A clinical observational analysis of aerosol emissions from dental procedures.

Authors

T. Dudding¹,²,³, S. Sheikh⁴, F. Gregson⁴, J. Haworth³,⁵, S. Haworth¹,²,³, B.G. Main²,³,⁶, A.J. Shrimpton⁷, F.W. Hamilton¹,²,⁸, A.J. Ireland³,⁵, N.A. Maskell⁹, J.P. Reid⁴, B.R. Bzdek⁴,⁵, M. Gormley¹,²,³

¹ MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
² Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
³ Bristol Dental Hospital and School, University of Bristol, Bristol, UK.
⁴ School of Chemistry, University of Bristol, Bristol, UK.
⁵ Royal United Hospital Bath, Combe Park, Bath, UK.
⁶ Bristol Centre for Surgical Research, Population Health Sciences, Bristol Medical School, Bristol, UK.
⁷ School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
⁸ Infection Sciences, Southmead Hospital, North Bristol NHS Trust, Bristol, UK.
⁹ Academic Respiratory Unit, University of Bristol, UK.

& Joint first authors

% Joint last authors

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

There remains uncertainty as to which dental procedures constitute aerosol generating procedures. We aimed to quantify aerosol concentration produced during different dental procedures. Where aerosol was detected, we assessed whether the aerosol size distribution from patient procedures was explained by the non-salivary contaminated instrument source, using phantom head controls. This study obtained ethical approval within the AERATOR grant. Patients were recruited consecutively, and written consent was obtained. Both an optical and an aerodynamic particle sizer were used to measure aerosol, attached to a 3D-printed polylactide funnel 22cm from the patients face. A range of periodontal, oral surgery and orthodontic procedures were captured using time-stamped protocols. High-fidelity phantom head control experiments for each procedure were performed, under the same conditions. Aerosol was measured for each procedure. Where aerosol was detected, phantom head control and patient procedure aerosol size distributions were compared, with the assumption that if the distributions were the same, aerosol detected from the patient could be explained by the instrument source. 41 patients underwent fifteen different dental procedures. For nine procedures, no aerosol was detected. Where aerosol was detected, the percentage of procedure time that aerosol was observed above background ranged from 12.7% for ultrasonic scaling to 42.9% for 3-in-1 air + water syringe. For ultrasonic scaling, 3-in-1 syringe use and surgical drilling, the aerosol size distribution matched the non-salivary contaminated instrument source. High and slow speed drilling produced aerosol from patient procedures which appear to have different size distributions from a phantom head control and so may pose a greater risk of (potentially infected) salivary contamination. Ultrasonic scaling does not appear to generate additional aerosol above that of the instrument itself and therefore does not increase the risk to dental teams, relative to the risk from being in close proximity to the patient.
Introduction

Transmission of respiratory diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus for the coronavirus disease 2019 (COVID-19), can occur through direct or indirect physical contact, droplet inhalation or airborne transmission (World Health Organization 2020). Indeed, it should be recognised that all aerosol particles and droplets smaller than 100 µm diameter are aerodynamically similar and can be transported beyond 2m (Prather et al. 2020). Aerosols and droplets are created when the surface tension of a fluid is overcome by force, for example from air turbines within dental drills (Wilson et al. 2020). High viral loads present in the course of COVID-19 infection make dental aerosols a plausible source of infective particles (Jeong et al. 2020; Wilson et al. 2020; Zhu et al. 2020). A recent study has identified asymptomatic patients attending dental care settings can be positive for SARS-CoV-2 (Conway et al. 2021). Understanding and managing the disease risk posed by dental aerosols is important to protect patients and dental teams.

Aerosol generating procedures (AGPs) may result in respiratory disease transmission, and are defined as any procedure that can result in the release of airborne particles <5 µm in size from the respiratory tract of an individual (Public Health England 2020). Potential AGPs have attracted additional mandatory infection control practices, including personal protective equipment (PPE) such as FFP3 masks, ensuring adequate ventilation and allowing additional ‘fallow’ time between patients to enhance aerosol dispersion (Public Health England 2021). In dentistry there remains uncertainty about which procedures constitute an AGP, with a recent systematic review highlighting this evidence gap (Innes et al. 2021). In the UK, current guidance (Office of Chief Dental Officer England 2020) suggests that high speed drilling (at > 60,000 rpm), ultrasonic scaling, piezo surgery and air polishing should all be classified as AGPs, with no consensus on the use of the 3-in-1 air and water syringe. Given the ubiquitous use of these instruments in dental practice, the enhanced AGP mitigation measures described above have led to a substantial reduction in the number of dental
patients treated during the COVID-19 pandemic (Watt 2020). This has prevented patients accessing timely and definitive dental care, and the British Dental Association has warned of an “oral health crisis” (British Dental Journal 2020).

Although classifying dental procedures as AGP and non-AGP may have been a reasonable starting point, the decision to separate high and low risk dental procedures was based on limited evidence available at the start of the COVID-19 pandemic (Innes et al. 2021). Previous studies suffered from inherent drawbacks, using instruments with limited sensitivity to accurately detect aerosol, such as culture or settling plates, which do not account for the suspension of particles or those removed through ventilation (Dawson et al. 2016; Harrel and Molinari 2004; Leggat and Kedjarune 2001). Others have employed simulation on phantom heads (Allison et al. 2021; Veena et al. 2015), which may not accurately capture the real clinical scenario. For any dental procedure on a patient, there are three aerosol sources to consider. First, the host (patient) aerosol generated during breathing, speaking, or coughing may be infectious (Fennelly 2020). Second, the instrument generated aerosol, which is not considered infectious as there is no physical interaction with the host. Finally, there is salivary-contaminated aerosol generated by the action of the instrument in a potentially infectious host, which might be infective. One challenge in aerosol research is separating this salivary-contaminated aerosol from the non-salivary contaminated instrument source.

In this study we aimed to quantify the aerosol number concentration, in the 0.5 – 20 µm size range, produced during a wide range of dental procedures in a real-world clinical setting. We also aimed to determine whether aerosol detected was intrinsically generated from the non-salivary contaminated dental instrument, or likely to be contaminated using aerosol size distribution analysis and modelling with phantom head controls.
Methods

Ethical approval and patient recruitment

This study obtained ethical approval as part of the AERosolisation And Transmission Of SARS-CoV-2 in Healthcare Settings (AERATOR) study via the Northwest Research Ethics Committee (Ref: 20/NW/0393) and was conducted in accordance with the STROBE guidelines (Strengthening the Reporting of Observational Studies in Epidemiology). Adult patients >18 years old on waiting lists requiring either periodontal, oral surgery or orthodontic treatment were recruited consecutively. Each patient was contacted via telephone, received an information leaflet via post, and provided written consent on the day of treatment.

Environment and equipment

Both an Optical Particle Sizer (OPS) (TSI Incorporated, model 3330, Shoreview, NM, USA; detection range: 0.3-10 μm diameter particles) and an Aerodynamic Particle Sizer (APS) (TSI Incorporated, model 3321, Shoreview, NM, USA; detection range: 0.5-20 μm diameter particles) were used to measure aerosol simultaneously. A custom 3D-printed funnel (RAISE3D Pro2 Printer, 3DGBIRE, Chorley, UK) made from polylactide, with a maximum diameter of 150mm, cone height of 90mm and a 10mm exit port, was attached to both the OPS and APS. The funnel was connected to both the APS and OPS instrument inlets using two pieces of conductive silicone sampling tubing (TSI, 3001788), approximately 0.90m long and 4.80mm in diameter (Fig. 1). Both instruments were set to sample aerosol number concentration once per second. Further detail on the environment and instruments used can be found in the Supplemental Material.

Baseline patient measurements
Baseline readings were taken from each participant including height and weight, tidal breathing at rest (60s), counting out loud (60s) and three voluntary coughs. The funnel was positioned at source (as close to the mouth as possible), with the patient seated upright (Gregson et al. 2021).

Patient dental procedure aerosol measurement

Following an initial pilot study, the optimum funnel position to measure aerosol during dental treatment was determined to be 22cm from soft tissue nasion to the top of the funnel, at approximately 45-degrees on the patient’s left side (11 o’clock position). This provided adequate space to perform the treatment, while being close enough to capture any generated aerosol and was in the path of the exhaled airflow to allow capture of respiratory aerosol. For every case, a full mouth examination was carried out using a dental mirror, followed by local anaesthetic administration when indicated. Each patient received 3-in-1 syringe air drying (30s), water (30s) and then combined air and water (30s) applied to their all their teeth. When necessary, up to 3-minute intervals between procedural steps were allowed for background reading levels to stabilise. The remainder of the treatment session was dictated by clinical need. A detailed description of the periodontal, oral surgery and orthodontic treatments and sample time-stamped protocols are provided in the Supplementary Methods.

Phantom head control procedure aerosol measurement

To measure aerosol generated by the dental instruments alone, we conducted high fidelity control experiments in triplicate, in a phantom head unit. For phantom head control data, the aerosol number concentration and size distribution were extracted for further analysis. Further detail can be found in the Supplementary Methods.
Statistical analysis

Baseline characteristics of patients were reported using median and range for continuous data, alongside counts and percentages for categorical data, stratified by treatment type.

Total procedure aerosol number concentration

The aerosol number concentration for each procedure and baseline measurement were compared by calculating particle number concentration detected above background for each patient (irrespective of particle size). As the length of procedure differed across patients, we sampled the mean particle number concentration across the sampling time for each patient and the per patient values were combined to give median and inter-quartile ranges of total aerosol number concentration for each procedure.

Procedure aerosol size distributions

The aerosol size distributions from the phantom head control and patients were compared, with the assumption that if the distributions were the same, all aerosol detected from the patient during the procedure could be explained by the non-salivary contaminated instrument source (represented by the phantom control). For each procedure, mean aerosol number concentrations (dN) for a range of particle size bins (D_p) were calculated by averaging across patients. These were transformed ($dN/d\log(D_p)/\text{cm}^{-3}$) in order to normalise the data, enabling visual comparison of the size distribution in a standardised form typical for reporting aerosol size distributions (Fig. 1). For each procedure, the shape of the phantom head control and patient size distributions were compared visually.
Figure 1. Description of the parameters used to describe the average size distribution of aerosol number concentration detected above background. Data plotted both on logarithmic scale on the y-axis. The mode width is described by log sigma (σ) and the centre of the mode by DP,C. Mode amplitude parameter (N) was not compared, as it is highly dependent on sampling variability.

The model best describing the size distribution (highest r²) was identified by iteratively altering the number of modes (uni-modal, bi-modal, or tri-modal) using Supplementary Equation S1. Once fitted, mode parameters (N, DP,C, log(σ)) were compared between patient and phantom head control as illustrated in Fig. 1. To further assess if size distributions between the phantom head control and patient differed other than by chance, a two-sided unpaired t-test was used to compare the mode widths (log(σ)) and peak positions (DP,C). The mode amplitude parameter (N) was not compared as it is highly dependent on variabilities in sampling efficiency, (for example direction of the exhaled airflow), which is not comparable across phantom head and patient sampling. After accounting for multiple parameters compared across instruments (n=26), a Bonferroni adjusted p-value of 0.002 was used.

Results

Forty-one patients were included in the study with a median age of 47 (range: 18 – 75) (Supplementary Table 1). The mean background concentration across patients was 0.18 (+/- SD
0.12) particles cm3 (180 particles per litre). In total, fifteen dental procedures were assessed during periodontal, orthodontic, and oral surgery treatments. Of these, examination with a dental probe, hand scaling, local anaesthetic delivery, routine extraction (with forceps and/or elevator), raising a soft tissue flap, orthodontic bracket removal, alginate impression taking, 3-in-1 water only and suturing did not produce any aerosol (Supplementary Table 2). For the other six procedures where aerosol was detected, the percentage of total procedure time that aerosol was observed was 12.7% for ultrasonic scaling, 19.9% for 3-in-1 air only, 42.9% for 3-in-1 air + water, 28.6% for high-speed drilling, 32.9% for slow speed drilling and 35.8% for surgical drilling (Table 1).

Table 1. Dental procedures for which aerosol was detected above background.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Number of patients*</th>
<th>Total sampling time for procedure (s)</th>
<th>Time aerosol detected above background (s)</th>
<th>Percentage time aerosol detected above background (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasonic scaling</td>
<td>12</td>
<td>12,272</td>
<td>1,559</td>
<td>12.7</td>
</tr>
<tr>
<td>3-in-1 air only</td>
<td>35</td>
<td>801</td>
<td>199</td>
<td>19.9</td>
</tr>
<tr>
<td>3-in-1 air + water</td>
<td>33</td>
<td>772</td>
<td>581</td>
<td>42.9</td>
</tr>
<tr>
<td>High speed drilling</td>
<td>15</td>
<td>3,849</td>
<td>1,543</td>
<td>28.6</td>
</tr>
<tr>
<td>Slow speed drilling</td>
<td>15</td>
<td>3,324</td>
<td>1,632</td>
<td>32.9</td>
</tr>
<tr>
<td>Surgical drilling</td>
<td>9</td>
<td>568</td>
<td>316</td>
<td>35.8</td>
</tr>
</tbody>
</table>

* Some procedures were conducted in more than one patient

Aerosol number concentrations from dental procedures

The aerosol number concentration for each procedure is shown in Fig. 2. Participant breathing and speaking had similar number concentrations and size distributions to background aerosol, indicating the background dominated the signal for these activities. High speed drilling produced 10-fold more aerosol (median 118.38 cm3) compared to the other five procedures (ultrasonic scaling, surgical
drilling, 3-in-1 syringe air/air + water, and slow speed drilling), which were comparable with median number concentrations of approximately 10cm^{-3}.

Figure 2. Box and whiskers plot of total aerosol concentration for baseline measurements (orange) and dental procedures for which aerosol was detected above mean background value (green). The aerosol number concentration is reported on a logarithmic scale.

Aerosol size distributions from dental procedures

The aerosol size distributions detected from patient procedures are shown alongside phantom head controls on a linear scale (Supplementary Fig. 1) and a logarithmic scale (Supplementary Fig. 2). Distributions show that, within each procedure, the patient and phantom head have the same number of modes with similar mode widths ($\log (\sigma)$) and peaks ($D_{P,C}$) but different mode heights (N).
Fitted size distributions for ultrasonic scaling, 3-in-1 air + water and slow speed drilling are shown in Fig. 3, the remaining procedure fits are presented in Supplementary Fig. 3.

Figure 3. Size distribution data for 3-in-1 air + water (a, b) and slow-speed drilling (c, d) fitted to Supplementary Equation 1. Mode 1 (red line), mode 2 (green line), mode 3 (dark blue line) and cumulative bi- or trimodal fit (blue line). 95% confidence band is shown as the red shaded area.
Differences between the patient and phantom head control aerosol size distribution parameters were assessed. For ultrasonic scaling, bimodal fits to the patient and phantom head control data show a high level of agreement for the mode width (log(σ)) (Mode 1: p=0.74; Mode 2 p= 0.87) and peak (Dp,c) (Mode 1: p =0.57; Mode 2: p =0.71) between both patient and phantom head control (Fig. 3a,b and Table 2). This indicates that the phantom head control data (instrument source) may account for all the aerosol seen during ultrasonic patient procedures. Similarly, data from surgical drilling, 3-in-1 air + water and air alone could be represented by bimodal fits, with shape of size distribution curves similar for both the patient and phantom head controls. Model parameters were
similar again, suggesting the aerosol detected arose from the dental instrument source (Fig. 3c,d, Supplemental Fig. 3a-d, Table 2).

For high-speed drilling, both the phantom head control and patient data fit can be represented by a trimodal fit, with similar shaped size distribution curves (Supplementary Fig. 3e,f). There was statistical evidence passing the multiple testing threshold, that the size distribution modes were different between the phantom head control and the patients (log(σ)) (Mode 1: \(p = 1.10 \times 10^{-5} \)) and peak (\(D_{P,C} \)) (Mode 2: \(p = 1.81 \times 10^{-3} \)) suggesting the patient aerosol size distribution may not be completely explained by instrument aerosol (Table 2). Slow speed drilling phantom head control data were best represented by a bimodal fit, whereas three modes were required for the patient data. These aerosol size distributions are different from each other, with clear divergence below 3 µm and above 7 µm particle sizes (Fig. 3e,f). This difference in size distributions was reinforced as the parameters showed strong evidence for a difference in Mode 1 (mean difference log(σ) = 0.17 (0.13, 0.20), \(p = 5.54 \times 10^{-6} \); \(D_{P,C} \) = 0.35 (0.16, 0.53), \(p = 1.65 \times 10^{-3} \)) and Mode 2 (mean difference Log(σ) = 0.03 (-0.01, 0.07), \(p = 0.22 \); \(D_{P,C} \) = 0.56 (0.40, 0.72), \(p = 1.89 \times 10^{-6} \)) (Table 2). Therefore, for slow speed drilling the phantom head control data does not fully explain what was observed during patient procedures.

Discussion

In this study analysing aerosol emissions from fifteen different dental procedures at source (as close to the patient as possible), only six procedures generated aerosol detectable above background. Examination with dental probe, hand scaling, local anaesthetic delivery, routine extraction (with forceps and/or elevator), raising a soft tissue flap, orthodontic bracket removal, alginate impression taking, 3-in-1 water only and suturing did not generate detectable aerosol and do not appear to pose an aerosol transmission risk. For the six procedures which did generate detectable aerosol, the
size distributions seen in patients closely matched the size distributions seen in phantom head controls for ultrasonic scaling, 3-in-1 air/ air + water and surgical drilling. Therefore, we did not detect additional aerosol beyond that generated by the instrument source alone, which is a non-contaminated source. With both high and slow speed drilling, there were differences observed between the phantom head and patient aerosol size distributions, with the presence of this unexplained aerosol suggesting potential viral transmission risk cannot be ruled out.

Ultrasonic scaling requires a substantial volume of cooling irrigant and as a result, this procedure was deemed to be an AGP during the early COVID-19 pandemic (Office of Chief Dental Officer England 2020). Our study in patients supports findings from phantom head studies (Allison et al. 2021; Veena et al. 2015) and an N-of-one human volunteer study (Yang et al. 2021) that ultrasonic scaling produces mainly instrument generated aerosol. Similar to Yang et al. and Allison et al., we found the quantity of aerosol produced was low in comparison to high speed drilling (at least 10 times less). We also found that aerosol generation from the ultrasonic was intermittent, with no detectable aerosol for the majority of the time an instrument was in use. This may reflect the intermittent rather than continuous use of dental instruments, that aerosol does not always escape the confinement of the oral cavity, is mitigated by use of high-volume suction, or that there is directionality to the aerosol plume generated, which cannot be continuously sampled.

Particle size distributions from ultrasonic scaling were comparable for both patients and phantom head controls, with statistical analysis suggesting the aerosol detected was largely accounted for by the non-salivary contaminated instrument source. The results were similar for the 3-in-1 air/ air + water and surgical drilling, where patient size distributions again matched the phantom head control data. For orthodontic debonding, during use of both the high and slow speed drills, very high numbers of aerosol particles were detected, supporting recent settling plate (Llandro et al. 2021) and optical particle sizer studies (Din et al. 2020). In our study, there were additional, unaccounted
for modes in these aerosol size distributions, suggesting aerosol was possibly generated from within the oral cavity and not just from the instrument source.

This study aimed to characterise aerosol production during dental procedures, but did not test for the presence of SARS-CoV-2. Observation of increased aerosol emission does not confirm the potential for pathogen transmission. While some air sampling studies have detected viable SARS-CoV-2, others have not, and this remains technically challenging (Borges et al. 2021; Greenhalgh et al. 2021; Meethil et al. 2021). The use of time-of-flight mass spectrometry (MALDI-TOF), fluorescein dye or salivary enzyme markers could be useful in determining if unexplained aerosol contains biological material from the patient. It is also important to reiterate that for AGP aerosol to increase the potential risk of transmission of SARS-CoV-2, it must interact with saliva containing the virus, be of a size distribution that can contain the SARS-CoV-2 particle, withstand irrigant dilution, and ultimately go on to interact with a susceptible host, all of which makes infection from dental procedures unlikely. However, we may not have been able to identify contaminated aerosol if the size distribution of the aerosol was unchanged, or changed so minimally that our instruments were not sensitive enough to detect it. Nonetheless, using our instruments and the relatively low background levels, we accurately measured size distribution profiles to identify differences in patient data, compared to phantom head controls. We considered that any process of aerosol impaction, coalescence, or resuspension within the mouth (thereby contaminating the aerosol), would have significantly altered the observed size distribution.

In this work, the background aerosol level was low for a typical dental surgery (0.18 cm3), but still 50 times higher than can be achieved in a laminar flow theatre setting (Brown et al. 2021). It is possible therefore that very low levels of aerosol may have gone undetected. By only analysing periods where aerosol was detectable above background, this can be considered worst-case scenario, as it assumes this level of aerosol is always being produced, which is unlikely. While we investigated a
wide range of dental procedures, it is not clear if these results can be extrapolated to the same instrument being used for a different purpose (e.g., cutting a cavity using a high-speed drill), or different instruments performing the same procedure (e.g., piezo surgery instead of surgical drilling).

Finally, the OPS and APS can detect a limited range of aerosol particle sizes (0.3-20 μm diameter), and sizes outside this range may be produced. However, larger particles are much more likely to behave like droplets (Micik et al. 1969) and much smaller particles are less likely to harbour the virus (Fennelly 2020).

Finally, it has been suggested that the use of the term AGP should be reconsidered (Hamilton et al. 2021a). Coughing for example, which can occur during any dental procedure (Supplementary Figure 4), generates aerosol in orders of magnitude greater number than many respiratory procedures that are designated AGPs, perhaps posing more of a risk (Hamilton et al. 2021b). Other respiratory activity such as breathing or speaking generates levels of aerosol 10 to 100 times lower than dental instruments (Gregson et al. 2021) and would be difficult to detect in this study. The potential for viral transmission, including SARS-Cov-2 may be determined by the proximity of the dental care professional to the patient, given the possible exposure to short range aerosol and droplet transmission of respiratory aerosol, rather than determined by the instrument being used and so a more holistic approach to risk assessment should be considered (Hamilton et al. 2021a).
Author Contributions

T. Dudding, S. Sheikh, F. Gregson, J. Haworth, S. Haworth, A.J. Ireland, J.P. Reid, B.R. Bzdek and M. Gormley contributed to conception and study design. T. Dudding, S. Sheikh, J. Haworth, and M. Gormley were responsible for data acquisition and curation. T. Dudding, S. Sheikh, F. Gregson, and M. Gormley drafted the initial manuscript and all authors contributed to subsequent drafts. Data analysis was carried out by T. Dudding, S. Sheikh, F. Gregson, J. Haworth, S. Haworth, J.P. Reid and B.R. Bzdek. Data interpretation and critical revisions were completed by T. Dudding, S. Sheikh, F. Gregson, J. Haworth, B.G. Main, A.J. Shrimpton, F.W. Hamilton, A.J. Ireland, N.A. Maskell, B.R. Bzdek, J.P. Reid and M. Gormley and all authors helped write the final version of the manuscript. This study is part of a wider collaboration represented by the AERATOR Group who were responsible for the grant idea, writing and funding of this work. All authors gave final approval and agree to be accountable for all aspects of the work.

Acknowledgements

Firstly, we would like to thank the patients who volunteered to take part in this study and for recognising the value of this work. We thank all the management, administrative and clinical staff at Bristol Dental Hospital and School for their logistical support with this study. In particular Ms Sarah Bain, Dr Julie Weeks, Ms Sarah Constant, Ms Becki Bullock, Ms Kuldip Bhakerd, Ms Cett Scott and Mr James Tubman. We also extend our thanks to the nursing staff and clinicians who assisted with the patient procedures, including Dr Alex Gormley, Dr Charlotte Richards and the BSc Dental Hygiene and Therapy students. We would like to thank the Medical Equipment Management Organisation Clinical Engineering (MEMO) team at University Hospitals Bristol and Weston Foundation Trust, Mr John Woods (Nuview Ltd.) for sourcing and supplying the SCA5000C Air Purification units and Ms Adele Carter, for her assistance with arranging the phantom head simulation equipment. Finally, we acknowledge the AERATOR Group who helped write the grant to obtain the funding for this work.
*AERATOR Group members who contributed to this work include: Alice Milne, James Murray, Johannes Keller, Jules Brown, Andrew Shrimpton, Anthony Pickering, Timothy Cook, Mark Gormley, David Arnold, George Nava, Jonathan Reid, Bryan R Bzdek, Sadiyah Sheikh, Florence Gregson, Fergus Hamilton, Nick Maskell, James Dodd, Ed Moran.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. No corporate funding was received, or any material transfer agreements made with any company or sponsor.

Funding

The AERosolisation And Transmission Of SARS-CoV-2 in Healthcare Settings (AERATOR) study was funded by National Institute of Health Research (NIHR) (Award ID: COV0333) and has been awarded urgent public health status (IRAS-Number: 288784; CPMS-ID: 47097). T. Dudding and S. Haworth are supported by NIHR through the Academic Clinical Fellowship scheme. M. Gormley is supported by a Wellcome Trust GW4-Clinical Academic Training PhD Fellowship. This research was funded in part, by the Wellcome Trust [Grant number 220530/Z/20/Z]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. Bryan R. Bzdek is supported by the Natural Environment Research Council (NE/P018459/1).
References

medRxiv preprint doi: https://doi.org/10.1101/2021.06.09.21258479; this version posted June 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 26(11):1520-1524.

