Title: The missing link between genetic association and regulatory function

Noah Connally¹,²,³, Sumaiya Nazeen¹,²,⁴, Daniel Lee¹,²,³, Huwenbo Shi³,⁵, John Stamatoyannopoulos⁶,⁷, Sung Chun⁸, Chris Cotsapas³,⁹,¹⁰*, Christopher Cassa¹,³*, Shamil Sunyaev¹,²,³*

¹ Brigham and Women’s Hospital, Division of Genetics, Harvard Medical School, Boston, MA, USA
² Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
³ Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
⁴ Brigham and Women’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
⁵ Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
⁶ Altius Institute for Biomedical Sciences, Seattle, WA, USA
⁷ Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
⁸ Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, MA, USA
⁹ Department of Neurology, Yale Medical School, New Haven, CT, USA
¹⁰ Department of Genetics, Yale Medical School, New Haven, CT, USA

* Co-corresponding authors (C. Cotsapas: cotsapas@broadinstitution.org; C. Cassa: ccasa@bwh.harvard.edu; S. Sunyaev: ssunyaev@rics.bwh.harvard.edu)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
The genetic basis of most complex traits is highly polygenic and dominated by non-coding alleles, and it is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite availability of expansive gene expression and epigenomic data sets, few variant-to-gene links have emerged. We identified 139 genes in which protein-coding variants cause severe or familial forms of nine human traits. We then computed the association between common complex forms of the same traits and non-coding variation, revealing that most such traits are also associated with non-coding variation in the vicinity of the same genes. However, we found colocalization evidence—the same variant influencing both the physiological trait and gene expression—for only 7% of genes, and transcriptome-wide association evidence with correct direction of effect for only 4% of genes, despite an abundance of eQTLs in most loci. Fine mapping variants to regulatory elements and assigning these to genes by linear distance similarly failed to implicate most genes in complex traits. These results contradict the hypothesis that most complex trait-associated variants coincide with currently ascertained expression quantitative trait loci. The field must confront this deficit, and pursue the “missing regulation.”

Modern complex trait genetics has uncovered surprises at every turn, including the paucity of associations between traits and coding variants of large effect, and the “mystery of missing heritability,” where no combination of common and rare variants can explain a large fraction of trait heritability\(^1\). Further work has revealed unexpectedly high
polygenicity for most human traits and very small effect sizes for individual variants.

Bulk enrichment analyses have demonstrated that a large fraction of heritability resides in regions with gene regulatory potential, predominantly tissue-specific accessible chromatin and enhancer elements, suggesting that trait-associated variants influence gene regulation2–4. Furthermore, genes in trait-associated loci are more likely to have genetic effects on their expression levels (expression QTLs, or eQTLs), and the variants with the strongest trait associations are more likely also to be associated with transcript abundance of at least one proximal gene5. Combined, these observations have led to the inference that most trait-associated variants are eQTLs, exerting their effect on phenotype by altering transcript abundance, rather than protein sequence. The mechanism may involve a knock-on effect on gene regulation, with the variant altering transcript abundances for genes elsewhere in the genome (a \textit{trans}-eQTL), but the consensus view is that this must be mediated by the variant influencing a gene in the region (a \textit{cis}-eQTL)6. As most eQTL studies profile cell populations or tissues from healthy donors at homeostatic equilibrium, the further assumption has been tacitly made that these trait-associated variants affect genes in \textit{cis} under resting conditions.

Equivalent QTL analyses of exon usage data have revealed a more modest overlap with trait-associated alleles, suggesting that a fraction of trait-associated variants influence splicing, and hence the relative abundance of different transcript isoforms, rather than overall expression levels. Thus, a model has emerged where most trait-associated variants influence proximal gene regulation.
Several observations have challenged this basic model. One challenge comes from the
difference between spatial distributions of eQTLs, which are dramatically enriched in
close proximity of genes, and GWAS peaks, which are usually distal7. Another comes
from colocalization analyses, attempting to map shared genetic associations between
human traits and gene expression. If the model is correct, most trait associations should
also be eQTLs; trait and expression phenotype should thus share an association in that
locus (rather than two association peaks overlapping). However, only 5-40\% of trait
associations co-localize with eQTLs in relevant tissues or cell types6,8–10, and only 15\%
of genes colocalize with any of 74 different complex traits11. Finally, expression levels
mediated a minority of complex trait heritability12. This has led to the suggestion that
most trait-associated alleles influence gene regulation in a context-specific
manner13—either altering expression during development or in response to specific
physiological stimuli—or that they act indirectly in \textit{trans} to affect the regulation of a small
number of genes involved in trait biology (the omnigenic model14,15). Without a set of
true positive cases, in which the gene driving trait variation is known, it remains difficult
to assess either the basic model or the proposed variations.

One source of true positives is to identify genes that are both in loci associated with a
complex trait and are also known to harbor coding mutations causing severe or early
onset forms of related traits (e.g. related Mendelian disorders). The strong expectation
is that a variant of small effect influences the gene identified in the severe form of the
trait. This expectation is supported by several lines of evidence. Comorbidity between
Mendelian and complex traits has been used to identify common variants associated
with the complex traits. A handful of genes have been conclusively identified in both Mendelian and complex forms of the same trait, including APOE, which is involved in cholesterol metabolism, and SNCA, which contributes to Parkinson’s disease risk. Early genome-wide association studies (GWAS) found associations near genes identified through familial studies of severe disease, and more recent analyses have found that GWAS associations are enriched in regions near causative genes for cognate Mendelian traits in both blood traits and a diverse collection of 62 traits.

To test the model that trait-associated variants influence baseline gene expression, therefore, we assembled a list of such “putatively causative” genes. We selected nine polygenic common traits with available large-scale GWAS data, each of which also has an extreme form in which coding mutations of large effect size affect one or more genes with well-characterized biology (Table 1). Our selection included four common diseases: type II diabetes, where early onset familial forms are caused by rare coding mutations (insulin-independent MODY; neonatal diabetes; maternally inherited diabetes and deafness; familial partial lipodystrophy); ulcerative colitis and Crohn disease, which have Mendelian pediatric forms characterized by severity of presentation; and breast cancer, where coding mutations in the germline (e.g. BRCA1) or somatic tissue (e.g. PIK3CA) are sufficient for disease. We also chose five quantitative traits: low and high density lipoprotein levels (LDL and HDL); systolic and diastolic blood pressure; and height. We selected 139 genes harboring large-effect-size coding variants for one of the nine phenotypes (Table 1). These genes were identified in familial studies, and, for breast cancer, using the MutPanning method.
We first examined whether these genes are more likely than chance to be in close proximity harboring variants associated with the polygenic form of each trait. In agreement with existing literature\(^{21}\), we observe a highly significant enrichment. However, in well-powered GWAS, even relatively rare large-effect coding alleles (mutations in \(BRCA1\) which cause breast cancer, for instance) may be detectable as an association to common variants. To account for this possibility, we computed association statistics in each GWAS locus conditional on coding variants. We applied a direct conditional test to datasets with available individual-level genotype data; for those studies without available genotype data, we computed conditional associations from summary statistics using COJO\(^{27}\). After controlling for coding variation, we still detected a highly significant enrichment of our genes under GWAS peaks. Of our 139 genes, 89 (64\%) fell within 1 Mb of a GWAS locus for the cognate complex trait. After fine-mapping the GWAS associations in each locus using the SuSiE algorithm\(^{28}\), we found that 23/139 (17\%) putative causal genes are closer to the GWAS fine-mapped SNPs (posterior inclusion probability > 0.7) than any other gene in the locus, as measured from the transcription start site. Given their known causal roles in the severe forms of each phenotype, we thus suggest that the 89 genes near GWAS signals are likely to be the targets of trait-associated non-coding variants. For example, we see a significant GWAS association between breast cancer risk and variants in the estrogen receptor (\(ESR1\)) locus even after controlling for coding variation; the baseline expression model would thus predict that non-coding risk alleles alter \(ESR1\) expression to drive breast cancer risk.
We next looked for evidence that the trait-associated variants were also altering the expression of our 89 genes in relevant tissues. If these variants act through changes in gene expression, phenotypic associations should be driven by the same variants as eQTLs in relevant tissue types. We therefore looked for co-localization between our GWAS signals and eQTLs in relevant tissues (Supplementary table 1) drawn from the GTEx Project, using three well-documented methods: coloc10, JLIM9, and eCAVIAR29. We found support for the colocalization of trait and eQTL association for only four (coloc), six (JLIM), and three (eCAVIAR) of our 89 putatively causative genes, even before correcting for multiple-hypothesis testing, which is not obviously better than random chance. We note that our estimates of the number of putatively causative genes with colocalization of eQTL and GWAS signal is conceptually distinct from and not directly comparable to the existing estimates of the fraction of GWAS associations colocalizing with eQTLs. This distinction matters because it illuminates the role of eQTLs in known trait biology rather than examining the locus for the presence of a colocalizing eQTL which may or may not be relevant to the complex trait.

A different way to identify potential causative genes under GWAS peaks using gene expression is the transcriptome-wide association study design (TWAS)30–32. This approach measures local genetic correlation between a complex trait and gene expression. Though not designed to avoid correlation signals caused by LD33, the approach has higher power than colocalization methods in cases of allelic heterogeneity or poorly typed causative variants30. We used the FUSION implementation of TWAS,
which accounts for the possibility of multiple cis-eQTLs linked to the trait-associated variant by jointly calling sets of genes predicted to include the causative gene, to interrogate our 89 loci32.

FUSION included our putatively causative genes in the set of genes identified as likely relevant to the GWAS peak in 42/89 (47\%) loci. Genes were often identified as hits in multiple tissues, but with an inconsistent direction of effect—that is, increased gene expression correlated with an increase in the quantitative trait or disease risk in some tissues, but a decrease in others. This may indicate that different tissues have relevant genes that are different, but still called within the same joint set. Because of this possibility, and the known biological role of many of our genes, we restricted our results to tissues with established relevance to our traits. Only 9/89 (10\%) genes were identified by FUSION when we restricted the analysis to relevant tissues, and of these, only five had a direction of effect on the complex trait consistent with what is known from hypomorphic and amorphic Mendelian mutations. This fact, combined with the inconsistent direction of effect across tissues, may indicate that even when putatively causative genes fall within a set of genes jointly called by TWAS, their baseline expression may not be mediating the association.

Our results so far are consistent with trait-associated variants altering the regulation of causative genes in ways that are not well-represented by steady-state gene expression measurements. We thus tried to find fine-mapped GWAS variants that appear in regulatory sites within +/- 1 Mb windows around the transcription start sites (TSS) of our
putatively causative genes. We found that 73 fine-mapped variants with a high posterior probability of association (PIP > 0.7) to a trait fall within a narrow peak of H3K27ac, H3K4me1, or H3K4me3 chromatin modification features. Despite our 1 Mb window, all identified features are located within a 100 kb window around the transcription starts sites of 27/89 (30%) putatively causative genes (two of these genes, ATG16L1 and CARD9, are putatively causative for both CD and UC). Extending our search to include not only fine-mapped variants within chromatin modification features, but also those within 500 bp of features, identifies only two additional putatively causative genes. Restricting our analysis to chromatin features in relevant tissues, 46 fine-mapped variants fall within chromatin features, corresponding to 24 putatively causative genes.

Combining activity and proximity signals, we evaluated an “activity-by-distance” measure, a simplified version of the “activity-by-contact” method. Activity-by-distance uses linear distance along the genome instead of the chromatin contact frequency between feature and TSS. Among the fine-mapped variants that fall inside chromatin modification features, 17 variants appear in the feature with the highest activity-by-distance score in the locus, corresponding to 11 genes.

Next, we relaxed the requirement of proximity to a specific feature and selected all enhancer regions annotated by the ChromHMM method in any measured cell or tissue type. Overall, within +/- 1 Mb windows of our putatively causative genes 120/335 fine-mapped variants fall in an enhancer region (i.e. enhancer, bivalent enhancer, genetic enhancer) highlighted by ChromHMM’s core 15-state model. These enhancers
correspond to 43 putatively causative genes. Restricting our analysis to relevant
tissues, 51/335 fine-mapped variants fall in enhancers, corresponding to 26 putatively
causative genes.

In sum, we observe that fine-mapped variants appear near sites of regulatory
activity—suggested by the presence of activating chromatin marks—for a sizable
minority of our loci. However, 54/89 (61%) putatively causative genes, no fine-mapped
variants are associated with regulatory regions according to either chromatin marks or
ChromHMM. Furthermore, because we connect regulatory features to genes based
solely on proximity, it is possible that our finding of 35 genes represents an
over-estimate.

Overall, our results do not support the assertion that most common non-coding variants
associated with human traits alter baseline gene expression in trait-relevant tissues.
Several explanations may account for this: incorrect assumptions, lack of statistical
power, biological context, and alternative regulatory mechanisms. We discuss each
below.

Incorrect assumptions: it is possible that our putatively causative genes may simply not
be causative in complex trait forms. This would invalidate our underlying premise that
they should be targets of trait-associated variants in the common, complex forms of
phenotypes. This implies that in the vast majority of cases, a common variant
associated with the polygenic form of a trait near a gene known to cause a severe form
actually targets a different gene. For instance, the risk alleles driving the breast cancer GWAS signal near BRCA2, do not alter BRCA2 expression in breast tissue, but instead influence another gene. This would also explain why 42 putatively causal genes do not fall near a GWAS peak. The implication is that the underlying biological causes of an extreme phenotypic presentation are different from the causes of the polygenic form across all nine of the traits we have studied. This, to our minds, stretches credulity given the highly significant enrichment of our genes near significant GWAS loci for cognate phenotypes. We suggest it is more likely that our putatively causative genes are relevant but influenced in some other way by polygenic risk alleles. More parsimonious explanations for the 42 genes are that currently available GWAS are incompletely powered, and thus have not detected association with alleles in those loci; or that strong purifying selection acting on noncoding regions of these genes is preventing noncoding variants from reaching population frequencies detectable by GWAS.

Lack of statistical power: it is possible that complex trait GWAS are insufficiently powered to allow accurate fine-mapping and hence accurate colocalization; that eQTL studies do not detect all eQTLs; that epigenetic studies do not identify all elements; or that colocalization and regulatory element mapping methods lack power to detect overlaps. However, we have ascertained GWAS associations at genome-wide significance, and fine-map the majority of these signals using a Bayesian approach; and the GTEx Consortium eQTL studies have reached saturation for eGene discovery\(^6\).
The upper bound on the power of colocalization methods, under near-ideal circumstances, is 66% at $P < 0.01$ (Barbeira et al. 2020). Under more typical conditions, the portion of GWAS peaks which colocalize with an eQTL is 25% or higher9,10,29. As not all GWAS peaks will share a causative SNP with a \textit{cis}-eQTL, these estimates represent a lower bound on power, with empirical power likely to be much higher. Given our assumption that putatively causative genes are mediating association signals, we would expect that 25% of these associations would colocalize, and that in each case, the gene they colocalize with is our putatively causative gene. We would thus expect \textit{at least} 22/89 (25%) of putatively causative genes near a polygenic trait association signal to have a colocalizing eQTL in relevant tissue. Here, we report all associations without correcting for multiple testing, so we would expect substantially more colocalizations.

We thus cannot attribute the absence of such events to lack of power. This conclusion is supported directly by our analyses: coloc explicitly tests the hypothesis that GWAS and eQTL signals are distinct, and finds strong statistical support for this hypothesis in three times as many loci as it finds evidence for colocalization. This suggests that, in many cases, genetically induced changes to baseline expression of putatively causative genes do not translate into downstream phenotypic effects. At the same time, most GWAS peaks over these genes are not eQTLs in available tissues.

The power of TWAS is comparable to colocalization methods in cases of a single typed causative SNP. Its relative power increases in cases of poorly-typed SNPs, allelic heterogeneity, or apparent heterogeneity (when multiple SNPs tag a single untyped
causative SNP)30. Thus, the paucity of TWAS signals in the correct tissue and with the correct direction of effect cannot be explained by low power.

Biological context: causative eQTLs may only manifest in certain developmental windows, under specific conditions, or in a crucial cell subpopulation. We used data from the GTEx project, which profiled bulk post-mortem adult tissue samples. If causative eQTLs are only present in early development, or under specific exposures or conditions not applicable to the GTEx donors, they would not be captured in these contexts, even though \textit{cis}-eQTLs have been detected for essentially every gene in the genome in the GTEx data6.

Single-cell RNA sequencing (scRNA-seq) studies have identified some eQTLs present in only a subset of the cell types captured in bulk-tissue analysis, but these appear to be limited—van der Wijst et al. found that 60\% of cell type-specific eQTLs replicate in bulk-tissue analysis, and their use of scRNA-seq found only 13\% more eQTLs than bulk-tissue analysis36. It has also been posited that cell type-specific eQTLs may be enriched in disease association37. Additionally, genes causal for disease tend to have more enhancers, which may lead to more complex spatiotemporal expression38. Nonetheless, using this tendency to explain the many putatively causative genes whose expression was not linked to GWAS requires us to believe most genes both have \textit{cis}-eQTLs that do not show up in bulk-tissue analysis, and lack those \textit{cis}-eQTLs which do show up in bulk-tissue analysis. Additionally, nearly all genes identified through
proximity to a fine-mapped variant chromatin mark peak were identified in relevant
tissues, suggesting that our selection of tissue is correct.

A new cell-type TWAS method, which leverages large sample sizes for human bulk
tissues and high-resolution mouse scRNA-seq data to infer cell-type-specific gene
expression for each GTEx sample with respect to each Tabula Muris cell type under an
empirical Bayes framework and produce gene expression prediction models at cell-type
resolution, found no additional disease-associated gene in type II diabetes, and only
one, targeting FGFR2, in breast cancer (albeit not in breast mammary tissue; Huwenbo
Shi and Alkes Price, unpublished correspondence). This argues against context-specific
eQTLs being the most prevalent effect of trait-associated variants.

It is possible for eQTLs to change or disappear over the course of development39.
Because colocalization and TWAS methods rely on eQTL-mapping, such dynamic
eQTLs present a potential blind spot. Chromatin marks provide an orthogonal source of
information generally. Furthermore, because chromatin marks within a
tissue—especially H3K4me3—can remain stable across developmental time40, they
provide specific value in addressing this blind spot.

\textit{Alternative regulatory mechanisms}: finally, it is conceivable that most non-coding
trait-associated variants act not on expression levels, but on other aspects of gene
regulation. For example, splicing QTLs (sQTLs) are enriched in GWAS peaks to the
same extent as eQTLs41,42. However, only 29\% of our trait-associated variants that are
highly likely to be causal (fine-mapping posterior probability > 0.7) fall in introns, despite introns composing 45% of the genome43. Thus sQTLs do not immediately appear as a viable hypothesis to explain the majority of trait-associated variation.

We thus have to explain the observation that putatively causative genes are often near GWAS signals driven by non-coding variants, and that these genes are influenced by baseline eQTLs in relevant tissues, but that trait-associated variants are not driving those eQTLs. This result questions the basic assumption that trait variants act by perturbing baseline gene expression, so that eQTLs in GWAS peaks are necessarily relevant to the mapped trait. That these genes are more likely than chance to be near such non-coding trait-associated variants suggests that both the structure and regulation of these genes is relevant to complex traits. However, our results demonstrate that the mechanism by which our genes influence complex traits is generally not their baseline expression.

Regardless of the root cause, our results have consequences for efforts to uncover the biology underlying human traits by linking variants to molecular function through baseline expression measurements. These variant-to-function methods are currently the most common computational strategies for identifying the biological significance and therapeutic potential of non-coding genetic associations. Though they have successfully identified many genes of biological consequence and clinical promise, most causative genes likely go undiscovered. Given the difficulties many tissues present in obtaining expression data across diverse developmental and environmental contexts, the
limitations of examining baseline expression may present a difficult obstacle to overcome.

There are limited mechanistic models to explain the function of non-coding variants besides their action as cis-eQTLs. Besides sQTLs, another possibility is trans-eQTLs that are not mediated by a cis effect on a gene, such as variants affecting CTCF binding sites\(^\text{37}\), but this fails to explain the enrichment in GWAS signal near putatively causative genes. Though it is likely that power and context play a role in the lack of overlap we observe, for the reasons above it seems improbable that they explain it entirely.

Cumulatively, our analysis shows that whilst gold standard genes are often the closest to a genetic association, more sophisticated analyses incorporating functional genomic data fail to identify them as relevant to the trait in meaningful numbers. There are currently no prominent models to fill this gap, but we must remember that complex trait genetics has overturned our assumptions time and time again.

Figures
Figure 1. Putatively causative genes identified by each method.

The leftmost column displays the entire set of putatively causative genes, along with the subset near a linkage peak, and its subset of genes closest to the peak. For JLIM, Coloc, and eCAVIAR, the portion of genes that were the only gene to colocalize in their locus is noted. The numbers for these methods represent nominal significance thresholds. For TWAS results, the subsets of genes which are in an appropriate tissue and in an appropriate tissue in the right direction are indicated.
A)
B)

Chromatin peaks

- APOB (LDL: 500bp window)
- LPL (LDL)
- FGFR3 (Height)
- GHR (Height)
- NOD2 (CD)
- GCK (T2D)
- GLIS3 (T2D)
- LMNA (T2D)
- SLC29A2 (T2D)
- ESR1 (BC)

ChromHMM

- APOC2 (LDL)
- APOE (LDL)
- ABCA1 (HDL)
- CETP (HDL)
- LPC (HDL)
- LIPC (HDL)
- PLTP (HDL)
- ATG16L1 (CD & UC)
- RNF186 (CD & UC)
- ABCC8 (T2D)
- HNF1B (T2D)
- HNF4A (T2D)
- KCNJ11 (T2D)
- CHEK2 (BC)
- FGFR2 (BC)

- APOA1 (HDL)
- EP300 (Height)
- RECQL4 (Height)
- RNU4ATAC (Height)
- ROR2 (Height)
- IL10RA (CD)
- IRGM (CD & UC)
- KRAS (BC)
- MAP3K1 (BC)
- NUP93 (BC)
- ZFP36L1 (BC)
Figure 2. Genes identified as associated with a complex trait by each method.

A) Positive results for each of the three colocalization methods. B) Positive results for each of the two chromatin methods. C) Positive results for all methods, collapsing A) to “colocalization” and B) to “chromatin.”

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL</td>
<td>APOB</td>
</tr>
<tr>
<td></td>
<td>APOC2</td>
</tr>
<tr>
<td></td>
<td>APOE</td>
</tr>
<tr>
<td></td>
<td>LDLR</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>HDL</td>
<td>ABCA1</td>
</tr>
<tr>
<td></td>
<td>LIPC</td>
</tr>
<tr>
<td></td>
<td>SCARB1</td>
</tr>
<tr>
<td>Height</td>
<td>ANTXR1</td>
</tr>
<tr>
<td></td>
<td>CDC6</td>
</tr>
<tr>
<td></td>
<td>COL1A1</td>
</tr>
<tr>
<td></td>
<td>DNA2</td>
</tr>
<tr>
<td>Gene</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>EP300</td>
<td></td>
</tr>
<tr>
<td>EVC</td>
<td></td>
</tr>
<tr>
<td>EVC2</td>
<td></td>
</tr>
<tr>
<td>FAM157B</td>
<td></td>
</tr>
<tr>
<td>FBN1</td>
<td></td>
</tr>
<tr>
<td>FGFR3</td>
<td></td>
</tr>
<tr>
<td>FKBP10</td>
<td></td>
</tr>
<tr>
<td>GHR</td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td></td>
</tr>
<tr>
<td>NBN</td>
<td></td>
</tr>
<tr>
<td>NIPBL</td>
<td></td>
</tr>
<tr>
<td>ORC1</td>
<td></td>
</tr>
<tr>
<td>ORC4</td>
<td></td>
</tr>
<tr>
<td>ORC6L</td>
<td></td>
</tr>
<tr>
<td>PCNT</td>
<td></td>
</tr>
<tr>
<td>PLOD2</td>
<td></td>
</tr>
<tr>
<td>PTPN11</td>
<td></td>
</tr>
<tr>
<td>RAD21</td>
<td></td>
</tr>
<tr>
<td>RAF1</td>
<td></td>
</tr>
<tr>
<td>RECQL4</td>
<td></td>
</tr>
<tr>
<td>RIT1</td>
<td></td>
</tr>
<tr>
<td>RNU4ATAC</td>
<td></td>
</tr>
<tr>
<td>ROR2</td>
<td></td>
</tr>
<tr>
<td>Blood pressure (systolic and diastolic)</td>
<td>KCNJ1</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>SLC12A1</td>
</tr>
<tr>
<td></td>
<td>SLC12A3</td>
</tr>
<tr>
<td></td>
<td>WNK1</td>
</tr>
<tr>
<td></td>
<td>WNK4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crohn disease</th>
<th>ATG16L1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CARD9</td>
</tr>
<tr>
<td></td>
<td>IL10</td>
</tr>
<tr>
<td></td>
<td>IL10RA</td>
</tr>
<tr>
<td></td>
<td>IL10RB</td>
</tr>
<tr>
<td></td>
<td>IL23R</td>
</tr>
<tr>
<td></td>
<td>IRGM</td>
</tr>
<tr>
<td></td>
<td>NOD2</td>
</tr>
<tr>
<td></td>
<td>PRDM1</td>
</tr>
<tr>
<td></td>
<td>PTPN22</td>
</tr>
<tr>
<td></td>
<td>RNF186</td>
</tr>
<tr>
<td>Disorder</td>
<td>Genes</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>ATG16L1, CARD9, IL23R, IRGM, PRDM1, PTPN22, RNF186</td>
</tr>
<tr>
<td>Type II diabetes</td>
<td>ABCC8, BLK, CEL, EIF2AK3, GATA4, GATA6, GCK, GLIS3, GLIS3, HNF1A, HNF1B, HNF4A, IER3IP1, INS, KCNJ11, KLF11</td>
</tr>
<tr>
<td></td>
<td>LMNA</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>AKT1</td>
</tr>
<tr>
<td>Gene Name</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>ERBB2</td>
<td></td>
</tr>
<tr>
<td>ESR1</td>
<td></td>
</tr>
<tr>
<td>FGFR2</td>
<td></td>
</tr>
<tr>
<td>FOXA1</td>
<td></td>
</tr>
<tr>
<td>GATA3</td>
<td></td>
</tr>
<tr>
<td>GPS2</td>
<td></td>
</tr>
<tr>
<td>HS6ST1</td>
<td></td>
</tr>
<tr>
<td>KMT2C</td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td></td>
</tr>
<tr>
<td>LRRC37A3</td>
<td></td>
</tr>
<tr>
<td>MAP2K4</td>
<td></td>
</tr>
<tr>
<td>MAP3K1</td>
<td></td>
</tr>
<tr>
<td>NCOR1</td>
<td></td>
</tr>
<tr>
<td>NF1</td>
<td></td>
</tr>
<tr>
<td>NUP93</td>
<td></td>
</tr>
<tr>
<td>PALB2</td>
<td></td>
</tr>
<tr>
<td>PIK3CA</td>
<td></td>
</tr>
<tr>
<td>PTEN</td>
<td></td>
</tr>
<tr>
<td>RB1</td>
<td></td>
</tr>
<tr>
<td>RUNX1</td>
<td></td>
</tr>
<tr>
<td>SF3B1</td>
<td></td>
</tr>
<tr>
<td>STK11</td>
<td></td>
</tr>
<tr>
<td>TBX3</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Putatively causative genes

<table>
<thead>
<tr>
<th></th>
<th>TP53</th>
<th>ZFP36L1</th>
</tr>
</thead>
</table>

Supplementary methods

Identifying coding variants

Because many variants can fall within coding sequences in rare splice variants, coding SNPs were selected based on the pext (proportion of expression across transcripts) data\(^44\). Two filters were used. First, genes were considered only if their expression in a trait relevant tissue was at least 50% of their maximum expression across tissues. Second, variants were considered only if they fell within the coding sequence of at least 25% of splice isoforms in that tissue.

GWAS

For height, LDL cholesterol, and HDL cholesterol, GWAS were performed using unrelated individuals of European ancestry from UKBB. The GWAS was run in Plink 2.0\(^45\), using age, sex, BMI (for LDL and HDL only), 10 principal components, and coding SNPs as covariates.

Conditional analysis

Analysis of breast cancer, Crohn disease, ulcerative colitis, and type II diabetes used publically available summary statistics. The summary statistics were corrected for
coding SNPs using an LD reference panel of TOPMed subjects of European ancestry46. These subjects were identified with FastPCA47,48 and extracted using bcftools49.

Colocalization

JLIM9 was running using GWAS summary statistics and GTEx v7 genotypes and phenotypes. Coloc10 was run using GWAS and GTEx v7 summary statistics. eCAVIAR29 was run using GWAS and GTEx v7 summary statistics, and a reference dataset of LD from UKBB50 (Weissbrod et al. 2021).

19. Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale

Acknowledgements

We thank Alkes Price, Alex Bloemendal, Benjamin Neale, Bogdan Pasanuic, Sasha (Alexander Gusev), and Matt Warman for their helpful discussions. This research was supported by NIH grants HG010372, R35GM127131, R01HG010372, and R01MH101244. N.J.C was supported by NIH training grant T32GM74897. UK Biobank
was accessed under projects 14048 and 10438. TOPMed data were used under dbGaP project 28674.