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ABSTRACT 25 

Background: Body composition is a key component of health in both individuals and 26 

populations, and excess adiposity is associated with an increased risk of developing 27 

chronic diseases. Body mass index (BMI) and other clinical or consumer-facing tools for 28 

quantifying body fat (BF) are often inaccurate, cost-prohibitive, or cumbersome to use. 29 

The aim of the current study was to evaluate the performance of a novel automated 30 

computer vision method, visual body composition (VBC), that uses two-dimensional 31 

photographs captured via a conventional smartphone camera to estimate percentage 32 

total body fat (%BF).  33 

Methods: 134 healthy adults ranging in age (21-76 years), sex (61.2% women), race 34 

(60.4% Caucasian; 23.9% Black), and body mass index (BMI, 18.5-51.6 kg/m2) were 35 

evaluated at two clinical sites. Each participant had %BF measured with VBC, three 36 

consumer and two professional bioimpedance analysis (BIA) systems, as well as air 37 

displacement plethysmography (ADP). %BF measured by dual-energy X-ray 38 

absorptiometry (DXA) was set as the reference against which all other estimates were 39 

compared.  40 

Results: Relative to DXA, VBC had the lowest mean absolute error and standard 41 

deviation (2.34%±1.83%) compared to all other evaluated methods (p<0.05 for all 42 

comparisons). %BF measured by VBC also had very good concordance with DXA (Lin’s 43 

concordance correlation coefficient, CCC: overall 0.94; women 0.92; men 0.90); 44 

whereas BMI had very poor concordance (CCC: overall 0.45; women 0.40; men 0.74). 45 

Bland-Altman analysis of VBC revealed the tightest limits of agreement (LOA) and 46 

absence of significant bias relative to DXA (bias 0.85%, R2=0.01; p=0.41; LOA -4.7% to 47 
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+6.4%), whereas all other evaluated methods had significant (p<0.01) bias and wider 48 

limits of agreement.  49 

Conclusion: In this first validation study of a novel, accessible, and easy-to-use 50 

system, VBC body fat estimates were accurate and without significant bias compared to 51 

DXA as the reference; VBC performance exceeded those of all other BIA and ADP 52 

methods evaluated. The wide availability of smartphones suggests that the VBC method 53 

for evaluating %BF can play a major role in quantifying adiposity levels in a wide range 54 

of settings. 55 

 56 

Key Words: Body Composition; Obesity; Body Mass Index; Optical Imaging; Computer 57 

Vision; Deep Learning. 58 
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INTRODUCTION 62 

Body composition is associated with cardiorespiratory fitness and longitudinal 63 

health outcomes1. In clinical practice, body composition assessment is often used to 64 

evaluate dietary habits, excess adiposity and malnutrition, weight loss following bariatric 65 

surgery, and the sarcopenia that often evolves with aging2. Excess adiposity impairs 66 

functional performance, is a major risk factor for developing chronic diseases, and is 67 

often accompanied by poor self-esteem3,4,5.The increased risk of chronic diseases that 68 

accompany excessive fat accumulation are the leading cause of death globally and 69 

contribute to an estimated $210 billion in medical costs in the US annually6,7. 70 

In clinical practice, thresholds for body weight classifications are distinguished 71 

using BMI where adults with BMI ≥25 and ≥30 kg/m2 are characterized with overweight 72 

and obesity, respectively8,9,10. A limitation of BMI, however, is that it cannot discern the 73 

fat component of body mass from lean tissues. As such, adiposity levels are often 74 

misclassified in those who deviate from normalized lean mass percentages including 75 

older adults who have lost muscle with age and athletic individuals with more muscular 76 

builds11,12. As studies have become more inclusive13, it has also become apparent that 77 

body composition, specifically percent body fat (%BF), varies across race and ethnic 78 

groups even after controlling for age and BMI, which leaves placement of weight 79 

category thresholds questionable when applied to the general public14,15,16,17. Due to 80 

these limitations, BMI is an imperfect obesity screening tool despite its widespread 81 

clinical application18,19,20,21. Alternative body composition technologies, such as 82 

bioelectrical impedance analysis (BIA), calipers and anthropometric measurements, are 83 

commonly used due to time and ease of measurement at the expense of 84 
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accuracy22,23,24,25. Imaging techniques such as dual-energy X-ray absorptiometry (DXA), 85 

computed tomography (CT), or magnetic resonance imaging (MRI) are currently 86 

considered the reference standards in body composition analysis due to their ability to 87 

discriminate and localize soft tissues26,27. Nevertheless, these methods are rarely 88 

applied in routine care due to concerns with cost, convenience, accessibility, radiation 89 

dose, and equipment size. 90 

Recently, advancements in optical imaging technology have offered innovative 91 

solutions for creating accurate, precise, and relatively inexpensive methods of 92 

assessing body size, shape, and composition28,29. Three-dimensional imaging devices 93 

have made it possible to easily obtain thorough body measurements and estimate 94 

composition without requiring considerable skill or additional instruction30. However, due 95 

to their size and cost, ranging anywhere between $10,000 to $20,000 USD, current 3D 96 

optical systems remain largely unavailable to most consumers.  97 

 The gap in available accurate and inexpensive tools for consumers to estimate 98 

and track their adiposity level led us to develop a novel imaging approach for 99 

quantifying %BF. The application of machine learning, specifically deep learning, to the 100 

task of body fat estimation from 2D optical images has not previously been explored 101 

sufficiently despite widespread potential because of the inherent complexities in 102 

acquiring reliable ground truth measurements and a lack of large datasets in this 103 

domain. The aim of this study was to evaluate the performance of VBC, a novel body 104 

composition analysis system, in estimating %BF directly from 2D images captured by a 105 

conventional smartphone as compared to multiple other commercial body composition 106 

analysis methods with DXA as the reference measurement.   107 
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METHODS 108 

Trial Design and Oversight 109 

The VBC analysis system was examined in a prospective, clinical validation 110 

study conducted at two clinical trial sites: Massachusetts General Hospital (MGH), and 111 

Pennington Biomedical Research Center (PBRC), Louisiana State University. The study 112 

protocol was approved by the Advarra Institutional Review Board (Columbia, MD) as 113 

well as the MGH and PBRC Institutional Review Boards.  114 

  Participants were contacted by a recruiter who performed pre-screening based 115 

on demographic information as well as inclusion and exclusion criteria. Eligible 116 

participants were asked to arrive at their respective facility for a single 2–3-hour visit 117 

following a 4-hour fast. Upon arrival, they were provided a copy of the consent form and 118 

a private room for the consenting process. Those who agreed to participate completed 119 

the following assessments for %BF: DXA and VBC scans, three consumer-grade 120 

bioimpedance analysis (cBIA) smart scale evaluations, two professional BIA (pBIA) 121 

system evaluations, and air displacement plethysmography (ADP). Women with 122 

reproductive potential also completed a urine pregnancy test prior to undergoing these 123 

assessments.     124 

Trial Participants 125 

Participants were healthy adults recruited using web-based questionnaires, direct 126 

phone calls, media, and community outreach. Included men and women were generally 127 

in good health, between the ages of 21 and 80 years, weighed less than 400 lbs (181 128 

kg), and willing to comply with study procedures. Potential participants were excluded if 129 

they had medical implants such as a pacemaker or a total knee replacement or had 130 
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previously undergone body altering procedures such as arm or leg prosthesis, 131 

amputation, or breast augmentation. Participants were also excluded if they took loop 132 

diuretics within 6 hours of their scheduled visit, had a diagnosis of heart failure, or were 133 

undergoing active cancer treatment.  134 

Trial Procedures 135 

For each of the participants, trained facility staff acquired the following data: 136 

demographic information such as age, sex, ethnicity, height, and weight; anthropometric 137 

measurements taken at the waist, hip, arm, and thigh; 2D photographs captured by a 138 

smartphone camera; %BF estimates from consumer and professional BIA scales, ADP, 139 

and DXA; only participants at PBRC underwent ADP.  140 

  Anthropometry 141 

  Circumference measurements were taken at the waist, hip, arm, and thigh by 142 

trained staff at conventional anatomic locations. Measurements were recorded in 143 

centimeters. 144 

  VBC scan 145 

  Participants were dressed in minimal, form-fitting clothing (Figure 1) without 146 

socks, shoes, or any protruding wearables (watches, jewelry, etc.), such that the mid-147 

thigh and belly button areas were visible to the smartphone camera. Each participant 148 

was asked to stand in an “A” pose and then had four photographs (front, back, left-side, 149 

and right-side profiles) taken with an iPhone-10 (Apple, Inc.) front-facing camera with 150 

their faces out of frame. 151 

  Computer Vision Model. The body composition estimation algorithm consists of 152 

a bespoke convolutional neural network (CNN)31,32 that was trained to estimate %BF 153 
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directly from two input photographs (front and back) of the user standing in an A pose 154 

as shown in Figure 1. The algorithm does not need accurate 3D scans nor high quality 155 

images; the photos were acquired through a smartphone positioned 4-6 feet away from 156 

the participant above their knee height. Of note, the side images are used to generate a 157 

three-dimensional body model (using a different computer vision algorithm), which is a 158 

feature of the commercial product (Amazon Halo); but those images are not used for 159 

estimation of %BF. The VBC %BF algorithm was developed using the Python 160 

programming language (Python Software Foundation; available at www.python.org) and 161 

uses the PyTorch machine learning framework (available at www.pytorch.org and 162 

maintained by Facebook) for training and evaluating the CNN. The developed model 163 

was trained on GPU-enabled machines for speed. 164 

Training. The training dataset is a separate repository consisting of front and 165 

back photos of participants taken from a smartphone, associated with %BF ground 166 

truth. A CNN model was first trained to delineate the body in the image and remove the 167 

background pixels with a high degree of precision. After background removal, the front 168 

and back photos are normalized to a canonical size to account for variations in camera 169 

distance. Using the normalized front and back photos as inputs for training, a second 170 

CNN model is pre-trained to analyze overall shape and details of the body from 2D 171 

images and automatically extract discriminative visual features relevant to body 172 

composition. The architecture of this model uses multiple convolutional blocks with 173 

additional branches for multi-scale feature extraction. The multi-scale extension allows 174 

the network to utilize finer/higher resolution image features and helps in capturing 175 

details across the body fat spectrum. This model is trained to be resilient to noise in the 176 
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input images, robust to normal variations in illumination and camera orientation, and to 177 

be able to work across different camera devices and color-spaces (grayscale/RGB). 178 

Next, transfer learning is applied to fine-tune this model using DXA %BF data. Note that 179 

the data from the current study was not used to train, fine-tune or internally validate 180 

these models. 181 

  Runtime. At runtime, a pair of front and back images are sent into the CNN and 182 

the output is a single %BF measurement.  183 

  Dual-Energy X-ray absorptiometry 184 

  Total body fat was measured on each participant with a Hologic Discovery A or 185 

Hologic Horizon A DXA system (Hologic, Inc., Marlborough, MA, USA). Both DXA 186 

systems were calibrated and operated according to manufacturer guidelines. Attired in 187 

minimal clothing, participants were asked to lay flat on the DXA table for about 10 188 

minutes while the device performed the scan. All scans were evaluated with Hologic 189 

Apex software version 5.6 and the National Health and Nutrition Examination Survey 190 

(NHANES) Body Composition Analysis calibration feature was disabled.  191 

  Bioimpedance Analysis 192 

           Three consumer weight scales capable of BIA-based body composition analysis 193 

were included in the protocol: FitBit Aria 2 (Fitbit, San Francisco, CA); Tanita BF-684W 194 

(Tanita, Tokyo, Japan); and Renpho ES-24M-W/B (Joicom Corporation, Anaheim, CA). 195 

These scales are designated as cBIA 1, cBIA 2, and cBIA 3, respectively, in the 196 

sections that follow. Participants were weighed in duplicate on the consumer scales, 197 

and the results were averaged for analyses. All participants also underwent professional 198 

BIA (pBIA) at PBRC with an InBody S10 (InBody Co., Seoul, Korea) and at MGH with a 199 
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RJL system (Quantum IV, RJL Systems, Clinton Township, MI, USA). These are 200 

designated as pBIA1 and pBIA 2, respectively, in the sections that follow, and were 201 

analyzed separately. Both InBody S10 and RJL Quantum IV use a tetrapolar 8-point 202 

tactile electrode system. The device measures impedance, resistance, and reactance in 203 

body segments at multiple frequencies. Each participant was measured once following 204 

cleaning of the electrodes with alcohol. 205 

  Air Displacement Plethysmography   206 

           Participants who were evaluated at PBRC also had %BF assessed with the BOD 207 

POD ADP device (BodPod Gold Standard Body Composition Tracking System, 208 

COSMED, Rome, Italy). In addition to the specific form fitted clothing for this study, 209 

participants put on a swim cap before entering the device. The BOD POD body 210 

composition test was performed once with each evaluation including two measurements 211 

of body volume that were averaged and then corrected for thoracic gas volume using 212 

the system software (v4.5.0). Fat mass and %BF were calculated from body density by 213 

BOD POD software using Siri’s equation33. 214 

Statistical Methods 215 

  Descriptive statistics were computed for the participant characteristics stratified 216 

by sex, where appropriate. Fixed bias (or mean error) was calculated as the difference 217 

between %BFDXA and %BF estimates from all other methods evaluated: VBC, cBIA1-3, 218 

pBIA1-2, and ADP. Mean absolute error (MAE), standard deviation (SD) of absolute 219 

error, and mean absolute percent error (MAPE) were calculated for all %BF estimates 220 

and stratified by sex, BMI, and race. Wilcoxon signed rank test was used to compare 221 

matched samples to assess whether their population mean ranks differ (i.e., paired 222 
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difference test) for the overall study population and stratified by sex. Pearson correlation 223 

and Lin’s concordance correlation coefficient (CCC) between DXA and all other 224 

methods were also calculated, and stratified by sex. The method of Meng et al34 was 225 

used to determine whether VBC was significantly better correlated to the criterion 226 

method of DXA compared to the cBIA 1-3, pBIA 1-2, and ADP measurements. Bland-227 

Altman plots were created to determine the mean difference and 95% limits of 228 

agreement (LOA) between DXA reference standard and VBC as well as all other 229 

methods. All analyses were conducted using Microsoft Excel (Microsoft, Inc., Redmond, 230 

WA) and Python. Significance was set at an alpha level of 0.05, 2-tailed.  231 
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RESULTS 232 

Participants  233 

A total of 406 adults were initially screened for this study. Of those, 199 met all 234 

inclusion and exclusion criteria and were considered eligible. 138 participants were 235 

enrolled into the clinical study and 134 participants were included in the final analysis; 236 

four participants (2.9%) were removed from the final analysis due to poor image quality 237 

(Figure 2). The demographic and anthropometric characteristics of the final study 238 

sample are shown in Table 1. The ethnic and racially diverse sample was 60.4% 239 

Caucasian, 23.9% Black, 6.7% Asian, 3.0% Hispanic, 0.7% American Indian and the 240 

remaining 5.2% Multiracial, across the two study sites. Participant’s mean age was 241 

43±14.7 years (range, 21-76 years) and BMI  29.7±6.5 kg/m2 (range, 18.5-51.6 kg/m2). 242 

DXA-measured %BF was 39.4±7.2% in women and 28.6±6.4% in men.   243 

Body Composition 244 

VBC achieved the lowest error in estimating %BF with MAE and SD of 245 

2.34%±1.83% and MAPE of 7.2% compared to DXA, with an overall bias of 0.85%. 246 

cBIA 1, 2, and 3 had bias of -0.67%, -0.12%, and -2.93%, respectively. MAE and SD for 247 

these three devices were 4.48%±4.01%, 4.91%±8.7%, and 5.85%±4.86%, respectively. 248 

The bias, MAE, and SD of the pBIA 1, pBIA 2, and ADP systems were -1.07%, 249 

3.13%±2.10%; 0.64%, 4.72%±3.0%; and 0.55%, 3.14%±2.24, respectively. The key 250 

performance measures, including overall bias, MAE, SD, and concordance correlation 251 

coefficient (CCC) of DXA as compared to the seven devices evaluated are presented in 252 

Table 2. Compared to DXA, VBC demonstrated very high concordance (CCC=0.94) in 253 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.10.21258595doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.10.21258595


 
 

13 

the overall sample, which was higher than all other methods evaluated, including ADP 254 

(Table 2).  255 

  Further sub-cohort analyses of the performance of all devices evaluated for 256 

estimating %BF classified by sex, BMI, and ethnicity are summarized in Table 2 and 3. 257 

When stratified by sex, VBC continues to show the lowest MAE and MAPE values. VBC 258 

has MAE±SD 2.23%±1.84%, MAPE 8.4% in men and MAE±SD 2.41%±1.81%, MAPE 259 

6.4% in women. VBC also had very good concordance for both women (CCC=0.92) and 260 

men (CCC=0.90), as shown in Table 2.   261 

Table 3 illustrates results stratified by BMI. Once again, in all three BMI 262 

categories VBC achieves the lowest MAE and MAPE values. BMI<25kg/m2 MAE±SD 263 

2.04%±1.33%, MAPE 6.9%. BMI 25-29.9kg/m2 MAE±SD 2.24%±1.92%, MAPE 8.1%. 264 

BMI>30kg/m2 MAE±SD 2.45%±1.99%, MAPE 6.6%. Table 3 also illustrates results 265 

stratified by race and ethnicity. VBC continues to show the lowest MAE and MAPE 266 

errors out of all methods compared in this study. Caucasian MAE±SD 2.21%±1.75%, 267 

MAPE 7.0%. Black MAE±SD 2.46%±1.93%, MAPE 7.6%. All others MAE±SD 268 

2.36%±2.24%, MAPE 7.2%.   269 

 As shown in Figure 3A VBC achieved the lowest overall mean absolute error in 270 

estimating %BF, which was statistically significantly better than all other methods 271 

evaluated (p<0.05 for all methods), with cBIA 3 yielding the highest error. Furthermore, 272 

Figure 3B shows a pseudo-colored representation of the mean absolute error, both 273 

overall and stratified by sex, BMI, and ethnicity (blue indicates low error and yellow 274 

indicates high error).  275 
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Correlations between %BF evaluated by VBC and DXA among men and women 276 

are shown through scatter plots in Figures 4A and 4B, respectively. VBC achieved very 277 

good correlation for both men and women participants ((R2=0.85 for both sex). The 278 

corresponding Bland-Altman plot for VBC is presented in Figure 4C together with its 279 

limits of agreement (-4.7%, 6.4%).  Individual level validity for all other methods is 280 

presented using Bland-Altman plots in Figures 5A-5F. VBC achieves the tightest limits 281 

of agreement without any statistically significant bias, whereas all other methods had 282 

significant bias (p<0.05) and wider limits of agreement.   283 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.10.21258595doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.10.21258595


 
 

15 

DISCUSSION 284 

 There is a need for an accurate, easy-to-use, and widely accessible tool for 285 

assessment of body composition outside of specialized research facilities. The current 286 

study evaluated the performance of a novel computer-vision based model for estimating 287 

%BF from 2D photographs captured via smartphone cameras. Our findings strongly 288 

support the validity of VBC in estimating adiposity relative to DXA, the reference in this 289 

study for %BF. VBC had the lowest MAE (2.34%±1.83%), highest overall concordance 290 

with DXA (CCC, 0.95), and the tightest limits of agreement (LOA, -4.7%-6.4%) among 291 

the evaluated devices including several BIA systems and ADP.  292 

While multiple other devices are available for capturing a person’s image and 293 

transforming the quantified information into an estimate of body composition35,36 VBC 294 

needs only two photographs of the participant captured via a conventional smartphone 295 

camera. These two images are securely sent to the cloud where they are processed via 296 

two different computer vision models. The first CNN model accurately delineates the 297 

person’s body and removes background pixels with a high degree of precision. The 298 

front and back photos are then size-normalized and used as input to a second CNN 299 

model tasked with analyzing the overall shape and body details. The CNN automatically 300 

extracts visual features relevant to body composition and then generates an estimate of 301 

%BF. Carletti et al described a similar framework to directly estimate %BF from depth 302 

images37. In contrast, VBC does not require specialized or expensive equipment like 303 

depth cameras, but instead, works with conventional smartphone cameras, making it an 304 

accessible tool at the consumer level. 305 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.10.21258595doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.10.21258595


 
 

16 

  Smartphones that usually include cameras are widely utilized, with over 2.5 306 

billion users worldwide38. As such, there is a potential for the novel VBC tool to have 307 

wide scale use to better quantify and monitor adipose stores in persons across weight 308 

classes. Given its ease of use and low-cost, people can readily measure their body fat; 309 

for instance, biweekly or monthly, and correlate its temporal trend with their lifestyle 310 

habits, such as physical activity, dietary changes, and sleep patterns. 311 

  The VBC tool outperformed the BMI and the other evaluated %BF measuring 312 

devices examined in the current study. Body mass index has well-established limitations 313 

as a phenotypic marker of adiposity and the relatively weak associations with %BF (e.g. 314 

two people with same height and weight but different %BF would have the same BMI) 315 

were again demonstrated in the current study. Similarly, VBC outperformed commercial 316 

single frequency BIA systems for home use as they only capture the leg-leg electrical 317 

pathway and are known to have limited accuracy due to several factors that include 318 

variable participant hydration and use of population-specific %BF prediction 319 

equations39,40. The evaluated multi-frequency whole-body pBIA systems overcome 320 

some of the limitations present in the cBIA devices, although VBC still outperformed 321 

them both. The Bod Pod ADP device evaluated at the PBRC site is a recognized 322 

reference method for some types of studies, notably those in which radiation exposure 323 

is a concern, and at centers without available DXA systems41. As with the other 324 

evaluated devices, VBC similarly outperformed Bod Pod relative to DXA as the 325 

reference for %BF in the current study. Hence, given these initial findings, the VBC 326 

method appears to function at least on par, if not better, than professional systems such 327 

as pBIA and ADP.  328 
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 329 

Limitations 330 

While VBC performed well in the current study, several limitations of the device 331 

and our study should be noted. The CNN model was trained with photos of people 332 

wearing minimal and form-fitting clothing. Wearing full length sleeves, pants, shorts 333 

covering parts of the stomach, abdomen or thighs, or loose clothing may yield 334 

inaccurate results. Extremely dark or bright images can hide important visual 335 

information and reduce the model accuracy. Other variables that may cause 336 

inaccuracies are extreme camera tilt, camera positioned too far from the participant, 337 

holding the belly in, scanning after a large meal or an intense workout, flexing muscles 338 

or large deviations from the A pose. The model does not generate %BF estimates 339 

above 64%. The model produces a single number for %BF estimation, but currently 340 

does not provide any details on fat localization. For instance, it does not differentiate 341 

between visceral and subcutaneous adipose tissue. 342 

The study was limited to 134 participants and a larger and more diverse sample 343 

may have further strengthened study findings. However, the study did have enough 344 

power to reach statistical significance for the primary outcome of evaluating the 345 

performance of VBC and various other methods against DXA as the reference standard.  346 

Conclusions 347 

           This study presents the first validation of a novel, accessible, and easy-to-use 348 

system for estimating an individual’s total body fat using only two photographs taken 349 

with a conventional smartphone. The VBC method had the lowest mean absolute error 350 

and standard deviation and the tightest limits of agreement when compared to six other 351 
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state of the art methods. Percent fat estimated by VBC also had stronger concordance 352 

with those by DXA compared to the other methods and BMI. No significant bias was 353 

present for VBC relative to DXA according to a Bland-Altman analysis. These results 354 

strongly support the use and feasibility of VBC for at-home measurement and 355 

monitoring of adiposity.  356 
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Figure Legends 377 

Figure 1. VBC’s computer vision-based algorithm requires images of the user’s front 378 

and back while holding an “A” pose as inputs to the model. 379 

Figure 2. Consort Diagram. 380 

Figure 3. Mean absolute errors (MAE) of the various methods evaluated with DXA as 381 

the reference (3A). MAE in comparison to DXA across various methods evaluated 382 

stratified by sex, BMI, and ethnicity (3B). We defined an acceptable error range as ≤ 3% 383 

(blue). Light blue, white, and yellow shadings indicate errors outside of this range. 384 

*p<0.05 in comparison to VBC-DXA MAE. 385 

Figure 4. Correlation between %BF by VBC and DXA (4A men and 4B women). The 386 

dashed line is identity and the solid line is the automatically fitted regression line. The 387 

correlations in both figures are significant at p<0.0001. Bland-Altman analyses of the 388 

difference between %BF by VBC and DXA (4C). The horizontal black lines are at the 389 

mean±1.96 SD and the dashed gray lines are the fitted regression lines described by 390 

the equation in the panel. 391 

Figure 5. Bland-Altman analyses of the differences between %BF by DXA and the six 392 

methods evaluated for estimation of %BF. Panel A, cBIA 1; Panel B, cBIA 2; Panel C, 393 

cBIA 3; Panel D, pBIA 1; Panel E, pBIA 2; Panel F, ADP. The horizontal black lines are 394 

at the mean±1.96 SD and the dashed gray lines are the fitted regression lines described 395 

by the equations in each panel.  396 
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FIGURE 1 397 
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FIGURE 2 400 
 401 
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FIGURE 3 403 
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Figure 4 411 
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FIGURE 5 418 
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Table 1. Subject characteristics  

  
All Males Females  

Total number  134 52 82 

  Caucasian (%) 81 (60.4)    

  Black (%) 32 (23.9)    

  Asian (%) 9 (6.7)    

  Hispanic (%) 4 (3.0)    

  American Indian (%) 1 (0.7)    

  Multiracial (%) 7 (5.2)    

Age (years) 43 ± 14.7    

Height (cm) 167.8 ± 10.2    

Weight (kg) 84.0 ± 20.8    

BMI (kg/m2) 29.7 ± 6.5    

Waist circumference (cm)  102.2 ± 14.3 96.2 ± 16.3 

Hip circumference (cm)  108.2 ± 11.5 110.1 ± 14.3 

Weight-to-hip ratio  0.94 ± 0.08 0.87 ± 0.07 

DXA %BF   28.6 ± 6.4 39.4 ± 7.2 
Abbreviations: BMI, body mass index; DXA, dual-energy X-ray absorptiometry; 
%BF, percent body fat. Results are X ± s.d. 
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 423 
Table 2. Comparison of %BF estimates to DXA references stratified by sex.  

   VBC cBIA 1 cBIA 2 cBIA 3 pBIA 1 pBIA 2 ADP 

All          

  Bias (%) 0.85 -0.67 -0.12 -2.93 -1.07 0.64 0.55 
  MAE (%) 2.34 ± 1.8 4.48 ± 4.0* 4.91 ± 8.7* 5.85 ± 4.9* 3.13 ± 2.1* 4.72 ± 3.0* 3.14 ± 2.2* 
  MAPE (%) 7.2 14.2 15.4 16.7 10.3 14.0 9.7 
  CCC 0.94 0.80* 0.58* 0.72* 0.92 0.87* 0.92 
Men         

 

  Bias (%) 1.21 0.22 1.55 -1.45 -1.41 -4.58 2.24 
  MAE (%) 2.23 ± 1.8 4.53 ± 5.0* 6.23 ± 13.4* 4.11 ± 3.3* 3.37 ± 2.4 5.01 ± 3.0* 3.50 ± 2.4 
  MAPE (%) 8.4 18.2 22.6 15.5 13.8 17.4 12.5 
  CCC 0.90 0.57* 0.29* 0.74* 0.87 0.54* 0.88 
Women         

 

  Bias (%) 0.62 -1.20 -1.15 -3.82 -0.85 3.99 -0.51 
  MAE (%) 2.41 ± 1.8 4.45 ± 3.3* 4.10 ± 3.1* 6.89 ± 5.3* 2.98 ± 1.8* 4.54 ± 3.0* 2.91 ± 2.1 
  MAPE (%) 6.4 11.8 10.9 17.4 8.2 11.9 8.0 
  CCC 0.92 0.78* 0.79* 0.62* 0.90 0.79* 0.91 
Abbreviations: ADP, air displacement plethysmography; cBIA, consumer bio-impedance analysis; CCC, concordance 
correlation coefficient; MAE, mean absolute error; MAPE, mean absolute percent error; pBIA, professional bio-impedance 
analysis; VBC, visual body composition. *P < 0.05 in comparison to VBC-DXA. Results are X ± s.d. 

 424 
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Table 3. Comparison of %BF estimates to DXA references stratified by BMI and ethnicity.  

   VBC cBIA 1 cBIA 2 cBIA 3 pBIA 1 pBIA 2 ADP 

BMI<25 kg/m2         
 

  Bias (%) 0.94 -1.03 0.76 -5.05 -3.34 0.83 -3.00 
  MAE (%) 2.04 ± 1.3 6.36 ± 3.5 5.75 ± 3.3 7.66 ± 4.6 4.29 ± 2.2 4.41 ± 2.8 3.31 ± 2.2 
  MAPE (%) 6.9 23.0 19.6 24.5 15.7 16.8 11.9 
BMI 25-29.9 kg/m2         

 

  Bias (%) 0.94 -1.03 0.76 -5.05 -1.90 -0.70 0.69 
  MAE (%) 2.24 ± 1.9 3.02 ± 2.3 5.04 ± 14.3 6.00 ± 4.9 2.49 ± 1.4 3.82 ± 3.1 2.3 ± 1.9 
  MAPE (%) 8.1 10.1 17.0 17.3 8.3 12.9 7.5 
BMI≥30 kg/m2         

 

  Bias (%) 1.75 1.48 1.40 1.31 1.62 1.68 3.58 
  MAE (%) 2.45 ± 2.0 4.44 ± 5.0 4.31 ± 3.6 4.60 ± 4.6 2.63 ± 2.0 5.58 ± 2.6 3.67 ± 2.3 
  MAPE (%) 6.6 11.9 11.6 11.2 7.3 14.0 9.6 
Caucasian         

 

  Bias (%) 0.64 -2.07 -0.90 -4.02 -1.39 -0.3 0.18 
  MAE (%) 2.21 ± 1.8 4.23 ± 3.3 4.99 ± 10.8 5.38 ± 4.8 3.16 ± 2.0 3.86 ± 2.6 2.77 ± 1.9 
  MAPE (%) 7.0 13.8 15.8 16.7 10.9 11.3 9.0 
Black         

 

  Bias (%) 1.26 3.10 2.27 0.45 0.77 2.96 2.4 
  MAE (%) 2.46 ± 1.9 5.01 ± 5.1 4.25 ± 3.1 5.87 ± 4.2 3.33 ± 2.0 5.36 ± 3.0 4.48 ± 3.0 
  MAPE (%) 7.6 15.5 12.9 16 9.0 17.0 12.5 
All others         

 

  Bias (%) 1.03 -1.43 -0.85 -4.05 -2.61 0.07 -0.72 
  MAE (%) 2.36 ± 2.2 4.59 ± 4.1 5.66 ± 4.6 5.90 ± 6.0 2.61 ± 2.4 6.15 ± 3.1 2.82 ± 1.7 
  MAPE (%) 7.2 13.7 17.5 17.8 9.2 17.2 8.6 
Abbreviations: ADP, air displacement plethysmography; cBIA, consumer bio-impedance analysis; CCC, concordance 
correlation coefficient; MAE, mean absolute error; MAPE, mean absolute percent error; pBIA, professional bio-impedance 
analysis; VBC, visual body composition. Results are X ± s.d. 
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