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Abstract15

Estimating the longevity of an individual’s immune response to the Sars-Cov-2 virus is vital for 16

future planning, particularly of vaccine requirements. Neutralising antibodies (Nabs) are 17

increasingly being recognised as a correlate of protection and whilst there are many studies 18

which follow the response of a cohort of people, each study alone is not enough to predict the 19

long term response. Studies use different assays to measure Nabs making them hard to 20

combine. We present a modelling method which can combine multiple datasets and can be 21

updated as more detailed data becomes available. Combining data from six published 22

datasets we predict that after a short period of rapid decay the half-life of the NAb response is 23

approximately one year giving optimism that the response will be long-lived.24
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Introduction25

As the first waves of Sars-CoV-2 recede a key question in containing the pandemic is the 26

longevity of an individual’s immune response to both vaccines and naturally acquired 27

immunity. As of April 27th 2021, less than 18 months after the virus was first seen, 1.06 billion28

doses had been given to over 500 million people. About 7.3% of the world’s population had29

received at least one dose. However, these figures hide the inequity of the distribution – three-30

quarters of these doses have been received by people in just 10 nations, leaving the remainder 31

spread across the other 170 nations (Kreier, 2021). As second waves of the virus spread 32

across many nations, particularly those with very low vaccination rates like Brazil and India,33

the need to understand both the body’s natural immune response and the vaccine driven 34

response becomes increasingly important. Especially the answer to the key question – How 35

long will immunity last?36

New datasets are constantly being released that measure SARS-CoV-2 neutralising 37

antibodies (Nabs): a widely discussed correlate of protection. High titres of Nabs are positively 38

correlated with protection against SARS-CoV-2 challenge in animal models (Chandrashekar 39

et al., 2020) and the presence of neutralising antibodies protected a small number of 40

individuals from re-infection during a SARS-CoV-2 outbreak on a fishing vessel (Addetia et 41

al., 2020).(Khoury et al., 2021) used in vitro NAb data generated from individuals vaccinated 42

or infected with SARS-CoV-2 to show neutralisation levels are highly predictive of immune 43

protection. However, the difficulties posed by combining data generated from assays with 44

different methodologies was highlighted in this modelling study.45

Collecting data on an individual’s Nabs levels over time is challenging. It may take years for 46

levels to decrease and a wide variation is expected across individuals (Seow et al., 2020). 47

Coupled with this is the dynamics of the response itself. After infection or vaccination Nabs 48

levels tend to increase to a peak then drop slowly. The height of the peak is correlated with 49

the severity of infection (Seow et al., 2020) and can vary by orders of magnitude (Ripperger 50

et al., 2020). Similarly, the timing of the peak may also show a wide range of variation and a 51

delay in Nab production is associated with disease severity (Lucas et al., 2021). Whether the 52

decay rate is also correlated to the disease severity is as yet unknown for SARS-CoV-2.53

Models can help in understanding the behaviour of the response but with such wide variation 54

between individuals robust methods are needed to make the most of data which currently is 55

still close to the infection date for almost all individuals and, even as time progresses, will 56

require extensive longitudinal follow up of many individuals to get comprehensive data.57
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Here we describe a method, which normalises each individuals’ response, so the data can be 58

pooled to give a more robust estimate of the decay portion of the response. We start by 59

predicting the antibody response peak for each individual. We compare four response curves 60

and choose the best fit which uses a kinetic response curve. After using the fitted response 61

curve to predict the peak response (time and magnitude) for every individual in the dataset we 62

then normalise each individuals’ response around their personal predicted peak. This allows 63

all data collected after the peak response to be pooled for every individual in the dataset. We 64

fit a decay function to the pooled data give a robust estimate of the longevity of the immune 65

response.66

Our kinetic response curve for the antibody response has three independent parameters which 67

allow the three key points of the curve: peak timing, peak strength and long term decay rate68

to be independent. The method can be upgraded to use a more complex response curve at 69

this point, for example to distinguish between the two routes to immunity, vaccination and 70

naturally acquired infection, with subtle differences in the shapes of the response curve. At 71

this stage data following up a large cohort of individuals over many months is not yet available, 72

hence our choice of a very simple response curve which captures the phenomenology of the 73

response and can be used on more sparse datasets.74

To estimate the longevity of the Nabs response we compare two very simple decay functions: 75

a single exponential decay and a two-step exponential decay.76

We apply our method to six published datasets and compare our results to the published 77

findings. As the method normalises the response data it has a final advantage: data collected 78

using different assays can be collated. This is done under the assumption that the decay 79

function for every individual has the same shape and simply differs in the scale. As further and 80

more detailed data is collected this assumption can be tested.81

82

Data83

We use publicly available data from five recently published papers. Seow et al. (2020)84

measured the infective dose (ID50) in almost 100 individuals post SARS-CoV-2 infection and 85

showed that the response is similar to that from other acute viral infections, i.e. it shows an 86

initial peak before decaying and the size of the peak is dependent on disease severity. The 87

original work split the group into general cases (labelled Seow here) which included some 88

severe infections, and health care workers (labelled Seow (HCW) here) which predominantly 89
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included mild and moderate cases. Wheatley et al. (2021) measured neutralisation titre and 90

binding inhibition for up to 4 months post infection on 64 participants. Iyer et al. (2020)91

measured neutralisation titre (NT50) responses up to 122 days after infection in 15 patients.92

Lau et al. (2021) measured plaque reduction neutralization in 195 individuals. Finally, 93

Whitcombe et al. (2021) measured inhibition of the RBD/hACE-2 interaction on 112 patients 94

up to 8 months after infection.95

Data from individuals with less than 3 measurements at unique time points were excluded. 96

When multiple replicates on a single day were available the mean value was used. Table 1 97

gives a brief data summary. The timing of each data point was measured as days post onset 98

of symptoms (POS).99

Dataset Source 

(Figure)

Participants Included 

Participants 

(>3 data 

points)

E(number 

of data 

points)

Median 

Time 

POS 

(range)

Measured 

response

Iyer (3a) 15 14 6.1 36.5

(0, 75)

NT50

Lau (3b) 195 17 3.6 46

(0, 194)

PRNT50 titre

Seow (2a) 65 47 4.6 19

(2, 94)

Neutralising 

antibody ID50

Seow 

(HCW)

(5a) 31 23 4.4 31

(-9, 94)

Wheatley (1b) 64 29 3.4 69

(2,149)

Neutralisation 

titre

Whitcombe (3c) 112 23 3.5 159

(2, 246)

Binding 

inhibition

Table 1: Summary statistics of the datasets. Expected number of data points and median 100

time are for included participants only.101

102

Other similar datasets are available, for example (Ripperger et al., 2020) measured antibody 103

titres over time, though only a very small number of individuals had measurements at multiple 104

times, and fewer were at more than 50 days post symptom onset. 105

Of the original published works three had fitted models: in (Whitcombe et al., 2021) we fitted 106

a linear decay model to the logged inhibition data of any individual with a decreasing series 107

and reported the mean of these decay rates; Lau fitted a Weibull model to individual time 108

series of logged data and reported the distribution with the mean coefficients; Wheatley et al. 109
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(2021) fitted a two part linear model to the entire dataset of logged responses, i.e. not to each 110

individual. The approach of Wheatley et al. (2021) assumes each time series only covers the 111

decaying part of the antibody response which can result in misleading results. In particular if 112

any data point for an individual is in the increasing part of the response the predicted decay 113

rate will likely be under estimated, though allowing the model to take two parts does attempt 114

to mitigate this. The method of Whitcombe et al. (2021) to exclude data in the increasing 115

response area avoids this problem but also excludes some data unnecessarily. Our aim is to 116

extend our original model applied in Whitcombe et al. (2021) to provide a method which can 117

give a more accurate picture of the full response curve.118

119

Models120

We tested two types of candidate response curve to fit the time series of each individual’s 121

immune response: three statistical and a kinetic model based on simple virus-antibody 122

kinetics. Statistical response curves were derived from a distribution function with an additional 123

parameter to scale the peak of the distribution. They have the advantage of being confined to 124

a very particular set of shapes, in particular the immune response is forced to decrease at 125

some point in time simply by the shape of the function. However, when the data show very 126

little decrease over time this can result in a response curve that is a very poor fit to the data. 127

The kinetic response curve uses a very simple process based approach to describe the 128

interplay between viral load and antibody response. The advantage here is that the resulting 129

function can be more flexible but this in itself can be a disadvantage as it may result in antibody 130

time series that increase! In all cases the response curves were fitted to logged data 131

(log••(••••••••)) as this provided a significantly better fit in all cases.132

Statistical response curves: We tested Gamma, Weibull and lognormal functions. These 133

functions were chosen as they all show an initial, relatively fast, increase then decay more 134

slowly to zero. The Weibull function can demonstrate decay both slower and faster than 135

exponential using variations in the shape parameter. A Gamma distribution is constrained to 136

always show exponential decay after a long time. A lognormal distribution is heavy tailed, i.e. 137

it always shows slower than exponential decay. Each function has two parameters and a third 138

parameter was used to scale the overall size.139

Kinetic response curve: We propose an alternative response curve based on virus-antibody 140

kinetics. Any proposed response curve must be simple with very few parameters as each 141
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individual time series has only three to eight points. By contrast most models of antibody 142

kinetics are highly complex, attempting to describe the interplay of the many different systems 143

at work in an immune response (Thakar, Poss, Albert, Long, & Zhang, 2010). Our much 144

simpler approach is more suitable for the limited available data. We include two variables •(•)145

the strength of the antibody response at time • and •(•) a measure of the viral load at time •, 146

where • is measured in days. A systematic review including 13 studies that reported viral load 147

in serial upper respiratory tract samples for Sars-Cov-2 (Cevik et al., 2020) found that peak 148

viral load occurred within a week of symptom onset, often soon after or at the time of symptom 149

onset, followed by a constant decline. We assume that viral load has peaked with symptom 150

onset at • = 0 so •(0) = 1 and can only decay after this. We assume that initially, when 151

antibody levels are low, viral load will decay more slowly and as antibody levels rise viral load 152

will decay more quickly. This assumption may not always be true, e.g. in serious disease with 153

high viral load there will often be a very high antibody response but the rest of the immune 154

system is overwhelmed so viral load does not decrease in response. However, this response 155

would be at least partially captured by the model through a very low value of • the viral decay 156

rate parameter. These assumptions result in the model157

••

••
= ••••.158

The antibody response level starts close to zero at •(0) = 0.1 and then increases in response 159

to the size of the viral load. Antibodies also decay exponentially160

••

••
= ••• • ••.161

This simple model results in an antibody response function which initially increases before 162

reaching a peak then decays over time. Once the viral load is zero antibody decay is 163

exponential. The strength and timing of the peak are determined predominantly by • and •164

and the exponential decay rate after the viral load has reached zero is determined by •. These 165

three key aspects of the response, i.e. peak strength, timing and decay rate, are all fully 166

independent of each other.167

A more complex model would also allow viral load to increase at least initially but this would 168

add at least one more parameter leading to fitting restrictions. It would also likely allow more 169

complex dynamics, in particular where viral load could oscillate over time and possibly never 170

reach zero. Whilst these may, in reality, be possibilities, it would need a very complete time 171

series of measurements to fit a response curve of this type so we do not include this here.172

Although the response curve is fitted to antibody responses from natural infection we expect 173

a similar shaped response to vaccination. The viral load variable •(•) would play a different 174
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role in this case but we would expect the overall antibody response to have a similar shape, 175

i.e. an initial increase which slows as it reaches a peak before decaying exponentially. In this 176

respect the simplicity of the presented response curve is a strength that allows it to give 177

reasonable results despite a different mechanism.178

We fit our four candidate response curves to each individual Nabs time series with at least 179

three unique data points. All response curves were fitted using Matlab 2018b lsqcurvefit. 180

In each case the response function •(•) is fitted to log10 response data and time is measured 181

in days post onset of symptoms (POS). Full fitting results for all 153 individuals including 182

parameter values for every individual are available in Table S1. In the full results we report the 183

maximum inhibition as predicted by each response curve and the timing of the peak, the root 184

mean square error between the fitted response curve and the data for that individual. 185

186

Predicting the best fit response curve187

The best fit response curve for each individual’s time series is the one which minimises the 188

root mean square error. As all four curves have three parameters we do not need to use AIC 189

or similar to compare. To establish under what circumstances a particular candidate will fit 190

best we use a simple multinomial regression (Matlab 2019b, mnrfit) to predict which of the 191

four curves is a better fit after accounting for the number of points in the series. We also used 192

a general linear model (Matlab 2019b, fitglm) to predict whether the kinetic response curve193

was a better fit than any of the statistical curves. This allowed us to test the effect of dataset, 194

whether the time series contained any late stage data (more than 3 months POS) or all early 195

stage data (less than 30 days POS) in addition to the number of points196

•••••(••••••• •• •••• •••)~ + ••••••• + •••••••• + .197

198

Estimating key outputs: peak size and timing199

We report the median and bootstrapped confidence interval from 1000 samples for all four 200

curves with each dataset separately for the key outputs of peak strength and timing. Whilst it 201

is recognised that the peak size and timing of an antibody response will vary between 202

individuals a good model will include this variation but still give robust estimates of key outputs 203

that are not affected by outliers in the data. We use the size of the predicted confidence interval 204

as a measure of robustness.205
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Estimating the decay rate and half-life206

To compensate for the scarcity of data we normalise each response to allow the data to be 207

pooled. This allows us to meaningfully combine data from individuals to give a more robust 208

estimation of the rate at which antibodies decay. For each model, we normalise each 209

individual’s time series using the peak size and time predicted by the response curve for that 210

time series, i.e. the time series peak is shifted to • = 0 and the maximum antibody response 211

is scaled to 1 for every individual. We then fit a decay function to all the normalised data that 212

is either at or past the time series peak, i.e. during the decay phase (see Figure 1).213

214

Figure 1: An example of the normalisation technique using the Seow dataset and the peak 215

predicted by the kinetic response curve. A) The raw data for each individual for all data points 216

after that individual’s predicted peak time only. B) The same data normalised at the response 217

curve predicted peak. The red line shows a single exponential decay curve fitted to all the218

points in the dataset.219

220

Figure 1 shows an example of the normalising technique using the Seow dataset and the 221

kinetic response curve. Figure 1A shows all raw data past the response curve predicted peak, 222

as the data is pooled across all individuals this method can also use data from series with only 223

a single point past the peak. Figure 1B scales the raw (unlogged) antibody strength data for224

individual, ••, by the response curve predicted peak strength for that individual, •••••
• , i.e. 225

•••••
• = ••/X••••

• . The time data for each individual, ••, are shifted using the predicted peak 226

time, •••••
• , i.e. •••••

• = •• • •••••
• . Under this normalisation the response curve of each 227

individual now peaks at 1 at • = 0. This normalisation does not affect the exponential decay 228
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rate of the data. Note that for some individuals the first data point after the peak is higher than 229

the predicted peak.230

This method can be used with any decay function. We tested two functions: a single 231

exponential function, i.e. linear decay of the logged data, providing a simple half-life estimate 232

that can be compared to other results; and a two part exponential function (cf Wheatley et al. 233

(2021)) which allows an initial period of fast decay followed by slower decay. The simple linear 234

decay was fitted with Matlab 2019b, fitlm, which gives associated p-values of the slope 235

coefficient and Pearson’s r-squared. The two part function was fitted with Matlab 2019b, 236

lsqcurvefit.237

An advantage of presuming linear decay (on a logged scale) is that when antibodies are 238

assumed to decay exponentially they have an associated half-life, i.e. the time taken for the 239

antibody response to drop by 50%240

•••••••• =
••••(0.5)

.241

This provides a useful and easy estimate of the longevity of the antibody response and 242

associated immunity.243

244

Results245

Figure 2 shows the time series from each dataset (grey lines) and the smoothed data (black 246

line), Matlab 2019b, smooth. The data average is very prone to noise particularly at the start 247

and end of the time series. The coloured lines show the response curves fitted to each 248

individual smoothed across all individuals. Note that the response curve function evaluated at 249

the median or mean of the fitted parameter values is a different result and not a useful output 250

as it is not necessarily indicative of the average behaviour. It is also encouraging that in regions 251

where there is a reasonable amount of data all the candidate response curves give very similar 252

results. However, when data is scarce, e.g. at very early or late time points, the candidate 253

curves can diverge significantly. This shows the problems with using these fitted curves to 254

directly predict the long term behaviour of the response.255
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256

Figure 2: Data and fitted immune response curves. Grey lines show the raw time series data. 257

Black line is the smoothed data curve. Coloured lines show the smoothed curves (over all 258

individuals) fitted to individual time series. Smoothing uses robust Loess splines spanning259

10% of the total data points.260

261

Estimating key outputs: peak size and timing262

The Gamma function gave a poor estimate of these two outputs. It consistently predicted an 263

antibody response that either did not peak within 250 days of symptom onset (excluded from 264

Figures 2 and 3 or peaked at symptom onset, i.e. the best fit function was an exponential 265

where the shape parameter of the Gamma function was equal to 1. The kinetic and lognormal 266

curves give a consistent estimate for the peak antibody strength with a relatively small 267

confidence interval across all six datasets, though the kinetic response curve did fail to predict 268

a decreasing response for 22 time series (14% of individuals across all 6 datasets), see Table 269

S1 for details.  Peak inhibition (Whitcombe data only) was of the order 100% and predicted to 270

peak at approximately 20 days post onset of symptoms (kinetic curve). For all other datasets,271

using the kinetic curve, neutralizing antibody titre was shown to peak between day 18 and day 272

30 after onset at which point median peak titre was between 150 (Wheatley) and 4,800273

(Seow).274
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275

Figure 3: The kinetic and log normal response curves are the most robust across all 276

data sets for estimating the median peak size and time.  The median peak antibody 277

response strength (as measured by the maximum log(Nabs or inhibition)) and timing for all 6 278

datasets and four curves. Error bars show a 95% bootstrapped confidence interval from 1000 279

samples. 280

281

Choosing the best fit response curve282

There was no single response curve that was the best fit to the majority of time series (see 283

Table S1 for detailed results). Of the 153 time series fitted the kinetic response curve was the 284

best fit (measured by smallest RMSE) most often (38%) followed by the Weibull response 285

curve (28%). However this varied across datasets. In the Iyer, Lau and Seow (non-HCW) 286

datasets the kinetic response curve fitted best in the majority of cases, whereas in the 287

Wheatley dataset the gamma function was most frequently the best fit and in the Whitcombe 288

data the Weibull was the best fit most often.289

Despite being the most likely best fit in the Wheatley dataset the Gamma function showed 290

poor consistency across all datasets with a very wide confidence interval showing its lack of 291

robustness to outliers. The timing of the peak showed far more variability across all response 292

curves but again the Gamma function was a consistently poor fit with very high variability 293

whereas the kinetic response curve was the most consistent across 5 of 6 datasets. The 294

Gamma function consistently gave very high and unrealistic estimates of the peak antibody 295

response. It also frequently predicted the peak response to occur either before symptom onset 296

or more than 250 days post symptom onset.297
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When we analysed the choice of best fit response curve using both multinomial and logistic 298

regression the only significant variable was the length of the time series. Only very short time 299

series (three points or less) had an inconclusive best fit – the Weibull and Gamma series were 300

almost equally likely in this case. For a series with at least four points the best response curve 301

was the kinetic one. The probability of the kinetic response curve fitting a time series with 4 302

points best was 37%, this increased to 82% for a series with 7 points. A logistic regression 303

model where the response variable is either the kinetic response curve is the best fit or any of 304

the statistical response curve is the best fit shows the same result and also predicts that 305

dataset is not a significant variable and the timing of the data collection, i.e. samples were 306

taken either all before the antibody response peak or samples were taken more than 90 days 307

post onset of symptoms, is also not significant. Subsequent analysis was carried out using the 308

kinetic response curve.309

310

Estimating the decay rate of the antibody response311

Dataset Published half-

life (days)

Single step decay Two step decay

Decay 

rate 

(p-value)

Half-life 

(days) 

(95% CI)

•• Decay 

rates

Half-lives 

(early, 

late) 

(days)

Change 

point

(days**)

Iyer Not available 0.023 

(10••)

30 

(21,52)

0.28 0.059

0.013

12

52

18

Lau 69 (severe), 

87 (mild), 

31 (asymp)

0.002 

(0.36)

345 

(107, •)

0.03 0.025

0.0006

27

1134

18

Seow Not available 0.03 

(10•••)

22 

(19,27)

0.52 0.070

0.022

10

31

14

Seow 

(HCW)

Not available 0.024 

(10•••)

28  

(22,39)

0.42 0.035

0.011

19

60

34

Wheatley 55 (< day 70*)

519 (> day 70)

0.0083 

(10••)

83 

(63,122)

0.34 0.017

0.0049

41

141

52

Whitcombe 146 0.01 

(0.008)

64 

(37,235)

0.12 0.011

0.011

65

64

21

Combined† Not available 0.0049 

(10••••)

140 

(129,154)

0.08 0.059

0.0020

12

345

17

Table 2: Decay rate, half-life and Pearson’s R-squared for each dataset using each the kinetic312

response curve for normalisation. Light no significant decay relationship. *Days POS. **Days 313

post response peak. †All datasets excluding Lau.314
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One dataset (Lau) showed no significant decay after the predicted antibody peak and 315

correspondingly unrealistic half-life estimates (see Table 2). Contrastingly, both datasets by 316

Seow showed high predictive power (•• = 0.52,0.42(•••)). 317

An advantage of the pooled method is that data from different Nabs assays can be collated 318

provided they can be expected to show a similar response shape and half-life. Combining all 319

five significant datasets, i.e. excluding Lau, predicts a half-life of 140 days (95% CI 129,153) 320

though the predictive power is very poor (•• = 0.08) showing the wide range of variation 321

across individuals.322

323

Discussion324

Of the 5 datasets that showed a significant drop in Nabs post peak antibody response there 325

was a very wide range of predicted half-lives. However, the three datasets with the shortest 326

time range (Iyer, Seow, Seow(HCW)) all predicted much shorter antibody half-lives than the 327

two datasets with a longer time span (Wheatley and Whitcombe). With limited data this may 328

be simply coincidence but it is also consistent with the antibody response not showing a simple 329

exponential decay with a constant half-life.330

Using a two-step decay function gave more consistent results in our study. Only one dataset, 331

Whitcombe, did not show a change in decay rate, which may be due to this dataset containing332

mostly late stage data. The median time to switch from fast to slow decay was 19 days after 333

the peak response and the median half-lives for the fast and slow stages respectively were 23 334

days and 62 days. When the data sets were analysed together the results were even more 335

optimistic showing a fast stage which lasted for 17 days post peak response with half-life of 336

12 days then the half-life increased to 345 days. This implies that one and two years after 337

infection antibodies would be at approximately 23% and 11% of their maximum level338

respectively. This is a highly encouraging result and if vaccine immunity follows a similar 339

pattern it gives hope that yearly or even two-yearly booster immunisations could be sufficient 340

to provide long-lasting immunity.341

Although our method is tested here with antibody data from individuals who have been 342

infected, it will also be useful for predicting antibody levels after vaccination. The underlying 343

antibody response curve can be updated as more comprehensive datasets become available.344

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.13.21258857doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.13.21258857
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page | 13

The biggest assumption of the method presented here is that individuals with a very strong 345

response to the virus will have a similar decay rate as an individual with a much weaker 346

response. More detailed data to test this assumption would allow for a better understanding 347

of the longevity of the immune response. It would also allow for a more detailed understanding 348

of the variation seen between individuals.349

The key advantage of the pooled method applied here is the power to combine data from350

many individuals whilst accounting for the initial increasing phase of the antibody response. 351

As data sets become larger the principle of fitting a simple response curve to predict the 352

antibody peak then normalising the decay phase data against the peak will allow a range of 353

candidates to be tested for the shape of the decay function.354
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