality Index (PSQI)
27

. The SF-36 includes the following 

subject-reported evaluations about current health status: physical and social functioning, physical and 

emotional limitations, vitality, pain, and general and mental health
28

. The MFI comprises of a 20-item 

self-reported questionnaire focused on general, physical and mental fatigue, reduced activity, and 

reduced motivation
29

. Cognitive function was tested based on the DSQ questionnaire data and was 

scored using a standard cognitive disturbance definition as well as a modified definition based on a 

subset of questionnaire variables. Sleeping disturbances linked to ME/CFS were tested and scored based 

on DSQ and PSQI questionnaire items. Each instrument was transformed into a 0–100 scale to facilitate 

combination and comparison wherein a score of 100 is equivalent to maximum disability or severity and 

a score of zero is equivalent to no disability or disturbance. 

 

A diagnosis of sr-IBS was based on answers in the medical history form. Subjects were asked if they had 

received a previous IBS diagnosis by a physician and the date of that diagnosis. Of the 106 subjects with 

ME/CFS, 35 (33.0%) had sr-IBS. Of the 91 control subjects, 3 (3.3%) had sr-IBS. 

 

Metabolomics analysis. 

 

Samples were stored at −80°C before analysis. Untargeted metabolomics data were acquired using three 

chromatography/mass spectrometry-based assays (MS): (1) Primary metabolites such as mono- and 

disaccharides, hydroxyl- and amino acids were measured by gas chromatography/time-of-flight mass 

spectrometry (GC-TOF MS
30

) including data alignment and compound annotation using the BinBase 

database algorithm
31

. (2) Biogenic amines including microbial compounds such as trimethylamine N-

oxide (TMAO), methylated and acetylated amino acids and short di- and tripeptides were measured by 

hydrophilic interaction liquid chromatography/quadrupole time-of-flight mass spectrometry (HILIC-

QTOF MS). (3) Complex lipids including phosphoglycerolipids, triacylglycerides, sphingolipids, and free 

fatty acids were analyzed by liquid chromatography (LC)/quadrupole time-of-flight mass spectrometry 

(CSH-QTOF MS
32

). Targeted bioactive oxylipin assay included thromboxanes, prostaglandins, and 

hdyroxy-, keto- and epoxy-lipins. All LC-MS/MS data included diverse sets of internal standards. LC-MS 

data were processed by MS-DIAL vs. 4.0 software
33

, and the compounds were annotated based on 

accurate mass, retention time and MS/MS fragment matching using LipidBlast
34

 and Massbank of North 

America libraries
35

. MS-FLO was used to remove erroneous peaks and reduce the false discovery rate in 

LC datasets
36

. A total of 821 known metabolites were annotated.  Some complex lipids were annotated 

in both positive (ESI+) and negative (ESI-) ion modes, resulting in a total of 888 metabolic analytes that 

were included in our analysis. Data were normalized by SERRF
37

. Residual technical errors were assessed 

by coefficients of variation (CV) for known metabolites. 

 

Statistical analyses. 

 

For each metabolic analyte, zero values reflecting a measurement below the detection limit, were 

replaced with 50% of its smallest available value. In each of the four metabolomics panels, outliers were 

identified through principal component analysis (PCA). In primary metabolites (PM), 6 outliers (4 cases 

and 2 controls) were identified and removed; in complex lipids (CL), there were 5 outliers (3 cases and 2 
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controls); in oxylipins (OL), there was 1 outlier (1 case); in biogenic amines (BA), 4 outliers (3 cases and 1 

control) were eliminated. 

 

To compare the levels of each metabolite between ME/CFS cases and controls, we employed a variety of 

regression models with the metabolite level as the dependent variable and the binary case/control 

status as the independent variable, adjusting for all the matching variables (age, sex, race/ethnicity, 

geographic/clinical site, and season of sampling), body mass index (BMI) and sr-IBS. We considered two 

options for the dependent variable: 1) original metabolite levels, and 2) natural log-transformed 

metabolite levels. Before log-transformation, if necessary, all data points in metabolic analytes were 

multiplied by a minimal factor to keep the feature on a positive domain. Four regression models were 

considered: Gaussian regression with identity link, Gaussian regression with log link, lognormal 

regression and Gamma regression with log link. The Bayesian information criterion (BIC) was used to 

select the best fitting transformation/regression combination. We then calculated the estimated 

coefficient for the case/control status, together with its 95% confidence interval (95% CI) and p-value. 

Multiple comparisons over all metabolites were corrected using the Benjamini-Hochberg procedure
38

 

controlling the false discovery rate (FDR) at the 0.15 level. Additionally, chemical enrichment analyses 

were performed using ChemRICH
39

 to determine chemical classes that were significantly altered 

between groups. ChemRICH does not rely upon background databases for statistical calculations and 

provides enrichment analysis based upon chemical structure, as opposed to defined pathways that can 

be inherently flawed
39

. 

 

For each metabolite, we also conducted Bayesian analysis with the best fitting 

transformation/regression combination using R packages “rstanarm”
40

 and “bayestestR”
41

. Default 

(weakly informative) prior distributions from rstanarm were applied adjusting the scales of the priors 

internally. We then calculated the Bayes factors (BFs) and 95% highest density credible intervals (HDIs). 

The BF of a single parameter indicates the degree by which the mass of the posterior distribution has 

shifted further away from or closer to the null value (zero), relative to the prior distribution
42

. Hence, the 

BF measures the strength of evidence in favor of the alternative hypothesis (β≠0) over the null 

hypothesis (β=0). The 95% credible interval in the Bayesian framework is the range, within which the 

effect has 95% probability of falling, given the observed data. It has a different interpretation from the 

95% confidence interval in the frequentist framework which instead signifies that with a large number of 

repeated samples, 95% of such calculated confidence intervals would include the true value of the 

parameter. We considered a metabolite significantly associated with ME/CFS if it satisfied the following 

criteria: 1) FDR adjusted p-value < 0.15, 2) BF > 3, and 3) 95% HDIs not covering 0. Jeffreys (1961)
43

 

suggested that the strength of evidence for the alternative hypothesis compared to the null hypothesis 

is regarded as noteworthy if BFs are above 3. 

 

Naviaux et al. (2016)
15

 showed that potential diagnostic metabolites for ME/CFS in targeted 

metabolomics are different between male and female subjects. Accordingly, we conducted sex-stratified 

analyses in addition to analyses with the whole cohort. In our previous work with a different cohort, sr-

IBS comorbidity was identified as the strongest driving factor in the separation of topological networks 

based on fecal microbiome and plasma metabolic pathways
14, 23

. We subsequently found different 

patterns in the relationships between plasma proteomic profiling and ME/CFS when comparing ME/CFS 

with or without sr-IBS to healthy controls
19

. Given this precedent, we tested the hypothesis that sr-IBS 

subgroups in ME/CFS patients have altered metabolic profiles in a stratified analysis. As there were only 

3 control subjects with sr-IBS, we focused on the comparison of ME/CFS subjects without sr-IBS versus 

controls without sr-IBS. 
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To explore the utility of the metabolomics assay as a biomarker tool for ME/CFS, we employed four 

machine learning algorithms: least absolute shrinkage and selection operator (Lasso)
44

, adaptive Lasso 

(AdaLasso)
45

, Random Forests (RF)
46

 and XGBoost
47

. AdaLasso is different from Lasso in that AdaLasso 

has the oracle property that leads to consistent variable selection whereas Lasso is only consistent for 

variable selection under certain conditions on the shrinkage parameters and correlations
48

. However, 

neither outperforms the other consistently in predictions. For each of the algorithm, three sets of 

predictors were considered: 1) all metabolites, 2) metabolites with BF>1, and 3) metabolites with BF>3. 

The predictive models were first trained in the 80% randomly-selected training set using 10-fold cross-

validation; the remaining 20% of the study population was used as the independent test set to validate 

model performance. We also applied the Bayesian Model Averaging (BMA) method
49

 that combines the 

predictions of multiple models using weighted averages in which the weights are Bayesian posterior 

probabilities that the given model is the true model, conditional on the training data. The predictive 

performance of the 5 models (Lasso, AdaLasso, RF, XGBoost and Model Average) using the three sets of 

predictors in the test set was evaluated using Area under the Receiver Operating Characteristic curve 

(AUROC) values and Receiver Operating Characteristic (ROC) curves. 

 

Data analyses were performed using MATLAB Statistics Toolbox R2013a (MathWorks, Inc., Natick, MA) 

and R version 3.6.3 (RStudio, Inc., Boston, MA). All p-values were 2-tailed. 

 

Results 
 

Study population characteristics. 

 

The study included plasma samples from 106 ME/CFS cases and 91 healthy controls recruited from five 

sites across the United States. Demographic and clinical characteristics of the study population are 

shown in Table 1. ME/CFS cases and controls were similar for all the frequency matching variables 

except season of collection (Chi-squared p = 0.004). We adjusted for all the matching variables, BMI and 

sr-IBS in our statistical analyses to account for confounding. All scales in SF-36 and MFI were significantly 

different between the two cohorts (Wilcoxon rank-sum p < 0.001). The study population is similar to the 

prescreened cohort that consisted of 177 ME/CFS cases and 177 controls in sex (Chi-squared p=0.60), 

race (Chi-squared p=0.66) and age (Wilcoxon rank-sum p=0.65). 

 

Metabolomic dataset. 

 

Targeted and untargeted mass spectrometry platforms yielded data for 888 metabolic analytes 

comprising 100 primary metabolites (PM), 237 biogenic amines (BA), 480 complex lipids (CL), and 71 

bioactive oxylipins (OL). Supplementary Table S1 shows the sample mean and the standard deviation 

(SD) of levels of each metabolite within all ME/CFS cases, all controls, female ME/CFS cases, female 

controls, male ME/CFS cases, male controls, ME/CFS cases without sr-IBS and controls without sr-IBS. 

 

ME/CFS is associated with altered metabolomic profile. 

 

In PM, BA and CL panels, lognormal regression models with log-transformed metabolite levels as 

dependent variables had the lowest BIC values and best fit the data; the estimated coefficients can be 

interpreted as the differences in the mean values of log-log transformation of metabolite levels between 

cases and controls. In OL panel, a mixture of lognormal and log-link Gamma regression models with 

original metabolite levels as dependent variables best fit the data. For lognormal regression models, the 
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estimated coefficients are interpreted as the mean differences of log transformation of metabolite 

levels between two groups. For log-link Gamma regression models, the estimated coefficients are 

interpreted as the log of fold change between two groups. 

 

We did not identify any metabolite as significantly associated with ME/CFS in the PM panel. In the BA 

panel, levels of acetaminophen were increased in ME/CFS cases compared to controls. In the CL panel, 

we found decreased levels of plasmalogens, unsaturated phospholipid ethers, unsaturated 

phosphatidylcholines (PC), an unsaturated sphingomyelin (SM), and an unsaturated 

lysophosphatidylcholines (LPC) in ME/CFS cases compared to controls. In the OL panel, decreased levels 

of Resolvin D1 were observed in ME/CFS cases compared to controls. Table 2 shows the estimated 

coefficients in the regression models of these metabolites, their associated 95% CIs, p-values, FDR 

adjusted p-values and BFs. Because we used weakly informative priors in Bayesian analysis, the 95% 

HDIs were extremely similar to the 95% CIs. We report estimations of HDIs in Supplementary Table S2 

where estimations for all metabolites are shown. 

 

Set enrichment analysis of the results from the regression models (Figure 2A) revealed that ME/CFS 

subjects had reduced levels of plasmalogens, sphingomyelins, unsaturated phospholipid ethers, 

unsaturated ceramides, carnitines, saturated lysophospholipids, unsaturated 

lysophosphoethanolamines, unsaturated lysophosphatidylcholines, saturated triglycerides and 

prostaglandins. The majority of unsaturated phosphatidylcholines were also down-regulated in ME/CFS 

cases. Increased levels of hydroxy-eicosapentaenoic acid (HEPE), dicarboxylic acids, and the majority of 

unsaturated long chain triglycerides were found in ME/CFS cases compared to controls. There were 

mixed directional alterations in the food exposome and epoxy fatty acids (EpODE). Complete data from 

ChemRICH enrichment analysis are provided in Supplementary Table S3. Data from compound-level 

enrichment analysis for the significantly altered metabolic clusters are illustrated in Supplementary 

Table S4. Levels of choline in food exposome were reduced in ME/CFS (estimated coefficient β=-0.009, 

p=0.004); levels of succinic acid (β=0.022, p=0.007) and alpha-ketoglutarate (β=0.016, p=0.048) in 

dicarboxylic acids were elevated in ME/CFS. 

 

Altered metabolomic profiles in female and male ME/CFS patients. 

 

Naviaux et al. (2016)
15

 discovered that women with ME/CFS, but not men, had disturbed fatty acid and 

endocannabinoid metabolism. Accordingly, we repeated separately the analyses in female and male 

cohorts in our study population. 

 

In female subjects, regression and Bayesian analyses (Table 2) revealed that levels of 

phosphatidylcholines (PC), phosphatidylethanolamines (PE) and sphingomyelins (SM) in the CL panel 

were decreased in ME/CFS patients compared to controls. In the BA panel, levels of two drug 

metabolites, alprazolam and acyclovir, were up-regulated in ME/CFS patients. We did not find the 

elevated levels of acetaminophen in female subjects that were observed in the entire ME/CFS (male and 

female population), presumably due to loss of power. Enrichment analysis in female subjects (Figure 2B) 

identified dysregulations in the same metabolic clusters as in the overall population. Complete data 

from enrichment analysis in female subjects are shown in Supplementary Table S6. In contrast, we did 

not find any metabolites significantly associated with risk of ME/CFS in male subjects. This may be due 

to limited sample size.  Supplementary Table S5 shows the regression and Bayesian estimations for all 

metabolites in male and female cohorts. 

 

Altered metabolomics profile in ME/CFS patients without sr-IBS. 
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Due to the limited sample size of subjects with sr-IBS (35 ME/CFS cases and 3 controls), we only 

compared levels of metabolites between ME/CFS cases without sr-IBS and controls without sr-IBS. 

Levels of phosphatidylcholines (PC) and phosphatidylethanolmines (PE) were decreased in ME/CFS 

patients in this subgroup (Table 2). In the ChemRICH enrichment analysis, the dysregulations in 

metabolite clusters found to be dysregulated in the subgroup without sr-IBS (Figure 2C) were all 

identified in the overall population (Figure 2A). Complete data pertaining to the regression, Bayesian 

and enrichment analyses are shown in Supplementary Tables S7 and S8. 

 

Assessment of the metabolomics assay as a potential diagnostic tool for ME/CFS. 

 

We considered three sets of metabolites as predictors to distinguish ME/CFS cases from controls, 

including all metabolites, metabolites with BF>1 and metabolites with BF>3. Each set of predictors was 

fitted in five different machine learning classifiers: Lasso, adaptive Lasso (AdaLasso), Random Forests 

(RF), XGBoost and Model Average. The classifiers were first trained in the 80% randomly-selected 

training set and then validated in the remaining 20% test set. Figure 3A, Figure 3B, and Figure 3C show 

the ROC curves and the AUROC values differentiating all ME/CFS cases from all controls, female ME/CFS 

from female controls, and ME/CFS without sr-IBS from controls without sr-IBS, respectively, in the test 

set. Although classifiers did not differentiate all ME/CFS from all controls, Lasso with BF>1 metabolites 

as predictors distinguished female ME/CFS patients from female controls with an AUROC value of 0.794 

(95% CI: 0.612-0.976) and Lasso with BF>3 metabolites distinguished ME/CFS without sr-IBS from 

controls without sr-IBS with an AUROC value of 0.873 (95% CI: 0.747-0.999). The AUROC values and their 

associated 95% CIs of all the classifiers are shown in Supplementary Table S9. 

 

Metabolites significantly associated with ME/CFS or ME/CFS subgroups do not strongly correlate with 

duration of illness or symptom severity scores. 

 

We investigated whether the plasma levels of metabolites, defined by their associations with ME/CFS 

and ME/CFS subgroups (Table 2), correlated with duration of illness in years, Short Form 36 Health 

Survey (SF-36) scales and Multidimensional Fatigue Inventory (MFI) scales using Spearman’s correlation 

tests. None of the correlation coefficients exceeded the absolute magnitude of 0.5 (data not shown). 

 

Discussion 
 

Since the first reports of large-scale metabolomic studies in people with ME/CFS were published in 2016 

by Naviaux
15

, Yamano
16

, and Fluge
9
, several research teams, including our own

14
 have reported 

metabolomic analyses of plasma. The majority describe abnormalities in energy metabolism, with most 

reporting decreased levels of phospholipids and suggesting abnormalities in mitochondrial activity that 

could contribute to fatigue and cognitive dysfunction. Here we report confirmation of decreased levels 

of phospholipids, including phosphatidylcholine and sphingolipids, and provide evidence for 

dysregulation of the Kennedy pathway and the tricarboxylic acid cycle. Our findings provide potential 

insights into the pathobiology of clinical features of ME/CFS by providing a mechanistic framework for 

understanding compromised energy production, loss of integrity of cellular and mitochondrial 

membranes, inflammation, impaired cognition, dysregulated autonomic function, impediments to repair 

of tissue injury, and redox imbalance. 
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The Kennedy pathway is responsible for the biosynthesis of phosphatidylcholines (PC) and 

phosphatidylethanolamines (PE), the two most abundant phospholipids in mammalian cells
50

. PC, the 

most abundant phospholipid in the mitochondrial membranes
51, 52

, is sourced from endoplasmic 

reticulum. PE is synthesized in mitochondria by the decarboxylation of phosphatidylserine by 

phosphatidylserine decarboxylase 1 (Psd1) at the inner mitochondrial membrane
53

. PC and PE are 

essential to the formation of intermediate structures in membrane fusion and fission events, for 

stabilizing membrane proteins into their optimal conformations, and for actin-filament disassembly in 

the end stage of cytokinesis
54, 55, 56

. In people with ME/CFS, we found decreased levels of PC and PE and 

their downstream products: ceramides, sphingomyelins, lysophosphatidycholines, phospholipid ethers, 

prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α). 

 

One critical functional implication of reduced levels of PC and PE is impaired oxidative phosphorylation. 

PC depletion specifically affects the function of inner membrane protein translocases of mitochondria, 

including the TIM23 complex
57

. PE synthesis is critical for cytochrome bc1 complex III function in the 

mitochondrial inner membrane
53

. Preprotein binding to the TIM/TOM complex, which translocates 

proteins produced from nuclear DNA through the mitochondrial membrane for use in oxidative 

phosphorylation, is disturbed in PE-deficient mitochondria
58, 59

. Cytochrome c oxidase activity in the 

respiratory chain complex is also decreased with PE-deficiency
60, 61

. Reduced import of PE into the 

mitochondria results in the formation of respiration deficient cells
55

, and in mitochondrial dysfunction. 

Finally, reduced levels of lysophosphatidycholines and phospholipid ethers, as well as of PC and PE, can 

impede mitochondrial respiration
55

. Reduced synthesis of PGF2α and PGD2 in phospholipase A2γ-

deficient mice induces mitochondrial dysfunction as well as oxidative stress that can contribute to 

further mitochondrial damage
62

. 

 

Because PE and PC, and downstream metabolites in the Kennedy pathway, are important components 

of the lipid bilayer, the reduction in their levels has implications for signaling. Alteration in the levels or 

conformation of membrane components can adversely affect the functionality of proteins embedded in 

the membranes such as G protein coupled receptors (GPCRs).  Phospholipids can act as direct allosteric 

modulators of GPCR activity through the lipid head group that affect ligand binding (agonist and 

antagonist) and receptor activation. For example, PE favors antagonist binding and stabilizes the inactive 

state of the receptor, whereas phosphatidylglycerols favor agonist binding and activation
63

. 

 

Both PE and PC are precursors to many biologically active molecules that can act as second messengers. 

Prominent among them are Di-acyl glycerol (DAG), fatty acids, phosphatidic acid, lysophosphatidic acid, 

N-arachidonylethanolamine, N-palmitoylethanolamine, N-steroylethanolamine and arachidonic acid
64, 65, 

66
. Ceramides, are not only structural components of membranes, but can also act as second messengers 

in modulating a range of cellular signaling pathways
67

. 

 

Metabolomic analyses also revealed reductions in levels of plasmalogens and of resolvin D1. 

Plasmalogens are compounds with antioxidant functions that are synthesized by peroxisomes. Resolvin 

D1, a derivative of docosahexanoic acid (DHA), may contribute to resolution of inflammation by 

targeting dead cells for clearance by macrophages.
68

 As previously reported, 
14, 69

 we found a significant 

reduction in levels of carnitine. Carnitine regulates the cellular to mitochondrial ratio of free CoA to Acyl-

CoA, removes the unwanted acyl groups and plays a key role in the transport of long-chain fatty acids 

from cytoplasm to the mitochondrial matrix for oxidation
70

. Depletion of carnitine reduces the 

generation of ATP from fatty acids, and may adversely impact the integrity of cell and mitochondrial 

membranes, and responses to inflammation and oxidative stress
70

. Finally, reduced levels of carnitine 

threaten the integrity of cell and mitochondrial membranes, increase oxidative stress, and reduce the 
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ability to counter inflammation
71

. We also observed increased levels of long-chain triglycerides in 

ME/CFS. Depletion of carnitine leads to the accumulation of long-chain triglycerides that become targets 

for lipid peroxidation by mitochondria
72

. The accumulation of toxic lipid peroxidation products can lead 

to mitochondrial membrane damage
18

. 

 

The tricarboxylic acid (TCA) cycle is a conserved pathway in aerobic organisms through which the acetyl-

CoA from carbohydrates, fats and proteins is converted into ATP. We observed elevated levels of two 

TCA cycle intermediates, the dicarboxylic acids α-ketoglutarate (α-KG) and succinate in ME/CFS. 

Increased levels of α-KG have been reported previously in ME/CFS patients
11

, although we are not aware 

of previous reports of elevated levels of succinate. Abnormal levels of TCA cycle intermediates suggest 

inefficiencies in ATP production that may contribute to the fatigue and post-exertional malaise reported 

in ME/CFS. Increases in α-KG levels have been reported to induce severe metabolic impairment of 

pyruvate oxidation in the tricarboxylic acid cycle, leading to cell death
73

. Succinate accumulation has 

been reported to induce HIF-1α stabilization as well as the transcriptional activation of the pro-

inflammatory cytokine IL-1β
73

. Elevated succinate levels contribute to increased oxidative stress and 

neuronal degeneration in rat models
74

. Oxidative stress, in turn, augments nitrosative stress
75

. 

Nitrosative stress, which has been documented in people with ME/CFS
76

, can lead to the increased 

production of peroxynitrite and downregulate the function of both alpha-ketoglutarate dehydrogenase 

and succinate dehydrogenase
75, 76, 77

. Infection is a common cause of nitrosative stress, and many 

ME/CFS patients report symptoms consistent with system infection prior to diagnosis. 

 

Choline depletion was another potentially important finding in our study. Choline is an essential nutrient; 

95% of it is utilized in the synthesis of PC via the Kennedy pathway
50

. The remaining 5% exists as either 

free choline or is used in the synthesis of phosphocholine, glycerophosphocholine, CDP-choline, 

acetylcholine, and other choline-containing phospholipids like sphingomyelin, plasmalogens and 

lysophosphatidylcholine. Each of these compounds contributes to maintenance of the structure and 

signaling functionality of the plasma membrane
50, 66

. IgG autoantibodies that specifically target GPCRs 

have been reported, even in healthy individuals, but are more commonly found in ME/CFS
78, 79

, 

particularly to autonomic nervous system targets including the M3 Acetylcholine receptor (M3AChR) 

and β2 Adrenergic receptor (β2AdR). Agonists for each of these receptors have choline precursors, 

acetylcholine (AC) and epinephrine (adrenaline), respectively. Choline also plays a role in the production 

of epinephrine, by donating the methyl group. Thus, choline deficiency could potentially lead to the 

autonomic dysfunction that is found in many people with ME/CFS, with reduced tissue blood flow and 

oxygen supply, leading to hypoxia, ischemia and fatigue
80

. 

 

Impairments in cognition have been reported in ME/CFS
81, 82

. Our metabolomic data revealed reductions 

in levels of sphingomyelin, ceramides, and plasmalogens that may contribute to central nervous system 

dysfunction. Reduced levels of sphingomyelins have been reported in neurological disorders such as 

Alzheimer’s disease (AD)
83, 84

, Parkinson’s disease (PD)
85

 and multiple sclerosis
86

. In these examples of 

neurodegeneration, levels of sphingomyelin were reduced, but ceramide was increased
87

. In contrast, 

our data show reduced levels of both sphingomyelin and ceramide. Reduced levels of ceramide are 

associated with decreased cell survival, aberrant Purkinje cell dendritic differentiation
88

, and neurons 

having shorter axon plexus and fewer axonal branches
89

. Reductions in mitochondrial ceramide levels 

have also been shown to result in neuronal degeneration and reduced mitochondrial respiratory 

function as manifest with decreased mitochondrial basal and maximal oxygen consumption rates and 

decreases in spare respiratory capacity
89

. Reduced plasmalogen levels have been observed AD and PD
90, 

91, 92
. Plasmalogen deficiencies may increase vulnerability of neural membranes to oxidative stress, 
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destabilize membranes, and impair muscarinic cholinergic signaling and abnormal amyloid precursor 

processing
91, 93, 94, 95

. 

 

Conclusion 
 

Our findings indicate a series of interconnected metabolic alterations in people with ME/CFS, that are 

consistent with two central abnormalities that may contribute to the pathogenesis of ME/CFS: 

disturbances in the Kennedy Pathway leading to reductions in levels of PC and PE and structural and 

functional disturbances of cellular and mitochondrial membranes, and reductions in levels of α-

ketoglutarate and succinate that are consistent with an impairment in the TCA cycle. 
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Completed Prescreening Questionnaire

Case n=177; Control n=177

Completed Baseline Questionnaire 

and Biospecimen Collection 

Case n=167; Control n=160

Completed Timepoint 1 Questionnaire

and Biospecimen Collection

Case n=140; Control n=137

Completed Timepoint 4 Questionnaire

and Biospecimen Collection

Case n=135; Control n=129

Analytic Cohort

Case n=106; Control n=91

Excluded (n=27)

� Ineligible due to exclusion criteria: 6 (5 cases, 1 control)

� Withdrew participation: 18 (4 cases, 14 controls)

� Loss to follow up: 2 (2 controls)

� Study site enrollment target reached: 1 (1 case)

Excluded (n=50)

� Failed baseline screening: 22 (12 cases, 10 controls)

� Withdrew participation: 7 (5 cases, 2 controls)

� Loss to follow up: 18 (9 cases, 9 controls)

� Medical conditions: 3 (1 case, 2 controls)

Excluded (n=13)

� Withdrew participation: 6 (1 case, 5 controls)

� Loss to follow up: 7 (4 cases, 3 controls)

Excluded (n=67)

� Did not meet frequency matching criteria: 67 (29 cases, 38 

controls) 

Figure 1. Pipeline for sample selection.
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Figure 2. Chemical enrichment analyses using ChemRICH
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c

a All ME/CFS v. controls. b Female ME/CFS v. female controls. c ME/CFS without sr-IBS v. controls without sr-IBS. The length of the bar represents altered 

ratio for each metabolic cluster. A bar restricted to the left of the centered vertical line indicates a metabolic cluster that is lower in ME/CFS patients. A bar 

restricted to the right of the centered vertical line indicates a metabolic cluster that is higher in ME/CFS patients. A bar that crosses the vertical line 

indicates a metabolic cluster that is dysregulated in mixed directions. The color represents significance. EpODE: epoxy octadecadienoic acid. HEPE: hydroxy 

eicosapentaenoic acid. ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome. sr-IBS: self-reported physician diagnosed irritable bowl syndrome.
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Figure 3. ME/CFS predictive modeling.
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a Overall population. b Women only. cNo GI complaints. To differentiate ME/CFS cases from healthy controls, we employed 

average). For each algorithm, three sets of predictors were considered: 1) all metabolites, 2) metabolites with BayesFactor > 1, and 3) m

cross-validation, and the remaining 20% of the study population was used as the independent test set to validate model perfor

bowel syndrome. BF: BayesFactor. AUC: area under the receiver operating characteristic curve.
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five machine learning algorithms: Lasso, adaptive Lasso (AdaLasso), Random Forests (RF), XGBoost, and Bayesian Model Averaging (Model 

metabolites with BayesFactor > 3. The predictive models were first trained in the 80% randomly selected training set using 10-fold 

rmance. ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome. sr-IBS: self-reported physician diagnosed irritable 
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Figure 4. Functional interaction network of altered metabolic cluster

Metabolite levels that are decreased (orange), increased (blue), o

associated with oxidative stress, mitochondrial dysfunction, and n

rs in ME/CFS

or mixed in direction (green) in the enrichment assay have been

neurodegeneration.
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Table 1. Subject characteristics.
ME/CFS (n=106) Controls (n=91) p-value5

Female 75 69
Male 31 22
Mean ± SD 47.8 ± 13.7 47.0 ± 14.1
Median (Range) 51.0 (21.6-70.0) 50.6 (21.2-68.2)
White and not Hispanic 93 85
Hispanic 6 3
Not White and not Hispanic 7 3
Incline Village, NV 23 17
Miami, FL 15 5
New York, NY 17 19
Salt Lake City, UT 32 32
Palo Alto, CA 19 19
Winter 33 14
Spring 72 70
Summer 1 7
Yes 35 3
No 71 88
Mean ± SD 26.1 ± 5.2 25.2 ± 4.7
Median (Range) 25.0 (18.1-41.2) 25.1 (16.9-38.7)
Mean ± SD 15.0 ± 9.8 n/a
Median (Range) 14.4 (1.2-44.2) n/a
≥ 3 years 92 n/a
< 3 years 8 n/a
Emotional Limitations 62.3 ± 43.7 94.9 ± 18.5 <0.001
Emotional Well-being 69.6 ± 18.1 84.5 ± 10.5 <0.001
General Health 24.9 ± 16.6 85.0 ± 12.3 <0.001
Pain 45.5 ± 26.9 89.9 ± 12.7 <0.001
Physical Functioning 39.9 ± 22.9 94.8 ± 11.9 <0.001
Physical Limitations 3.3 ± 12.9 94.2 ± 18.7 <0.001
Social Functioning 30.1 ± 25.6 93.5 ± 13.4 <0.001
Vitality 14.3 ± 18.1 75.5 ± 13.9 <0.001
General Fatigue 83.3 ± 20.3 22.4 ± 19.5 <0.001
Mental Fatigue 60.3 ± 23.6 19.6 ± 21.2 <0.001
Physical Fatigue 80.7 ± 20.4 17.3 ± 17.7 <0.001
Reduced Activity 74.9 ± 22.7 16.7 ± 19.8 <0.001
Reduced Motivation 48.4 ± 26.3 20.7 ± 23.5 <0.001

0.40

0.78

0.42

n/a

0.31

<0.001

0.004

0.30

Subject Characteristics

Sex

Race and Ethnicity

Season of Collection

Site of Collection

Age

1Prior physician diagnosed irritable bowel syndrome, self-reported on the questionnaire. 2Only 90 responses were 

received for this item. 336-Item Short Form Health Survey; scored on 0-100 scale with 0 = poor health status and 100 = 

excellent health status. 4Multidimensional Fatigue Inventory; scored on 0-100 scale with 0 = no fatigue and 100 = greater 

fatigue. 5For categorial variable, p-values were derived from Chi-squared tests; for continuous variables, p-values were 
derived from Wilcoxon rank-sum tests. SD: standard deviation. ME/CFS: myalgic encephalomyelitis/chronic fatigue 
syndrome

Duration of ME/CFS2

SF-36 Scales3                  

Mean Score ± SD

MFI Scales4                    

Mean Score ± SD

sr-IBS Comorbidity1

BMI
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Table 2. Metabolites significantly associated with ME/CFS or ME/CFS subgroups.

Estimated 
Coefficient

95% CI p-value FDR BayesFactor

Acetominophen drugs Lognormal 0.068 (0.028, 0.108) 0.001 0.103 3.035
Alprazolam drugs Lognormal 0.063 (0.016, 0.109) 0.009 0.178 0.963
Acyclovir drugs Lognormal 0.112 (0.038, 0.185) 0.003 0.139 2.674

PE (p-36:2)/PE (o-36:3) - ESI(+) plasmalogens Lognormal -0.028 (-0.043, -0.013) 0.000 0.074 20.935
PE (p-34:2)/PE (o-34:3) plasmalogens Lognormal -0.037 (-0.060, -0.014) 0.002 0.126 5.662
SM (d40:3) sphingomyelins Lognormal -0.025 (-0.043, -0.007) 0.007 0.173 1.222
LPC (18:2) - ESI(-) unsaturated lysophosphatidylcholines Lognormal -0.019 (-0.032, -0.007) 0.003 0.139 4.102
PC (36:2) unsaturated phosphatidylcholines Lognormal -0.007 (-0.011, -0.003) 0.000 0.074 11.241
PC (36:4) A - ESI(+) unsaturated phosphatidylcholines Lognormal -0.018 (-0.028, -0.008) 0.000 0.074 8.134
PC (36:4) A - ESI(-) unsaturated phosphatidylcholines Lognormal -0.019 (-0.031, -0.008) 0.001 0.103 4.032
PC (32:2) - ESI(-) unsaturated phosphatidylcholines Lognormal -0.027 (-0.043, -0.010) 0.002 0.135 7.389
PC 34:4e unsaturated phosphatidylcholines Lognormal -0.022 (-0.036, -0.008) 0.003 0.139 4.327
PC (34:2) - ESI(+) unsaturated phosphatidylcholines Lognormal -0.005 (-0.008, -0.002) 0.003 0.139 2.039
PC (p-34:2)/PC (o-34:3) - ESI(+) unsaturated phospholipid ethers Lognormal -0.018 (-0.027, -0.009) 0.000 0.062 44.620
PC (p-34:1)/PC (o-34:2) unsaturated phospholipid ethers Lognormal -0.021 (-0.032, -0.010) 0.000 0.062 178.678
PC (p-36:1)/PC (o-36:2) unsaturated phospholipid ethers Lognormal -0.055 (-0.086, -0.024) 0.001 0.074 11.555
PC (p-34:2)/PC (o-34:3) - ESI(-) unsaturated phospholipid ethers Lognormal -0.020 (-0.032, -0.009) 0.001 0.074 12.281
PC (p-36:4)/PC (o-36:5) - ESI(-) unsaturated phospholipid ethers Lognormal -0.021 (-0.034, -0.009) 0.001 0.103 7.046
PC (p-34:1)/PC (o-34:2) A unsaturated phospholipid ethers Lognormal -0.027 (-0.044, -0.011) 0.002 0.125 5.655

Resolvin D1 OH-FA_22_6_1 Gamma -0.528 (-0.846, -0.210) 0.002 0.134 6.635

ME/CFS vs. Control
Metabolite Enrichment Cluster

Regression 
Model

Biogenic Amines (BA)

Complex Lipids (CL)

Oxylipins (OL)
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Estimated 
Coefficient

95% CI p-value FDR BayesFactor

Acetominophen drugs Lognormal 0.064 (0.016, 0.113) 0.010 0.211 1.172
Alprazolam drugs Lognormal 0.081 (0.030, 0.132) 0.002 0.121 3.486
Acyclovir drugs Lognormal 0.152 (0.057, 0.247) 0.002 0.121 3.179

PE (p-36:2)/PE (o-36:3) - ESI(+) plasmalogens Lognormal -0.033 (-0.049, -0.017) 0.000 0.048 24.602
PE (p-34:2)/PE (o-34:3) plasmalogens Lognormal -0.042 (-0.066, -0.018) 0.001 0.064 6.155
SM (d40:3) sphingomyelins Lognormal -0.035 (-0.055, -0.014) 0.001 0.064 6.392
LPC (18:2) - ESI(-) unsaturated lysophosphatidylcholines Lognormal -0.022 (-0.036, -0.007) 0.005 0.169 2.295
PC (36:2) unsaturated phosphatidylcholines Lognormal -0.009 (-0.013, -0.004) 0.000 0.054 14.972
PC (36:4) A - ESI(+) unsaturated phosphatidylcholines Lognormal -0.022 (-0.033, -0.010) 0.000 0.054 8.061
PC (36:4) A - ESI(-) unsaturated phosphatidylcholines Lognormal -0.025 (-0.038, -0.011) 0.000 0.054 11.432
PC (32:2) - ESI(-) unsaturated phosphatidylcholines Lognormal -0.023 (-0.041, -0.006) 0.011 0.218 0.909
PC 34:4e unsaturated phosphatidylcholines Lognormal -0.029 (-0.045, -0.014) 0.000 0.054 13.135
PC (34:2) - ESI(+) unsaturated phosphatidylcholines Lognormal -0.006 (-0.010, -0.003) 0.000 0.054 6.913
PC (p-34:2)/PC (o-34:3) - ESI(+) unsaturated phospholipid ethers Lognormal -0.022 (-0.032, -0.011) 0.000 0.048 36.107
PC (p-34:1)/PC (o-34:2) unsaturated phospholipid ethers Lognormal -0.025 (-0.038, -0.012) 0.000 0.054 26.013
PC (p-36:1)/PC (o-36:2) unsaturated phospholipid ethers Lognormal -0.067 (-0.106, -0.029) 0.001 0.064 5.458
PC (p-34:2)/PC (o-34:3) - ESI(-) unsaturated phospholipid ethers Lognormal -0.025 (-0.038, -0.011) 0.001 0.054 7.542
PC (p-36:4)/PC (o-36:5) - ESI(-) unsaturated phospholipid ethers Lognormal -0.025 (-0.040, -0.011) 0.001 0.064 7.044
PC (p-34:1)/PC (o-34:2) A unsaturated phospholipid ethers Lognormal -0.035 (-0.055, -0.015) 0.001 0.064 6.285

Resolvin D1 OH-FA_22_6_1 Gamma -0.513 (-0.871, -0.156) 0.006 0.183 1.811

Metabolite Enrichment Cluster
Regression 

Model

Female ME/CFS vs. Female Control

Complex Lipids (CL)

Oxylipins (OL)

Biogenic Amines (BA)
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Estimated 
Coefficient

95% CI p-value FDR BayesFactor

Acetominophen drugs Lognormal 0.064 (-0.020, 0.148) 0.143 0.864 0.200
Alprazolam drugs Lognormal 0.017 (-0.090, 0.123) 0.761 0.956 0.068
Acyclovir drugs Lognormal 0.013 (-0.093, 0.120) 0.806 0.956 0.066

PE (p-36:2)/PE (o-36:3) - ESI(+) plasmalogens Lognormal -0.020 (-0.059, 0.018) 0.310 0.864 0.117
PE (p-34:2)/PE (o-34:3) plasmalogens Lognormal -0.032 (-0.090, 0.027) 0.291 0.864 0.119
SM (d40:3) sphingomyelins Lognormal -0.002 (-0.040, 0.037) 0.933 0.992 0.060
LPC (18:2) - ESI(-) unsaturated lysophosphatidylcholines Lognormal -0.022 (-0.043, -0.001) 0.048 0.864 0.426
PC (36:2) unsaturated phosphatidylcholines Lognormal -0.004 (-0.011, 0.003) 0.271 0.864 0.106
PC (36:4) A - ESI(+) unsaturated phosphatidylcholines Lognormal -0.015 (-0.034, 0.004) 0.128 0.864 0.174
PC (36:4) A - ESI(-) unsaturated phosphatidylcholines Lognormal -0.014 (-0.035, 0.006) 0.181 0.864 0.151
PC (32:2) - ESI(-) unsaturated phosphatidylcholines Lognormal -0.041 (-0.084, 0.001) 0.065 0.864 0.438
PC 34:4e unsaturated phosphatidylcholines Lognormal -0.007 (-0.040, 0.025) 0.666 0.928 0.073
PC (34:2) - ESI(+) unsaturated phosphatidylcholines Lognormal 0.000 (-0.006, 0.006) 0.900 0.976 0.061
PC (p-34:2)/PC (o-34:3) - ESI(+) unsaturated phospholipid ethers Lognormal -0.010 (-0.031, 0.011) 0.343 0.864 0.106
PC (p-34:1)/PC (o-34:2) unsaturated phospholipid ethers Lognormal -0.009 (-0.028, 0.010) 0.365 0.873 0.091
PC (p-36:1)/PC (o-36:2) unsaturated phospholipid ethers Lognormal -0.020 (-0.061, 0.021) 0.348 0.864 0.082
PC (p-34:2)/PC (o-34:3) - ESI(-) unsaturated phospholipid ethers Lognormal -0.016 (-0.038, 0.005) 0.144 0.864 0.169
PC (p-36:4)/PC (o-36:5) - ESI(-) unsaturated phospholipid ethers Lognormal -0.019 (-0.046, 0.008) 0.176 0.864 0.169
PC (p-34:1)/PC (o-34:2) A unsaturated phospholipid ethers Lognormal -0.013 (-0.042, 0.015) 0.363 0.873 0.107

Resolvin D1 OH-FA_22_6_1 Gamma -0.282 (-0.991, 0.426) 0.439 0.881 0.099

Metabolite Enrichment Cluster
Regression 

Model

Male ME/CFS vs. Male Control

Biogenic Amines (BA)

Complex Lipids (CL)

Oxylipins (OL)
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Estimated 
Coefficient

95% CI p-value FDR BayesFactor

Acetominophen drugs Lognormal 0.066 (0.023, 0.109) 0.003 0.291 2.586
Alprazolam drugs Lognormal 0.068 (0.018, 0.119) 0.008 0.310 0.850
Acyclovir drugs Lognormal 0.104 (0.031, 0.177) 0.006 0.310 1.688

PE (p-36:2)/PE (o-36:3) - ESI(+) plasmalogens Lognormal -0.029 (-0.045, -0.013) 0.000 0.081 6.915
PE (p-34:2)/PE (o-34:3) plasmalogens Lognormal -0.036 (-0.060, -0.012) 0.004 0.310 2.620
SM (d40:3) sphingomyelins Lognormal -0.026 (-0.046, -0.006) 0.013 0.310 1.103
LPC (18:2) - ESI(-) unsaturated lysophosphatidylcholines Lognormal -0.017 (-0.030, -0.003) 0.016 0.310 0.720
PC (36:2) unsaturated phosphatidylcholines Lognormal -0.008 (-0.012, -0.004) 0.000 0.076 8.626
PC (36:4) A - ESI(+) unsaturated phosphatidylcholines Lognormal -0.017 (-0.028, -0.007) 0.002 0.218 3.025
PC (36:4) A - ESI(-) unsaturated phosphatidylcholines Lognormal -0.018 (-0.030, -0.006) 0.005 0.310 2.130
PC (32:2) - ESI(-) unsaturated phosphatidylcholines Lognormal -0.024 (-0.040, -0.007) 0.006 0.310 1.525
PC 34:4e unsaturated phosphatidylcholines Lognormal -0.023 (-0.037, -0.008) 0.003 0.248 3.559
PC (34:2) - ESI(+) unsaturated phosphatidylcholines Lognormal -0.004 (-0.007, -0.001) 0.021 0.327 0.553
PC (p-34:2)/PC (o-34:3) - ESI(+) unsaturated phospholipid ethers Lognormal -0.019 (-0.028, -0.010) 0.000 0.076 16.961
PC (p-34:1)/PC (o-34:2) unsaturated phospholipid ethers Lognormal -0.022 (-0.033, -0.010) 0.000 0.076 30.007
PC (p-36:1)/PC (o-36:2) unsaturated phospholipid ethers Lognormal -0.052 (-0.084, -0.020) 0.002 0.218 4.636
PC (p-34:2)/PC (o-34:3) - ESI(-) unsaturated phospholipid ethers Lognormal -0.019 (-0.030, -0.007) 0.002 0.248 3.502
PC (p-36:4)/PC (o-36:5) - ESI(-) unsaturated phospholipid ethers Lognormal -0.020 (-0.032, -0.008) 0.001 0.218 6.200
PC (p-34:1)/PC (o-34:2) A unsaturated phospholipid ethers Lognormal -0.025 (-0.042, -0.008) 0.005 0.310 1.458

Resolvin D1 OH-FA_22_6_1 Gamma -0.379 (-0.683, -0.073) 0.016 0.310 0.597

For ME/CFS vs. controls, regression models were adjusted for age, sex, race/ethnicity, geographic/clinical site, season of sampling, body mass index, sr-IBS. In the sex-stratified 
comparisons, regression models were not adjusted for sex. In comparisons within subjects without sr-IBS, regression models were not adjusted for sr-IBS. For lognormal regression, 
estimated coefficients are interpreted as the differences in the mean values of log-log transformation of metabolite levels between cases and controls. For Gamma regression, 
estimated coefficients are interpreted as the log of fold change between two groups. Estimations in bold are signficant in the corresponding comparisons. Criteria for significance: 1) 
FDR adjusted p-value from regression model < 0.15, 2) BayesFactor > 3, and 3) 95% highest density credible intervals not covering 0. The credible intervals were extremely similar 
to the confidence intervals and are shown in Supplementary Table S2, S5, and S7. No primary metabolites were found to be significantly associated with ME/CFS. ME/CFS: myalgic 
encephalomyelitis/chronic fatigue syndrome. sr-IBS: self-reported irritable bowel syndrome. CI: confidence interval. FDR: false discovery rate adjusted p-value.

Biogenic Amines (BA)

Complex Lipids (CL)

Oxylipins (OL)

Metabolite Enrichment Cluster
Regression 

Model

ME/CFS without sr-IBS vs. Control without sr-IBS
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