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Abstract1

In this paper, we present methods for building a Java Runtime-Alterable-Model2

Platform (RAMP) of complex dynamical systems. We illustrate our methods by3

building a multivariant SEIR (epidemic) RAMP. Underlying our RAMP is an4

individual-based model that includes adaptive contact rates, pathogen genetic5

drift, waning and cross immunity. Besides allowing parameter values, process6

descriptions, and scriptable runtime drivers to be easily modified during simula-7

tions, our RAMP is easily integrated into other computational platforms, such8

as our illustrated example with R-Studio. Processes descriptions that can be9

runtime altered within our SEIR RAMP include pathogen variant-dependent10

host shedding, environmental persistence, host transmission, and within-host11

pathogen mutation and replication. They also include adaptive social distanc-12

ing and adaptive application of vaccination rates and variant-valency of vaccines.13

We present simulation results using parameter values and process descriptions14

relevant to the current COVID-19 pandemic. Our results suggest that if wan-15

ing immunity outpaces vaccination rates, then vaccination rollouts may fail16

to contain the most transmissible variants, particularly if vaccine valencies do17

not adapt to escape mutations. Our SEIR RAMP is designed for easy-use by18

individuals and groups involved in formulating social-distancing and adaptive19

vaccination rollout policies. More generally, our RAMP concept facilitates con-20

struction of highly flexible complex systems models of all types, which can then21

be easily shared among researchers and policymakers as stand alone applications22

programs.23
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1 Introduction24

Kermack and McKendrick pioneered the application of differential equations25

to modeling the dynamics of disease systems that included susceptible (S), in-26

fected/infectious (E/I) and recovered (R, we use V to include vaccinated) classes27

of individuals [1]. Subsequent extensions of their formulation include, inter alia,28

additional disease and demographic classes [2], multihost and pathogen strain29

considerations [3,4], spatial heterogeneity [5,6], network [7] and individual-based30

formulations [8, 9]. Along with these extensions has come the challenge of “not31

being able to see the forest for the trees” when questions beyond those pertain-32

ing to the profiles of epidemics on homogeneous, well-mixed, large populations33

arise. As with the current COVID-19 pandemic, these questions may relate to34

the emergence of new pathogen variants [10], the effects of waning and cross-35

immunity in hosts with different exposure histories to these variants [11], differ-36

ential transmission and virulence of these variants, issues of spatial heterogeneity37

and host heterogeneity related to age, gender, and health status factors [12].38

We only have the capacity from both technology and human comprehension39

points of view to understand at any one time how a limited number of factors40

may explain or affect epidemiological outcomes when measures are applied to41

mitigate the severity of disease outbreaks. Thus, we are brought to consider the42

issue of how to craft a model so that it has the “appropriate level of complexity”43

to address the questions at hand [13,14]. We otherwise follow Einstein’s dictum44

that “models should be as simple as possible, but no simpler.”45

To facilitate the processes of both “incorporating complexity into” and “strip-46

ping complexity out of” models, we have developed the concept of a Runtime47

Alterable Model Platform (RAMP). This allow us to focus on outcomes rather48

than on the logistics of modifying and coding models and carrying out compara-49

tive analyses. Our RAMP includes panels, windows and sliders that allow users50

to specify and manipulate model parameter values, modify process function de-51

scriptions, and scripting drivers for implementing sets of simulations. Further,52

modifications can be made both at the start of and during the course of a sim-53

ulation, while protecting the integrity of the underlying code. In addition, our54

RAMP automates documentation of all parameter values, process descriptions,55

changes and actions (modifications and substitutions during simulation) in a56

file that is then saved at the end of each simulation. This file is then ready for57

later comparative analyses across sets of simulations, or within data process-58

ing environment that incorporate our RAMP as a component package, such as59

R-Studio.60

RAMPs can be developed for models that address classes of problems, formu-61

lated using a Goldilocks principle. Thus, these classes should not be too general62

so that comparisons within each class require extensive alterations to models63

(members of the class should share significant structural properties with regard64

to process dynamics), but also not too specialized so that comparisons across65

members of the class are too limited to provide answers to question of inter-66

est. Thus we might develop different RAMPs to study genetic, morphogentics,67

epidemiological, evolutionary, geological, and environmental processes.68

Here we provide an example of a RAMP that has sufficient breadth to inves-69

tigate an array of questions pertaining to multivariant epidemiological dynam-70
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ics for directly transmissible diseases, such as the current SARS-CoV-2 pan-71

demic [15,16], influenza [17], or Ebola [13,18]. For simplicity, we refer to this as72

our M-SEIR (multivariant susceptible-exposed-infected-recovered) RAMP. For73

the study of water-borne or vector-borne diseases, similar but somewhat more74

complicated RAMPs will need to be developed. Our M-SEIR RAMP is designed75

to be used by individuals either with no coding skills, or with minimal coding76

skills if they desire to modify some of the process descriptions incorporated into77

the supplied platform. It is sufficiently detailed, however, to allow the user to78

incorporate either supplied or user-altered versions of the following processes: i)79

pathogen variant-specific shedding [19], environmental persistence [20], within-80

host replication [21] and mortality rates [22]; ii) immunological waning with81

variant cross immunity [23, 24]; iii) pathogen variant drift during transmission82

and within-host replication [25]; iv) an adaptive contact rate [26]; v.) a time-83

dependent, uni- or multivalent vaccine rollout [27,28] (Fig. 1; for mathematical84

details see Materials and Methods, as well as our Supplementary Online File—85

here forth referred to as SOF—Appendix A).86

Figure 1: An overview of the processes included in our M-SEIR model (see Table 1
for equation references.) The probability πinf

ih,jl of Ah being infected primarily with
pathogen ` in terms of receiving an effective dose from agent Ai is computed in terms
of a concatenation of shedding rates (ζi`), environmental persistence rates (η`), and
host transmission (βh`) processes (SOF Eq. A.12) and includes both waning and cross
immunity factors. The probability πinv

h``′ that the dominant variant emerging in host
Ah is variant `′ given initial infection with variant ` is computed in terms of within-
host mutation and within-host replication process (SOF Eq. A.13) and also includes
both waning and cross immunity factors. These two probabilities are then used to
compute the overall probability πih,j`′ (SOF Eq. A.14) that infector i, infected with
major variant j, infects infectee h with major variant `′. The quantity Reff(t′) is the
expected number of individuals each infectious agent is expected to infect around time
t′ ∈ [t + σE, t + σE + σI], where R0 = Reff(0) is estimated for our model using SOF
Eq. A.26.

The reason for our inclusion of an adaptive contact rate process is that87
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the local nature of contact rate patterns is well established as an important88

driver of outbreak dynamics [15]. If contact rates remain unchanged during89

the course of an epidemic, then a classic incidence curve (as in Fig. 2) will90

be the result. However, repeated peaks associated with consecutive outbreak91

waves arise as a results of implementing and then relaxing social distancing92

measures [15]. In the absence of social distancing drivers, which vary greatly93

from one location/region/country to another, an automated way to evaluate the94

effects of social distancing measures is through an adaptive contact process of95

the type that we include in our M-SEIR RAMP.96

To illustrate the application of our M-SEIR RAMP, we used it to explore97

aspects of disease incidence and prevalence profiles using parameters that are ap-98

plicable to the SARS-CoV-2 pathogen at the start of the COVID-19 pandemic.99

For example, we compare constant and adaptive (viz., prevalence dependent)100

contact rate processes under different waning immunity scenarios. We also ex-101

plore the emergence of variants for different mutation and variant transmission102

rates. Additionally, we show how our M-SEIR RAMP can be used to evaluate103

the efficacy of uni- and multivalent vaccines applied at various time-dependent104

rates, where choice of valency may switch in response to realtime monitoring105

and surveillance data. Such adaptive vaccination programs may be required106

to combat the evolutionary arms race between vaccine efficacy and the evolu-107

tion of new pathogen variants [25, 28, 29]. We hope, however, that our results108

and subsequent investigations using our M-SEIR RAMP provide the kinds of109

quantitative analyses that can help formulate highly effective local or country110

level vaccination programs that avoid some of the vaccination rollout pitfalls111

revealed by our analysis, as well as encourage the adoption of effective adaptive112

vaccination programs.113

2 Materials and Methods114

2.1 Our M-SEIR in a nutshell115

We constructed an individual-based model (IBM) of a susceptible-exposed-116

infectious-recovered (i.e., an SEIVD model, where removed R are split into117

V=immune/vaccinated, and D=dead) epidemiological process [30, 31] in a ho-118

mogeneous population with a random encounter contact rate parameter κ0 > 0.119

Our formulation allows for the emergence of multiple variants of the pathogen120

during a concatenation of process depicted in Figure 1 and listed in Table121

1. Specifically, our formulation includes a host immunological waning pro-122

cess [23,32] and a mutational process that impacts both transmission of mutant123

variants from the infectee and genetic drift [11, 24, 33] of variants within the124

infector, with rates impacted by cross immunity effects. We also allowed for125

variation in pathogen variant transmissibility (i.e., in the β > 0 parameter of126

the frequency dependent transmission function βSI/N [34, 35]) and pathogen127

virulence as represented by the disease-induced host mortality rate in the sense128

of Anderson and May [36] (and often represented by a parameter α ≥ 0 [34]).129

The detailed formulation of our model and its algorithmic implementation130

is provided in Appendix A (SOF), with references to relevant equations in this131

provided in Table 1. In a nutshell we:132
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1. defined a set of 2J pathogen variants (user selected value for variant en-133

tropy J ranging from 0 to 7; pathogen index j = 0, ..., 2J − 1) with134

a genetic-relatedness topology of a J-dimensional unit cube—i.e., each135

pathogen has J-loci that can take on one of two allelic values at each136

locus with immediate neighboring variants differing from each other by137

exactly one allelic value (0 or 1) at only one of the J loci138

2. defined a population of N0 hosts as belonging at time t to either an epi-139

demiologically näıve set of susceptible individuals S of size NS(t), a set140

A of NA(t) identified agents Ai (i = 1, ..., NA(t)) whose epidemiological141

histories are known, or a set D of ND(t) individuals that have died from142

the disease143

3. allowed pathogen variant-specific transmission “force” (β̄j > 0) and viru-144

lence (αj ≥ 0) parameters to vary in value among one another within a145

defined range β̄j ∈ [βmin, βmax] and αj ∈ [αmin, αmax]146

4. kept track of the total prevalence NI as the sum of the prevalences of the147

individual variants NIj , j = 0, ..., 2J − 1—i.e. NI =
∑2J−1
j=0 NIj148

5. introduced a random contact rate function κ(t) with a constant param-149

eter κ0 that is Poisson distributed on [t, t + 1), t = 0, 1, · · · , multiplied150

by an adaptive response function that reduces the contact rate with in-151

creasing disease prevalence, such that the κ(t) is reduced to κ0/2 when152

the NI(t)/ (N0 −ND) = phalf
I —see SOF Eq. A.7153

6. updated the epidemiological state of the agents Ai with respect to each of154

the variants j = 0, ..., 2J − 1, where the state with respect to particular155

variant j at time t is represented by a list that includes the following J156

entries pertain to the state of Ai with respect to pathogen variant j =157

0, ..., 2J − 1. If the jth entry is:158

(a) 0, then agent Ai has never been infected with this variant159

(b) Ej(t, τij), was infected at time τij ≤ t with this variant, but is not160

yet infectious for an expected period of σE units of time161

(c) Ij(t, τij), then agent Ai was infectious at time t with this variant, for162

an expected period of σI units of time, having been most recently163

infected (reinfections with the same variant may occur) with this164

variant at time τij < t165

(d) Vj(t, τij), then agent Ai has now recovered from its most recent in-166

fection at time τij with this variant and has some level of waning167

immunity to it168

7. assumed that agent Ai can be infectious at time t with at most one dom-169

inant variant (denoted by the index j), although due to mutational pro-170

cesses this agent may infect other agents with variants related to this dom-171

inant variant at much lower rates (i.e., through application of a mutation172

factor µ << 1, applied in our basic model through Eq. A.13)173

8. assumed that agent Ai will have different levels of waning immunity to all174

of the variants to which it has been infected in the past175

9. included waning immunity functions ωij(t) (symbol is omega: SOF Eq. A.6)176

used to compute the level of immunity that agent Ai has to its most recent177

infection by variant j178

10. included cross immunity effects (a J2-matrix C) that apply both to the179

infector transmitting the pathogen and the infectee being invaded (inv; its180

6
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“airport code” as described in SOF Fig. B.3) by the pathogen of interest,181

both of which reduce the likelihood of infection and variant drift by variant182

j compared with closely related variants ` (for a simple example of the183

matrix C, see Eq. 1 in Section 3 below)184

11. computed an infection probability πinf
ih,j` that agent Ai infected with variant185

j infects agent Ah with variant ` in terms of a concatenation of infector186

viral shedding (ζi`; for a simple example see Eq. 6 in Section 3 below), viral187

persistence in the environment (η`), and viral transmission (βh`) processes188

(Fig. 1)189

12. computed an invasion probability πinv
h``′ that an agent Ah infected with190

variant ` becomes infectious with variant `′ as its major variant, in terms191

of the multiplicative effects of viral mutation (µ) and replication (λ`) pro-192

cesses ongoing within an infectee Ah during this infectees exposed (E`′τh`′ )193

and infectious (I`′τh`′ ) periods (Fig. 1)194

13. computed the overall probability πih,j`′ that an infector Ai infected with195

major variant j results in an infectee Ah expressing `′ as its major variant196

197

14. assumed that waning and cross immunity to a particular variant is the198

same for both natural infections and vaccinations that use the antigen199

associated with that variant (of course we can easily extend our model to200

remove this assumption once data become available to support different201

waning and cross immunity rates for natural infections and particular202

vaccines)203

15. implemented a discrete time individual-based stochastic SEIVD (here V204

represents individuals that have either recovered from infection or have205

been vaccinated, D represents cumulative dead; also see [37]) multivariant206

model that includes specifiable time-dependent univalent and multivalent207

vaccination implementations208

2.2 Our RAMP implementation209

Models of systems process can be coded as singular implementations model for-210

mulations using: i) highly efficiently compilable computer languages (e.g., C++,211

FORTRAN, Java); or ii) less efficiently, but more easily coded, scriptable (e.g.,212

JavaScript, Python, Perl) computer languages. More conveniently and expedi-213

tiously, they can be coded up, as discussed in [38], using a systems modeling214

platform, such as Matlab’s SIMULINK, Mathematica, Stella, AnyLogic, Nu-215

merus, or Berkeley Madonna. Advantages of the latter include more rapid and216

accurate model development, though simulations may be slowed down by plat-217

form overhead. Between these extremes, we propose a more general approach218

to specific classes of systems’ models, where the basic system structure is fixed,219

but implementation of some elements can be easily and safely altered so that220

optional implementations are presented at runtime. We call such a design run-221

time alterable-model platforms. (RAMPs); and here we present a Java RAMP222

implementation of the M-SEIR described in the previous subsection.223

The characteristics we envision for a model platform to be a RAMP are:224

1. RAMPs include a set of model parameters (constants) whose values can225

be selected or specified (sometimes within a predefined range of values)226
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Table 1: Variables, indices and functions in our M-SEIR RAMP

Symbols Variables and indices Equation
(See SOF)

Variables
t time (variable and function values depend on time)

NS, NA, ND size of sets S, A and D Eq. A.1

J , j, m, ` and `′ variant entropy and indices (0, ..., 2J − 1) Eq. A.2

NI, NIj total and variant j infectious class size

Ai, Ah specific agents i, h = 1, ..., NA(t) in set A Eq. A.4

Functions (if a parameter now it may be elaborated later as a function)
κ adaptive contact rate Eq. A.7

ωij waning immunity of Ai w.r.t. variant j Eq. A.6

cmj cross immunity encountered by variant j when Eq. A.8
agent previously infected with variant m

φij immunity modifier Eq. A.8

ζij shedding rate of variant j by infector Ai Eq. A.9

η` environmental persistence Eq. A.10

βh` variant transmission to infectee Ah Eq. A.11

πinf
ih,j` probability Ai infects Ah Eq. A.12

µ mutation process factor Eq. A.13

λ`′ within-host replication rate Eq. A.13

πinv
h``′ probability `′ is major variant when ` invades Eq. A.13

πih,j`′ probability `′ is major variant in Ah Eq. A.14
when j is major variant in Ai

at simulation runtime using a switch, nob, slider, or text-entry window227

accessed via a platform graphical interface or dashboard (e.g., see Fig. 2228

and Table 1 which apply to our M-SEIR RAMP).229

2. RAMPs include a specific set of runtime alternative modules, (RAMs),230

where the original can be redefined in a graphical interface window, and231

the unaltered original and the alternative routines are stored as a (prefer-232

ably open-ended) numbered set. The original or any one of the alternatives233

can be selected for use at runtime (for a list of functions in our RAMP234

see Table 2).235

3. RAMP implementations also provide an API for both remote and on-236

board scripting. This API enables control of all user aspects of the simu-237

lation, including the parameter set, run management, RAM options, and238

data retrieval. Script logic can alter parameter settings and RAM options239

as the simulation progresses. A Nashorn-based Javascript interpreter en-240

hanced with API methods is provided.241

4. The API can be accessed remotely using operating system facilities by242

external applications running concurrently with the simulator. Of partic-243

ular interest is the ability to control the simulation from the R statistical244

platform. An R routine can be formulated to both manage the simulation245

run and to retrieve and process the resulting data. The RAMP simulation246
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becomes a “virtual package” to the controlling R logic. See SOF Appendix247

B.248

We implemented our RAMP using Java and made ample use of all of the249

features described above. Use of the RAM facility permitted experimentation250

with the several versions of cross immunity (e.g., Eqs.1 and 2). A Javascript251

program was used to control an adaptive vaccination strategy. A small R pack-252

age serving as a driver was used in an R program that ran the simulations253

multiple times, extracted results into R data structures, and produced graphs254

showing statistical mean and standard deviation. More details on the graphical255

structure and implementation of our M-SEIR are provided in the presentation256

of both the results below and information in SOF Appendix B.257

2.3 Simplifications and Running the model258

In the examples presented in the next section, we have not taken advantage259

of the full complexity of the model. Thus, for example, in our multivariant260

simulations we have assumed that all variants are shed at the same relative261

rate (i.e., ζij = 1 for relevant i and j = 0, ..., 2J − 1) , have the same environ-262

mental persistence properties (i.e., η` = 1 for all ` = 0, ..., 2J − 1), the same263

within host replication rates (i.e., λ`′ = 1 for all `′ = 0, ..., 2J − 1), and are all264

equally virulent (i.e., αj = α for all j = 0, ..., 2J − 1). Obviously, these assump-265

tions can be relaxed once suitable data are available for a particular pathogen266

to support variant specific shedding, persistence, within-host replication, and267

virulence values.268

Further, in the absence of the kind of cross-immunity data obtained from269

cross-neutralization studies to be able to fit values to the cross-immunity param-270

eters cmj in the cross-immunity matrix C we contrast the following two cross-271

immunity scenarios with respect to a global cross-immunity constant c ∈ (0, 1).272

The first we call cascading cross-immunity since the level of cross-immunity273

diminishes multiplicatively with genetic distance of the two strains: viz.274

Cascading C: cmj =

{
1 if j = m
ck if j differs from m by k alleles

(1)

The second we call escaping cross-immunity since when the final allele in the ar-275

ray of J loci mutates from 0 to 1, it escapes completely from cross neutralization276

effects with all strains that have the original allele at the J th locus: viz.277

Escaping C: cmj =

 1 if j = m
0 if j ≥ 2J−1 and ` < 2J provided J > 2
ck otherwise, where j differs from m by k alleles

(2)
Obviously, this is an idealization of the escape mutation phenomenon, which278

we set up here to enable us to evaluate behavior of such mutations. For the279

purposes of this paper, idealized escape mutations are defined as those whose280

level of cross-immunity with the variants from which they arise is 0 (in reality281

some small level of cross immunity may remain).282

Also, in the absence of comprehensive data that allows us to use realistic283

estimates for the relative transmissibility βj and virulence αj of various variants284
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j = 0, ..., J , we employ the following scenario facilitating formulations. These285

permit us to investigate the potential impacts of increased transmission and286

virulence with the emergence of new strains based on the number of mutations287

dj needed to get from variant 0 to variant j. Specifically, for288

dj = Hamming distance between variants 0 and j (3)

and for transmissibility and virulence perturbation parameters δβ and δα re-289

spectively, we define290

Transmissibility: β̄j = β(1 + δβ)dj (4)

(the bar notation here reminds us that this value is used in the computation of291

βij according to equation Eq. A.8) and292

Virulence: pαj
= pαj

(1 + δα)dj (5)

(this is a probability rather than a rate and we have to ensure δα is selected293

such that pαj
(1 + δα)J ≤ 1).294

Also for simplicity’s sake we assumed that infectee with major variant j will295

shed minor variants in the immediate neighborhood of j at comparative rate296

ζ ∈ [0, 1) and be major variant-independent: i.e., we assumed297

Shedding: ζj` =

 1 if ` = j
ζ if ` differs from j by one allele
0 otherwise

(6)

Finally, in this paper we will not investigate any seasonal effects, which is equiv-298

alent to setting δseason = 0 in Eq. A.10, and using this setting in all our simula-299

tion.300

The model itself can be accessed at Github, where instructions are available301

for launching and using our SEIVAgent application.302
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Figure 2: A. The dashboard of our Java Runtime-Alterable-Model Platform (RAMP)
SEIVD (S=susceptibles, E=exposed, I=infectious, V=immune, D=dead) individual-
based model (IBM) and simulations obtained using the parameters values depicted in
the slider windows (also see Table 2). The top left window of this dashboard contains
information on the final state of the population (in this case S = 3898 and D = 143 in
a population of N0 = 10, 000), the bottom left bar graph of dashboard panel is the final
values of E, I, V and D at epidemic cessation at time t = 166 (days) or the simulation
run time, whichever comes first. Dashboard also shows a graph of incidence (purple:
selected using colored buttons below the graph). The bottom ribbon of the dash board
has a series of radio buttons that respectively open a Log, a JavaScript (JS), and a
Scripting (S) window, Line and Bar graph windows (for multivariant runs), as well as
windows for controlling vaccination strategies (V), listing realtime agent information
(A), pathogen parameter values (P), monitoring probability computations (Intern),
coding and controlling runtime alternative operations (Op), and three runtime buttons
(Reset, Step, Run). B. Graphs of prevalence and cumulative deaths (cut out from
main panel when only the red and black buttons are on) and C. daily deaths (crimson
button) are pasted below the dashboard.
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3 Illustrative Examples303

3.1 Single variant simulations304

Parameter values and baseline run305

The first variable that needs to be determined is the unit of time we use for306

our simulations because all process rate parameters are scaled by its selection.307

Since the time resolution of empirical COVID-19 incidence and mortality data is308

daily, we selected our unit of time t to be days. Additionally, based on various309

sources including a metapopulation study of COVID-19 parameter estimates310

[39], we set the latent and infectious periods to be 4 and 7 days respectively.311

Basic SEIR epidemiological models do not separate out the processes of contact312

and transmission-per-contact, so we had some leeway on what values to choose313

for contact rates and transmission rates per contact because it is the value of314

the product of these that is important in determining the reproductive value,315

commonly referred to as “R0” for COVID-19. Hussein et al.’s [39] meta analysis316

of COVID-19 zeroed in on R0 = 3.14 as a mean value across a range of studies317

(95% confidence interval [2.69, 3.59]). By setting our baseline contact rate and318

transmission parameters to be κ0 = 3 and β = 0.3, we estimated the value of319

R0 in our model to be approximately R0 = 3.1. These and the remaining values320

of the parameters used in our simulations are summarized in Table 2.321

Adaptive contact rate322

None of the major outbreaks of COVID-19 around the world followed a classic323

“rise-and-fall” incidence curve because of social distancing and other measures324

taken to mitigate transmission once it had been determined that a full-blown325

outbreak was underway. These measures waxed and waned with government326

regulations and the perception that the outbreak was respectively under or out327

of control. This, in turn, resulted in incidence profiles that rose and fell multi-328

ple times (i.e., so-called waves) as these measures waxed and waned. Thus, it329

is not possible to replicate the incidence curves of any of the country/regional330

epidemics without characterizing the social distance and subsequent social re-331

laxation measures driving their rise and fall [15].332

In a general way, we can capture the gestalt effects of this kind of social333

behavior by assuming the contact rate κ(t) is influenced by current or recent334

prevalence levels, where current prevalence is given by the ratio of the number335

of infected individuals NI(t) to current population size N(t)−ND(t). Thus, in336

the various scenarios present below, we assume an adaptive response rate that337

has a maximum value κ0 when I(t) = 0 and is reduced to half this value, as338

a declining sigmoidal curve specified in Eq. A.7, when NI(t)
N(t)−ND(t) = phalf

I . If339

we simulate the first year of an epidemic using our basic parameters (Table 2;340

also see parameter panel in Fig. 2) and adaptive contact half-max parameters341

for the cases phalf
I = 0.01 and 0.02 (i.e., 1% and 2% prevalence respectively), we342

obtain the percent of susceptibles (uninfected) and cumulative deaths by day343

365 provided in Table 3.344

For purposes of comparison, we also provide in Table 3 the percent of suscep-345

tible individuals and percent of deaths due to COVID-19 one year after the day346
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Table 2: Parameter values used to simulate single and multivariant outbreaks

Parameter Symbol Value Source/Comment

single-variant simulations
Time unit t daily empirical data is daily

Nominal pop size N0 105-107 see Section 3.1‡

Effective contact rate† κ0 3 per day implies R0 ≈ 3.1+

Transmission β 0.3 implies R0 ≈ 3.1+

Latent Period σE 4 days median time in E¶

Infectious period σI 7 days median time in I§

Immunity half-life thalf 1/2 to 1 year± per run specs.‖

Disease-induced mort.∗∗ pα 2% of cases∗ mortality rate is α#

Adaptive contact param. phalf
I 0, 0.002, 0.05 decreasing κ(I)∗†

Seasonal fluctuation param. δseason 0 seasons ignored∗+

Multi-variant simulations (single-variant parameter values used where applicable)

Mutation factor∗‡ µ 0.001∗# See Eq. A.13

variant number j = 0, ..., 2J−1 J is 0 to 7 i.e., 2 to 128 variants

Cross immunity cmj 0.8 Eqns. 1, 2

Pathogen shedding ζ̄j` 0.001∗# See Eq. A.9

Environmental persistence η̄j 1 for all j See Eq. A.10

Transmission β̄j δβ ∈ [0, 0.2] See Eq. 4

Within-host replication rate λj 1 for all j See Eq. A.13

Disease-induced mort.∗∗ pαj 0.02 See Eq. 5

‡In particular see discussion headed: Population size and demographic stochasticity
+See Eq. A.26
†See Eq. A.7
¶Reciprocal of γ in continuous time computation of R0 per Eq. A.26
§Reciprocal of ρ in continuous time computation of R0 per Eq. A.26
±Based on statement in [23]: “... studies of animal coronaviruses antibody titers ... waned
substantially 1 year after initial infection ... and many could be reinfected and shed virus ...”
‖See Eq. A.6: note w(t) switches from 1 to 0 as immunity goes from complete to absent
∗Value at start of the pandemic, but typically lower later in most regional epidemics #This

is “virulence” parameter of continuous-time SEIR models
∗∗If α << 1 then pαj = 1− e−α ≈ α
∗†See Eq. A.7. Setting phalf

I = 0 implements κ(0) = κ0, though κ(t)→ κ0 as phalf
I →∞

∗+Implies values of k and θ in Eq. A.10 are irrelevant
∗‡variant independent—variant dependence requires more elaborate model
∗#Quantifies the mutation rate observed at a population rather than within-cell replication

level
∗∗If αj << 1 then pαj = 1− e−αj ≈ αj

on which more than 10 cases of COVID-19 were recorded to occur in the USA,347

Italy and Czechia (extracted from data provide at Worldometer). Since these348

data are known to be substantially under reported for both cumulative preva-349
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lence [40] and deaths [41], we felt that phalf
I = 0.01 (i.e. 1% prevalence) provides350

a reasonable ballpark value for an adaptive contact rate half-max parameter for351

our various illustrations provided in below.352

Table 3: Basic runs with one million individuals (N = 1, 000, 000) using two
different half-max adaptive contact parameter values phalf

I compared with listed
countries∗

phalf
I USA Italy Czechia

1% 2% (values under reported)‡

Uninfected at day 365 82% 71% 93% 95% 88%

COVID-19 deaths by day 365 0.34% 0.55% 0.12% 0.17% 0.21%

∗Data from Worldometer
†One year after the first 10 recorded cases in the countries concerned
‡Substantial under reporting occurs for both cases [40] and deaths [41].

Population size and demographic stochasticity353

Deterministic SIR/SEIR and related models will always produce an epidemic354

whenever the parameters ensure that R0 > 1 [2, 34]. Since these models do not355

include the demographic stochastic effects associated with finite populations,356

they are unable to capture the phenomenon of stochastic extinction of the epi-357

demic before it gets going when a single infected individual is introduced into358

an otherwise infected population (with regard to the pathogen in question; see359

discussion in SOF A.4). In such models, results are either cited using percent-360

ages or numbers per thousand or per hundred thousand individuals and the361

actual population size is not regarded as a factor. Population size, however, is362

a factor in determining the absolute size of an epidemic once it gets started and363

deterministic models provided a robust assessment of the course of the epidemic364

in populations consisting of millions of individuals (other factors, such as spatial365

or contact network structure play a more important role than size per se [5–7]).366

To get a sense of the effects of demographic stochasticity on populations of367

different sizes in our simulations, we compared the prevalence, incidence, and368

cumulative deaths obtained for single runs (runtime seed = 1) of a basic adaptive369

contact rate scenario (basic parameters plus phalf
I = 0.01) for cases where the370

initial population sizes where N0 = 10, 000, 100,000 and 1,000,000 (Fig. 3A-C).371

We also compared the mean prevalence plus/minus 1 standard deviation (sd) for372

100 runs (runtime seeds ranging from 0 to 99) for the two cases N0 = 10, 000 and373

100,000 over both the first year (Fig. 3D & E) and the first 100 day (Fig. 3F).374

The results depicted in Fig. 3 can be encapsulated in the following four375

well-established principles:376

1. The initial phase of an outbreak is independent of population size and377

establishment of an epidemic depends solely on the value of R0 (SOF,378

Append A.4). Thus, as we see in Fig. 3F, the first 50 days of the mean379

prevalence for the simulations of the cases N = 10, 000 and N = 100, 000380
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are virtually identical, only departing from one another from around day381

50 onwards.382

2. Beyond the initial phase, stochastic fluctuations are more evident in smaller383

than larger populations (compare Figs. 3A, B and C)384

3. Ultimate prevalence levels, aside from stochastic fluctuations are indepen-385

dent of population size. Thus, for example, we see that prevalence maxes386

out at round 0.6% in all three cases (dotted line) across a range of two387

orders of magnitude in population size.388

4. Mean population prevalence will always max out at lower levels than the389

prevalence reached in actual runs (viz. the max exceeds 7% individual390

runs in Fig. 3A-C while it is between 4% and 5% for the red curves in391

Fig. 3D&E) because the mean values take into account the fact a propor-392

tion 1/R0 of the runs go extinct within the first several weeks [42].393

Figure 3: A-C: Plots of percentage prevalence (red), incidence (purple) and cumula-
tive dead (black) for 365 day simulations using the parameter values given in Table 1
with the adaptive contact rate parameter phalf

I = 0.01 (see Eq. A.7) and N = 10, 000,
N = 100, 000 and N = 1, 000, 000 respectively. D-E: Plots of mean percentage preva-
lence (red) over the first year plus (green) minus (blue) 1 standard deviation over 100
runs (runtime seeds going from 0 to 99) for the cases N = 10, 000 and N = 100, 000
respectively. F: Plots of the actual prevalence (number of individuals) for the first 100
days for the cases N = 10, 000 (red) and N = 100, 000 (black).

3.2 Multivariant simulations394

We carried out a series of multivariant simulations with J = 4 (i.e., 16 variants395

can emerge) in a population of size N = 50, 000. We compared the scenarios of396

cascading cross immunity with c = 0.8 (Eq. 1) and transmissions rates the same397

for all variants (Fig. 4A) with the same cascading cross immunity as in Fig. 4A,398
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but now we allowed transmission to increase by 20% for each mutation difference399

between variant j and variant 0 ((Eq. 1; βj = 0.3, j = 0, ..., 15, δβ = 0.2 and400

βj , j = 1, ..., 15, determined using Eq. 4). Finally, we compared the scenario401

of cascading cross immunity with that of escaping cross immunity for the case402

c = 0.8 (Eq. 2), and obtained the results provide in Fig. 4C. The severity of403

each scenario is encapsulated in the total death statistic over the course of the404

two-year simulation.405

Figure 4: Total daily incidence (∆I+: purple) and variant-specific prevalence (I: red)
for a 16-variant epidemic in a population of size N = 50, 000 (for other parameter
values see Table 2) are plotted over a two-year period for the three cases: A. cascade
cross immunity δβ = 0.0 (i.e., all βj = 0.3, j = 0, ..., 15) and δβ = 0.2 (i.e., β0 = 0.3,
β15 = 0.622 and βj , j = 1, ..., 14, determined using Eq. 4). Variant number and
corresponding binary representation as labeled in red for dominant or co-dominant
variants (incidence at some point > 50 individuals per day) and gray for minor variants
(incidence always < 50 over the two-year simulation). The order of emergence of
dominant or co-dominant variants is labeled in green. Note that each panel has its
own vertical scale but all plots are over 730 days (even in cases where the horizontal
axis label go to 750).

16

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.06.07.21258504doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.07.21258504


Submitted on August 12, 2021 Getz et al.

Our primary observations comparing the results plotted in Fig. 4A-C and406

other runs (not shown here) of the same scenarios using different runtime seeds,407

are the following:408

• In all three cases the initial variant, by construction, is 0 ≡ (0, 0, 0, 0). In409

our three scenarios, this variant was followed by chance by the emergence410

of variant 8 ≡ (1, 0, 0, 0), but this is common to all three scenarios because411

they use the same sequence of pseudo random numbers in their simula-412

tions. Using different runtime seeds, however, leads to other variants than413

8 emerging to replace variant 0. Thus, the mutant identity (i.e., its bi-414

nary representation) of the variant to first emerge is somewhat random,415

but it is going to be influenced by having different transmission values for416

each variant (scenarios B and C), as well as the possibility of an idealized417

escape mutation (scenario C).418

• We expect variants that have an idealized escape mutation to emerge419

early, as is the case in scenario C in which variants 8-15 have the idealized420

escape mutation. In particular, in Fig. 4C, we see that the second to fourth421

variants to emerge all have the idealized escape mutation (i.e., variant 8422

then 14 and then 15), and finally variant 6 ≡ (0, 1, 1, 0) emerges because of423

the cross-immunity between all variants with the idealized escape mutation424

finally comes into play.425

• When δ > 0, the variants with the higher values of β come to dominate,426

though they take time to emerge. In our cascading cross-immunity case427

with δβ = 0.2, the most transmissible of these (variant 15 ≡ (1, 1, 1, 1))428

had yet to emerge within the simulated 2-year period. The existence of429

the idealized escape mutation, however, does facilitate the emergence of430

variant 15 at the beginning of the second year (Fig. 4C). Another run431

of this scenario (runtime seed=1; results not shown here) has variant 15432

emerging very early (around day 120). Further, due to the effects of cross433

immunity, this variant was replaced by variant 11 ≡ (1, 0, 1, 1) around434

days 450-500. Variant 15, however, as result of waning and cross-immunity435

affects, reemerges again around day 600, with variant 11 declining over the436

last three months of the second year.437

3.3 Vaccination rollout438

Single valency vaccinations439

As illustrations of potential issues associated with the design and implementa-440

tion of vaccination programs, we first considered vaccinating individuals in a441

population of 100,000 subject to an epidemic involving a single variant of the442

pathogen. We note that in a population of N = 100, 000 individuals, a vacci-443

nation rate of v(t) = 0.001 involves vaccinating an average of 100 individuals444

per day with daily variation following a binomial distribution (i.e., a standard445

deviation of just under 10 individuals per day).446

Rollout of our vaccination program began on day 366 after the start of the447

outbreak and ran for two years beyond that to day 1100 (Fig. 5). Such scenarios448

place us within the context of the COVID-19 epidemic since vaccinations were449
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only available from around the second year onwards. In our first two scenarios,450

we selected individuals respectively at rates 0.1% (v = 0.001) and 0.2% (v =451

0.002) of the population each day (Fig. 5A & B). Only individuals that had not452

been previously vaccinated were selected, but selection was otherwise random.453

Additionally, we simulated a 16-variant scenario in which individuals were454

vaccinated at against variant 0 at rate v = 0.002 (Fig. 5C). Again, individuals455

were selected at random from the set of those that had not been previously456

vaccinated. By vaccinating individuals against variant 0, some immunity was457

conferred against variants 1-7 through cross-immunity relationships according458

to the Escaping C case with cross-immunity parameter c = 0.8 (Eqn. 2). In459

this scenario, variants 8-15 contain the idealized escape mutation.460

Our focal question with regard to the first two scenarios was: What vaccina-461

tion level is needed to extinguish the epidemic in the population encompassed462

by the vaccination rollouts for the populations concerned? From these two sim-463

ulations (Fig. 5A & B) we see that vaccination rate v(t) = 0.001 was insufficient464

to eliminate the pathogen from the population, while v(t) = 0.002 was able465

to eliminate the pathogen within 10 months from the start of the vaccination466

rollout. Further, in the first of these simulations (Fig. 5A), we see a resurgence467

of incidence in year three, which implies that the effects of waning immunity in468

this case are essentially “outrunning the vaccination rate.”469

Our focal question with regard to a comparison of scenarios two and three470

(Fig. 5B & C) was: Does the vaccination rate v(t) = 0.002, which was able to471

exterminating the outbreak in the 1-variant case, remain able to exterminate the472

outbreak in the 16-variant case when an idealized escape mutation is involved?473

The answer to this question from the observed incidence curve (Fig. 5C) is a474

resounding no. In fact, the total death rate over the three year period rose from475

0.13% of the population (1336 individuals) to 0.42% of the population (4,235476

individuals).477

Adaptive bivalent vaccinations478

With the emergence of new variants, the possibility exists to modify vaccines479

to contain or induce the production of antigens that directly target the variant480

in question (i.e., rather than through cross-immunity that arises when a related481

variant is the direct target) [28]. Further, it is possible for vaccines to be mul-482

tivalent in terms of directly targeting more than one variant at time [28]. In483

our third vaccination scenario, a univalent vaccine applied at a rate v = 0.002484

failed to bring a multivariant epidemic under control. Thus we were motivated485

to explore a scenario to see what would happen with a bivalent vaccine that486

was implemented adaptively in the sense of its two valencies following the two487

dominant variants.488

In the specific vaccination rollout program that we employed in our fourth489

simulation, we did not account for logistical, production, and variant monitoring490

constraints. Such constraints, of course, exist and vary across locations and491

populations: in real applications, they need to be taken into account. The492

program we employed assumes that we are able to alter the valency of the493

vaccination used every 15 days, based on an ability to identify the two variants494

that are most prevalent at each of these successive 15-day-apart observation495
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Figure 5: Incidence (∆I+: purple) is plotted over 3 years for the baseline run (pa-
rameters given in Table 1 with N = 100, 000) for the cases where vaccination rates
v(t) (indicated by blue lines) are applied during the second and third years only to
individuals not previously vaccinated but otherwise selected at random (for clarifica-
tion, the average number of individuals vaccinated each day is 100v(t)% with variation
following a binomial distribution). Our first two simulations involve vaccination roll-
out programs in a single variant epidemic at vaccination rates A. v(t) = 0.001 and B.
v(t) = 0.002 (respectively 0.1% and 0.2%) of individuals not previously vaccinated, but
otherwise chosen at random. Our second two simulations involve vaccination rollout
programs in a 16-variant epidemic, both at vaccination rates v(t) = 0.002, involving
C. individuals not previously vaccinated and D. a bivalent adaptive vaccination pro-
gram in which previously vaccinated individuals could be vaccinated again with a new
valency vaccine, as described in the text.

points (from day 365 to day 1085, which is the start of the last 15 day period496

ending just prior to the start of day 1100). If only one variant had an incidence497

exceeding 9 individuals on an observation day, then the vaccination applied over498

the next 15 day interval was monovalent for the dominant variant, otherwise499

it was bivalent for the two variants that had the highest incidence on that500

observation day.501

As with the non-adaptive vaccination rollouts, individuals were selected at502

random from a pool that had previously not been vaccinated with the partic-503

ular valency-specific vaccine (either bivalent or monovalent). However, in the504

bivalent vaccine case, if an individual had previously been vaccinated to only505

one of the two variants defining the latest vaccine, then these individuals were506

incorporated into the vaccination pool from which individuals were randomly507

selected for vaccination. If such individuals were selected then the start of the508

waning time relating to the previous vaccination was reset to start anew. Thus,509

with this program, it is possible for individuals to be vaccinated more than once.510

The results of this simulation are depicted in Fig. 5D, where we see that511

this vaccination program is much more effective in preventing deaths than the512
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monovalent variant 0 program applied to the same 16-variant epidemic at the513

same vaccination rate Fig. 5C (total deaths are 4,235 in the former versus 2145514

in the latter case). The valencies of the vaccine applied during each new 15515

day period are listed in Table 4. We note that the monovalent case involves516

considerably fewer vaccinations because of the “no revaccination with the same517

vaccine” restriction in our rollout program. In particular, over two years of518

vaccinating at a 0.2% rate per day, all individual are vaccinated in the case of519

Fig. 5C by day 859 while, in the case of Fig. 5, revaccinations kept occurring520

as individual that have not previously been vaccinated to one of the focal vari-521

ants was revaccinated. Even in this adaptive rollout, however, the epidemic was522

only substantially lowered rather than completely extinguish. The latter event523

for the set of parameters used in our simulation requires a somewhat higher524

vaccination rate than 0.2% per day; or, perhaps it requires lower rates of wan-525

ing immunity, higher cross-immunity rates, or the lack of an idealized escape526

mutation. All of these effects can be demonstrated through the selection of ap-527

propriate parameter values, but the specifics are only relevant when the model528

is applied in a real world situation.529

Table 4: Valency of adaptive vaccination over the interval [365, 1100]

Time Valency

[365, 470) (9,14)
[470, 530) (13,14)
[530, 680) (13,15)
[680, 740) (15)
[740, 905) (10,15)
[905, 1025) (10,12)
[1025, 1070) (12,15)
[1070, 1100) (15)

4 Discussion530

The amount of structure and data needed in complex biological systems’ mod-531

els, depends on the questions that these models have been formulated to ad-532

dress [13,14]. In this paper, we steered away from making specific predictions—533

because universal solutions are not always locally applicable. Rather, we focused534

on gaining insights into incidence patterns that can be expected when contacts535

are adaptive rather than fixed, multiple variants may emerge (typically sequen-536

tially over time), and open versus adaptive uni- and multivalent vaccination537

programs are implemented to try to eliminate local pandemics. Analyses that538

incorporate more complexity in the hopes of attaining greater realism, such as539

adding heterogeneity related to age and spatial structures, as well as behavioral540

and social groups, require data that is specific to a local population (town, city,541

county, or small country, etc.) Such elaborations are only worth incorporating542

when the study relates to a real world system supported by adequate data (the543
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latter related to the complexity of the question that needs to be addressed, as544

discussed elsewhere [13]).545

Of course, additional structure can be added to address questions of general546

interest. One obvious issue relating to our study would be to obtain a better547

understanding of the role informational delays may play in producing the type of548

incidence waves that have observed over the course of the COVID-19 pandemic549

(and as we have modeled in [43]). Such delays would lead to contact rates550

containing a time-lag rather than depending only on current prevalence levels.551

We might also spend more time deconstructing the relative importance of such552

time delays versus the emergence of more transmissible variants in accounting553

for these waves.554

Beyond gaining a deeper understanding of some of the mechanisms responsi-555

ble for the incidence patterns observed among local epidemics of the COVID-19556

pandemic, a second and primary purpose of our paper is to present our M-557

SEIR RAMP as a platform that others may use to address issues of concern558

to them in formulating policies to manage local COVID-19 epidemics. This559

also has the advantage of providing an exemplar of our novel RAMP (runtime560

alterable model platform) concept and the methods we used to construct it.561

At this time, the primary value of our M-SEIR RAMP itself may be in testing562

various vaccination strategies as they relate to variant emergence [44]. Clearly,563

such applications would require more specific variant-related information on564

the comparative transmissibility βj , virulence αj , shedding (ζ̄jm), environmen-565

tal persistence (η̄j), and within host replication rates (λj) of newly emerging566

variants.567

Equally important, though, in evaluating the impacts of vaccination strate-568

gies on local epidemics is obtaining variant-specific immunity and cross-immunity569

data. This includes waning rates, which we have not made variant specific. Our570

model, however, could be generalized to include variant specific waning rates571

represented by the parameter thalf
j (Eq. A.6). It also includes information for572

characterization of the elements cj` of the cross immunity matrix C (i.e., a573

generalization that renders Eq. 1redundant). Models are sorely needed to ex-574

plore multivariant dynamics, particularly the epidemiological properties regard-575

ing shedding, environmental persistence, transmission, mutation, and within-576

host replication rates. These processes, acting together, determine the relative577

success of different variants and their actual impact on the severity of epidemics578

and the nature of vaccination programs needed to suppress them.579

Making our model both location and variant specific could be undertaken580

using methods, such as Appropriate Complexity Modeling [13, 14], designed to581

enhance the relevancy of models. Further, in some cases it may be useful to582

add spatial or age-structure information to our M-SEIR or include a contact583

network [7], which itself may contain spatial or refined class category (e.g. age584

or work categories) information. In addition, our current implementation repre-585

sents variant differences in terms of J loci with two alleles (denoted by 0 and 1586

respectively) at each locus. A more realistic representation of the genetic basis587

of variant differences may involve genetic representations in which several alleles588

are possible at each locus. Further, the loci themselves may represent relevant589

molecular structures such as epitopes.590

An advantage of our RAMP design features is that they provide a framework591

21

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.06.07.21258504doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.07.21258504


Submitted on August 12, 2021 Getz et al.

for elaborating or simplifying model details in the pursuit of different questions592

at various points in a pandemic. For example, suppose we are interested in593

pursuing inferences regarding the drivers of variant evolution at a various stages594

of the pandemic. We may first want to address questions relating to pandemic595

behaviour, driven by mutations that increase transmissibility. This is what596

actually happened with the appearance of the D614G and the alpha variants.597

A year or so into the pandemic, however, we may then want to explore processes598

that give rise to immunity-escaping variants. This, again, is what happened in599

reality. Our RAMP formulation gives us the flexibility to change the model part600

way through a pandemic. In particular, we can then test which among a set of601

alternative reinfection process is most likely to produce an escape mutation once602

reinfection begins to occur on a substantial scale. By configuring model drivers603

so that we first have a relatively simple evolutionary process and then switch to604

more complex evolutionary processes, our RAMP design facilitates comparing605

several competing explanations of observed patterns of variant emergence at606

different stages of a pandemic.607

Although cross-immunity and immune waning are entangled in our immu-608

nity modifier functions (i.e., φij ; see Eq. A.8), cross-neutralization data can be609

used to estimate the cross and waning immunity parameters using appropriate610

methods [45]. Such data are becoming more widely available through the ap-611

plication of improved serological and genetic methods [24, 46, 47]. Variant and612

cross neutralizing studies bring up a much neglected issue, which is the effect of613

dose (number of pathogens involved in the initial infection, also know as viral614

load) on the severity of the infection. Further, dose affects both the probability615

of host invasion (in the context of transmission), as well as mutational rates616

once host invasion has occurred. Effective dose differs from the questions of617

the number of vaccine doses (typically one versus two) versus the antigen or618

virus-like particle load in each dose [48]. In the context of vaccination, both619

these issues and the technology used to produce the vaccine [28] may well have620

an impact on waning immunity rates and cross-immunity values. Thus, the621

parameter values used in the model should ultimately be vaccine specific, once622

vaccine-specific waning data have been obtained.623

In the coming years, as we obtain more information on the nature of waning624

and cross immunity to different variants of SARS-CoV-2, not to mention the625

vaccines as well, it will become more apparent to us whether or not COVID-19626

will settle into global endemicity [32, 49] and require periodic vaccinations to627

combat new variants, as they arise over time. If this is the case, then constant628

vigilance and a well-designed vaccination program with respect to vaccinating629

the young and implementing booster vaccinations with appropriate variant va-630

lency will become the order of the day. Additionally, we anticipate extending631

our M-SEIR RAMP to include runtime alterable modules (RAMs) designed to632

compute the optimal time to administer vaccine booster shots of the same or633

different variant valencies. Implementation of these RAMs can play a decisive634

role in the rational design of effective and efficient COVID-19 vaccination pro-635

grams worldwide. The need for efficacy is made apparent from the fact that636

our simulations suggest that it may be harder than currently anticipated to637

eliminate COVID-19 using non-adaptive vaccination programs.638

Finally, our M-SEIR RAMP, with its RAMs, driver scripts and ability to639
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be integrated with R and other software platforms and a JavaScript simulation640

driver window, provides the first example of a new concept in model implemen-641

tation that facilitates model sharing and easy modification by users other than642

the original developers. We believe such platforms can come to play an impor-643

tant role not only in disease modeling, but in all fields of research that rely on644

models for comprehensive analyses of the behavior of systems of interest.645
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APPENDICES1

A Model Construction2

Here we formulate an individual-based or agent-based (ABM) SEIR epidemio-3

logical model to include host immunological waning and pathogen genetic drift4

with variation across variant transmissibility and virulence and succintly refer5

to it as an elaborated SIR (M-SEIR) model. [50]6

A.1 Assumptions, definitions, and states7

The population consists of a well-mixed pool of N0 individuals that is homoge-8

neous except for the fact that some are uninfected (denoted S), some currently9

infected (E: exposed and not yet infectious; I infectious and asymptomatic or10

symptomatic) or have been infected and are now either dead (D) or recov-11

ered/vaccinated with some level of immunity (V) to one or more of 2J pathogen12

variants. This immunity wanes over time and its current level, augmented by13

specified levels of variant cross-immunity, factored into an agent specific time-14

dependent variant-resistance function that impacts the shedding of mutant vari-15

ants by infectors and the within-host replication rates of mutant variants in16

infectees.17

At the start of the epidemic, all individuals are assumed to encounter, on18

average, κ0 > 0 other individuals during each time period [t, t + 1], but this19

“effective contacts” rate adaptively decreases with increasing prevalence of the20

disease due to the implementation of non-pharmaceutical interventions (social21

distancing, hand washing, mask wearing, and other hygienic precautions). In22

our selection of epidemiological parameter values, a unit of time is taken to be a23

24-hour day. Other scalings of time would then require appropriately adjusted24

epidemiological parameter values. Refined versions of the model could include25

age-related parameter values and contact rates, as well as contact tracing, quar-26

antining, and isolation of infected individuals; but these will not be considered27

here.28

Initially, at model time t = 0, all individuals are considered SARS-CoV-29

2 näıve susceptible apart from one individual who is considered to have just30

entered the infectious stage, infected by a pathogen designated as pathogen31

variant 0 (wildtype). Throughout the model simulation, the N0 agents in the32

population are partitioned into three disjoint sets: the set of SARS-CoV-2 näıve33

individuals, S(t), containingNS(t) (the susceptibles); the set of identified agents,34

A(t), containing NA(t) individuals who are either currently infected (time t)35

with a particular variant of SARS-CoV-2, or have some level of waning immunity36

to one or more variants of SARS-CoV-2; and the set of dead individuals D(t),37

currently of size ND(t). Only the individuals in A(t) are uniquely identified as38

they become infected for the first time and make the transition from set S(t) to39

set A(t), where they are sequentially labeled using the index i = 1, ..., NA(t).40

The single infected individual at time zero will be designated Agent 1 (also41

known as patient zero and denoted by A1). Thus at time t it follows that42

NS(t) +NA(t) +ND(t) = N0 (a constant) (A.1)

29
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We note that individuals in set A(t) can be in a disease state E or I with43

respect to pathogen j, but simultaneously can be in multiple immune states if44

they have been infected with more than one pathogen variant in the past. We45

also note that the distinction between symptomatic and asymptomatic individ-46

uals in state I will not be considered here; and only need be incorporated if47

testing, quarantining, and treatment processes are included in the model.48

The total number of pathogen variants is set by a parameter J > 0, where49

each pathogen is represented by a J-bit binary number. Thus, there are 2J50

possible variants indexed by j = 0, 1, 2, . . . , 2J − 1 where j is the decimal equiv-51

alent that corresponds to a given binary string. The initial variant, j = 0 is the52

binary string of J zeros.53

Sets of stochastic epidemic events (i.e., transitions from classes S to E, E to54

I, I to V or D) are implemented at consecutive integer points in time (one set55

of events for each point in time). Events will only be considered on individuals56

that have been infected by at least one of the pathogens at some time after t = 057

(this means that initially the epidemic computation proceeds rather rapidly, but58

becomes more computationally intensive for each time step as time proceeds).59

A.1.1 Pathogen set60

At the start of the simulation (t = 0), the set of potential pathogens indexed by61

j = 0, ..., 2J −1 is generated along with its associated environmental persistence62

(η̄j), transmission (β̄j), within host replication (λj) and disease-induced mortal-63

ity rate (probability of dying from the disease pαj
) parameters. These may be64

specified or drawn from underlying distributions (e.g., the uniform distributions65

β ∼ Uniform[βmin, βmax] and so on). Also, our model includes two 2J × 2J66

matrices of constants that are associated with pathogen mutations during vari-67

ant shedding (elements ζjm) and cross-immunity (elements cmj) processes and68

thus involve but are conditioned on either the major variant that an infector69

is harboring or on immunological state of the agents involved. These are the70

shedding and cross-immunity matrices with elements j,m = 0, ..., 2J − 1, Thus71

we generate the following list of parameters associated with our 2J pathogen72

variants:73

Pathogen list = (A.2){(
η̄j , β̄j , λj , pαj

; ζjm and cmj for m = 0, ..., 2J − 1
) ∣∣ j = 0, ..., 2J − 1

}
A.1.2 Agent states74

In accordance with the above set of assumptions, each agent has the following75

basic disease states at time t, where disease states in agent Ai are referenced by76

the time τj > 0 at which the most recent infection with variant j has occurred77

(an individual may be re-infected after immunity to the variant has waned to78

relatively low levels):79

1. S(t): An individual who at time t has not been infected with any variant80

of the pathogen up to time t. All these individuals belong to set S(t)81
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2. Ej(t, τij): An agent Ai who was infected with variant j at time τij , but82

has not yet become infectious (this is an individual in the latent stage that83

lasts for σE units of time). All these individuals belong to set A(t)84

3. Ij(t, τij): An agent Ai who is currently infectious with variant j, after85

being infected with variant j at time τij (this is the infectious stage that86

lasts for σI units of time). All these individuals belong to set I(t) ⊆ A(t)87

4. Vj(t, τij): An agent Ai who was infectious with variant j, having been88

infected with variant j at time τij , but is now non-infectious with regard89

to this variant—that is, recovered with some immunity to variant j, as90

well as some cross immunity to variants closely related to j. All these91

individuals belong to set A(t)92

5. D(t): An individual at time t who has died after being exposed to and93

become infectious with some variant of the pathogen. In a refined version94

of the model, a record will be kept of the time of death and the variant95

that caused death. All these individuals belong to set D(t).96

Since an agent Ai may be infected over time by more than one variant j, its97

complete epidemiological state is represented by a list98

Ai(t) = {state w.r.t. pathogen 0, · · · , state w.r.t. pathogen 2J − 1} (A.3)

If a living agent does not fall into any of the categories 2 – 4 with respect to
pathogen j, we denote its epidemiological state at position j as ∅ (the empty
set). Consequently, if an agent A is susceptible at time t (i.e., an element of
S(t)), then we write

A0(t) = {∅, . . . , ∅} ∈ S

However, while such individuals are omitted from the A list (hence we did not99

subscript the agent A above), they may be recognized as “virtual members”100

with this implicit state. Some other examples are:101

• If Ai(t) is infected, but not yet infectious, with pathogen variant j at time
t but has not been infected with any other pathogen in its past history,
then

Ai(t) = {∅, · · · , ∅,Ej(t, τj), ∅, · · · , ∅}

• On the other hand if Ai recovered from an infection with pathogen 0 at
time τ0, and is now infectious with pathogen j at time t, having become
infected with this pathogen at time τj then we write

Ai(t) = {V0(t, τ0), ∅, · · · , ∅, Ij(t, τj), ∅, · · · , ∅}

As we shall see, an agent history may contain at most one instance of either Ej102

or Ij , while possibly containing multiple instances of Vj .103
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A.1.3 Agent and index sets104

At the start of each time period, we update the set of identified agents A by105

adding susceptibles that became infected with pathogens during the previous106

time period and removing agents that died during the previous time period.107

Thus if IA is the index set for non-empty elements of A, with new indices added108

for newly infected susceptibles and indices removed for individuals that died,109

then by definition:110

A(t+ 1) = {Ai(t+ 1)|i ∈ IA(t+ 1)} (A.4)

where the number of indices in the updated set IA(t + 1) is NA(t + 1) and the111

updated number of dead is ND(t+ 1) at time t+ 1.112

For mathematical convenience all susceptibles S will also be referred to as113

A0:, i.e., there are NS(t) individuals referenced by A0 at time t. It will be useful114

to partition the set A(t) itself into three subsets at time t by identifying the sets115

E(t) and I(t) which respectively contain all agents that are currently in a state116

Ej(t) or a state Ij(t) at time t for some j = 0, ..., 2J−1. We note the intersection117

of these two sets is empty—i.e., E(t)∩ I(t) = ∅—as will become apparent below118

from the transmission process rules set up below. We will use the notation119

AS(t) = A(t) \
(
E(t) ∪ I(t)

)
(A.5)

to denote the set of agents in A(t) but not in E(t) or I(t).120

We also identify the set of infectious agents with infectious variant j. If Aj

denotes an agent whose epidemiological state contains an entry Ij(t, ), then

Ij(t) = {Aj
i1

(t),Aj
i2

(t), . . . ,Aj
iNIj

(t)},

where the number of such agents is denoted by NIj (t), and its index set by

IIj (t) = {i1j , . . . , iNIj
(t)}.

A.2 Epidemiological processes121

A.2.1 Immunity122

In compartmental SIRS and SEIRS models, a concept of waning immunity and123

its impact on epidemics is associated with the rates at which individuals in class124

R revert back to class S. In agent-based SIRS and SEIRS models, we have the125

opportunity to consider the immunological history of individuals and, hence,126

can take a more refined approach to the complex process of how pathogens in127

an infector Ai are passed on the an infectee Ah. Here we model this as a prob-128

ability generated from a concatenation of rates that include pathogen shedding129

by Ai, the survival of pathogens in the environment, whether contained in feces,130

urine, sweat, mucosal secretions or water droplets excreted by an infector, and131

a process whereby pathogens gain access to a host (entering through wounds,132

mucosal membranes or other membranes in the pulmonary or alimentary sys-133

tems). We then characterize pathogen within-host variant replication rates in134

terms of pathogen mutational and reproductive processes. The final outcome135
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in our model is either host recovery with some immunity or host death. We136

also consider the induction of host immunity through vaccination and make the137

assumption that waning immunity is the same, whether it stems from natural138

infection or vaccination. Of course, these may be modelled in different ways139

should data become available to make this distinction an important modeling140

consideration.141

142

Waning immunity. Recall that we use A0 to denote an anonymous (generic)143

member of S and that Ai for i > 0 refers to a specific individual with an144

associated state list/vector. If some specific Ai is in immune state Vj having145

been infected with this variant at time τij , we assume that the level of relative146

susceptibility of agent Ai to reinfection by variant j is given by (noting that the147

existence of the value τij implies that infection of individual i by variant j at148

time τij ensures that the Vj is no longer “null”)149

ωij(t, τij) =


0 if Vj is null

1

1 +
(
(t− τij − σI − σE)/thalf

j

)σ if t ≥ τij + σI + σE

1 if t < τij + σI + σE

(A.6)

We note the following: 1.) the first case implies that τij has yet to be defined;150

2.) the second case is equivalent to the statement that τij ≥ 0 now exists for151

variant j, since this occurs at time t = τij (through the invocation of state152

Ej(t, τij)); 3.) ωij(t, τ) ranges from 1 (i.e. full “on”) at t = τ + σI + σE and153

decays to 0 as t > τ + σI + σE → ∞; 4.) agent i cannot be reinfected with154

its current major variant or with any other variant while it is currently itself in155

any state Ej or Ij for any j = 0, ..., 2J − 1; 5.) the larger the value of σ the156

steeper or more abrupt the switch is from full immunity (equal to 1) at time τ157

through 1/2 at time thalf
j to approach 0 as t → ∞ (we set σ = 4 as providing158

an intermediate level of abruptness).159

160

Vaccination. A vaccine may be designed to give immunity to one or more161

particular identified variant j. Vaccination strategies include vaccinating at a162

fixed rate v(t) (percent of individuals vaccinated at each time period) over a163

fixed period that begins at ton
v and ends at toff

v and can focus on drawing only164

on: i) individuals in the set S, ii) any non-infectious individual in S or A, or iii)165

any non-infectious, not previously vaccinated individual in S or A. The vaccine166

itself can be designed as follows:167

• Dominant variant vaccination at time τvac. An individual S or Ai vacci-168

nated with the dominant variant, say j, at time τvac ∈ [ton
v , t

off
v ] serves to169

add the disease state Vj(t, τvac) to that individual’s list. If the individual170

is already in state Vj(t, τ
′) at time t > τvac, then its status is updated so171

that at time t > τvac it is now Vj(t, τvac) rather than Vj(t, τ
′)172

• Multivariant vaccination at time tvac. An individual S or A vaccinated173

with a multi variant concoction at time τ ∈ [ton
v , t

off
v ], say with variant174

j1, . . . , jν , will have their disease status updated with regard to all these175

variants, as in the dominant variant case.176
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A.2.2 Infectious contacts177

Infectious individuals are assumed to make κ̂ effective contacts each time period;178

where effective contacts are those that are sufficiently close and of a sufficiently179

long duration to constitute a “risk of transmission.” This rate is either a con-180

stant κ0, or in stochastic implementations drawn from a Poisson distribution181

with mean κ0, or in adaptive formulations (e.g., under social distancing be-182

haviour) is a function of the severity of the ongoing outbreak. We also assume at183

time t that under a random contact process, proportion κ̂(t)NS(t)
N0−ND(t) and κ̂(t)NA(t)

N0−ND(t)184

of these contacts will respectively be with susceptible and with uniquely identi-185

fied agents, although only κ̂(t)(NA(t)−NE(t)−NI(t))
N0−ND(t) of those will be susceptible to186

infection with a new variant or reinfection with the same variant.187

In the adaptive case, we assume κ(t) decreases from κ0 as the proportion188

of infectious individuals, NI(t)/(N0 − ND(t)), increases such that κ(t) = κ0/2189

when NI(t)/(N0−ND(t)) = phalf
I . For convenience of implementation, however,190

we define the following “switching” (as apposed to hyperbolic) function191

κ(t) =

{ κ0

1+
(

NI(t)

N0−ND(t)

/
phalfI

)2 when phalf
I > 0

κ0 when phalf
I = 0

(A.7)

even though, from a continuity point of view, the top part of this expression192

implies that κ(t)→ 0 at phalf
I →∞.193

A.2.3 Probability of infection194

In deriving a probability πinf
ih,j` of an agent Ah being infected with variant `195

by an agent Ai who is infectious with major variant j, we concatenate (i.e.,196

multiply together) several process, each of which involves nominal constants.197

Thus, in all but one of these processes, the scaling of these constants can be198

normalized and given a relative set of values across variants though one set of199

constants though relative, will ultimately all be scaled by fitting the model to200

real data. In our treatment below, constants associated with shedding and per-201

sistence will be scaled while those associated with within-host replication will be202

kept unscaled to be ultimately fitted to data. In particular, the parameters β̄j203

associated with pathogen transmission (i.e., from contact to the start of within204

host replication—see Fig. 1) will be scaled by fitting to epidemiological data,205

while the relative values for the different variants regarding pathogen shedding206

and environmental persistence can be fitted to experimental data collected to207

set values of these processes when considered on their own.208

209

Pathogen shedding. We assume that shedding is affected by the immune state210

of the infector Ai and thus posit the shedding rates below for this individual211

when its major infectious variant is j. In general, we have a matrix of shedding212

rates ζ̄j` before accounting for immunity and cross immunity that is specific to213

agent Ai. Immunity and cross-immunity act to reduce shedding rates through214

functions φij(t) ∈ [0, 1] that are computed in terms of Ai’s waning functions215

ωim with respect to variant m and a matrix of cross-immunity values cjm that216

have been normalized so that cjj = 1 for j = 0, ..., 2J − 1 and cjm ∈ [0, 1] for217
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j,m = 0, ..., 2J − 1. Specifically, we define agent-specific immunity modifying218

functions219

φij(t) =
2J−1∏
m=0

(
1− cmjωim(t)

)
(A.8)

and assume that the shedding rates can be expressed as220

ζij`(t) = ζ̄j`φi` ` = 0, ..., 2J − 1 (A.9)

Environmental persistence. The persistence of pathogens in the environment221

are known to be impacted by humidity, temperature, airflow, and the surface222

properties of fomites [51]. This, and other factors relating the effects of weather223

on contact rates and efficacy, may result in overall pathogen transmission having224

a seasonal component to it [52]. In particular, viral persistence indoors may225

be much greater than outdoors, with a greater proportion of indoor contacts226

taking place during cold or wet weather. Thus the most appropriate place227

to introduce seasonal effects into epidemic processes is through contact rates228

and environmental persistence cycling over time with a period of one year (or229

even half-a-year if two comparatively spaced rainy seasons occur, as in some in230

tropical locations [53]) and an amplitude obtained by fitting parameters to data.231

Thus, in our model, we introduce constants η̄`, δseason ∈ (0, 1), k (appropriately232

scaled, depending on the units of time) and θ and assume that233

η`(t) = η̄`

(
1 + δseason sin

(
2πt

k
+ θ

))
` = 0, ..., 2J − 1 (A.10)

The case δseason = 0 corresponds to constant values η`(t) = η̄` for all t, while234

if δseason = 1 we get the largest possible fluctuation between 0 and 2η̄`. The235

constant k relates to the time units so we get one cycle per year, and θ shifts236

the cycle to set the points in time at which the maximum and minimum values237

of η`(t) occur.238

239

Variant transmission. In the context of a standardized dose (which will be240

modified by multiplying the variant effective contact and transmission by both241

pathogen shedding and environmental persistence functions), the differential242

rates of variant transmission, which we denote by βh`, will depend on a constant243

variant transmission rate parameter β̄` modified by a function that represents244

the immune state of the infectee at time t: viz., recalling SOF Eq. A.8245

βh`(t) = β̄`φh`(t), ` = 0, ..., 2J − 1 (A.11)

Probability of infection. Using a competing rates formulation [37] to compute246

the probability of infection as a concatenation of the process of infector shedding247

(ζ), environmental persistence (η) and transmission rates (β), we obtain248

πinf
ih,j`(t) =

ζij`(t)η`(t)βh`(t)∑2J−1
m=0 ζijm(t)ηm(t)βhm(t)

(
1− e−ζij`(t)η`(t)βh`(t)

)
, ` = 0, ..., 2J−1

(A.12)
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A.2.4 Within-host processes249

If after receiving an initial infectious dose of pathogen, an individual is infected250

primarily with variant `, then we expect this variant to dominate unless intrinsic251

mutational processes are high (which is not the case for COVID-19) or the252

individual has some immunity to this dominant variant. In the latter case the253

situation is ripe for an “idealized escape mutation,” that is one that evades the254

immune system completely, to arise.255

If we nominally set the relative rate at which an individual invaded by variant256

` has an infection dominated by variant ` (i.e., ` in the terminology of [54] is257

the major variant of the infection) to be (1− µ), then the probability that one258

of the other variants is `′ 6= ` is µ (in the case of COVID we assume that µ > 0259

is very close to 0—e.g. of order 10−3 to 10−6—while for viruses lacking error260

correcting machinery it can be considerably larger and of the order 10−1). We261

can partition the latter probability according to a set of comparative variant262

within-host replication rates λ`′ , each moderated by its immune state function263

φh`′ and a normalizing factor 1∑
∀m6=` λmφhm

to obtain264

πinv
h``′(t) =

{
1− µ for `′ = `

µ
(

λ`′φh`′∑
∀m6=l λmφhm

)
for `′ 6= `

(A.13)

We stress that the parameter µ pertains to generating the probability for the265

transmission of mutants and is not an actual mutation rate for the virus (e.g.,266

the host may have some mechanisms for removing most of the mutants before267

transmission of remaining variants occurs).268

A.2.5 Pathogen progression equations269

Probability that infector Ai with major variant j will result in infectee Ah270

express `′ as its major variant is271

πih,j`′(t) =
2J−1∑
`=0

πinf
ih,j`(t)π

inv
h``′(t), ` = 0, ..., 2J − 1 (A.14)

A.2.6 Single-variant case272

In the single-variant case (J = 0), the waning immunity equation SOF Eq. A.6273

reduces to (dropping the redundant index j = 0, and noting that the existence274

of a value τi implies Ai has been infected at time τi in the past)275

ωi(t) =


0 if Ai has never been infected

1

1 +
(
(t− τi − σI − σE)/thalf

)σ if t ≥ τi + σI + σE

1 if t < τi + σI + σE

(A.15)
(recall we set σ = 4) and the modifying immunity functions φij (SOF Eq. A.8)276

collapse to 1, which implies that the pathogen shedding functions ζ̄i` (SOF277
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Eq. A.9) collapse to 1. Without loss of generality, we can also assume a single-278

variant value of η = 1 in SOF Eq. A.10, which implies that the probability of279

infection (SOF Eq. A.12) reduces to280

πinf
ih (t) = 1− e−β̄(1−ωh(t)) (A.16)

Further, since in the single-variant case there are no mutations to consider, it281

follows from SOF Eq. A.13 that πinv
h``′(t) = 1 for all h and we finally have that282

πih(t) = πinf
ih (t) = 1− e−β̄(1−ωh(t)) (SOF Eq. A.14) for all h.283

A.3 Simulation algorithm284

1. Parameters selected at the start of a simulation285

(a) N0: Number of individuals in the population. Assumed to be fixed286

over time (i.e., the population is closed), but partitioned into sets S,287

A and D with respectively NS(t), NA(t) and ND(t) individuals in288

each set and satisfying SOF Eq. A.1.289

(b) J : The log2 of the number of possible variants indexed by j =290

0, · · · , 2J − 1291

(c) β̄j : variant dependent transmission parameters (the process between292

contact and the start of variant replication and nominally equivalent293

to transmission in SEIR models—see Fig. 1) for pathogen variant j294

(d) thalf
j : The time it takes for immunity to variant j to have waned by295

half.296

(e) σEj : The time it takes from initial infection for an infected individual297

to become more likely to become infectious than remain infected298

without being infectious.299

(f) σIj : The additional time it takes beyond σEj
for an infectious indi-300

vidual to more likely transition beyond being infectious than remain301

infectious.302

(g) pαj
: The proportion of individuals leaving the infectious category303

that die, which implies that 1 − pαj
is the proportion that become304

immune.305

2. Initialization306

(a) Set up pathogen list (see Eq. A.2)307

(b) Initialize the simulation by setting t = 0 and creating the agent list308

A(0) one infectious and N0 − 1 susceptible agents.309

3. Time t: vaccination loop.310

(a) Carry out the vaccination process before going into the rest of the311

loops with the updated S and A sets after the vaccinations.312

4. Time t: contact loop. Set up contacts for the current round of en-313

counters at time t (i.e., the inner agent-driven contact loop within the314

outer time-driven loop) and tag for outer loop update of disease status, as315

follows:316
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(a) Numbers in various sets and associated index sets. Identify the num-317

ber of individuals NS(t), NA(t) and ND(t) in sets S, A and D at318

time t respectively, as well as the number of exposed (but not yet319

infectious) agents NE(t), infectious agents NI(t) and identified non-320

infected agents NAS
(t) = NA(t) − NI(t) − NE(t). Break down the321

infectious agents tally into the number of agents NIj infectious with322

variant j = 0, 1, ..., 2J − 1. We will also need the index sets IAS and323

IIj (t), j = 0, ..., 2J − 1 at time t.324

(b) Infectious contacts with each group. The rate at which any individual
contacts other individuals per unit time is given by the contact rate
parameter κ > 0. Assuming random contact events over one unit
of time, the actual number of individuals that agent Ai contacts at
time t is then given by

κ̂i(t) ∼ POISSON[mean = κ(t)]

Of these, proportions325

πiS =
NS(t)

N0 −ND(t)
(A.17)

and326

πiA =
NA(t)−NI(t)−NE(t)

N0 −ND(t)
(A.18)

are expected to come from susceptibles in the sets S(t) and AS(t)327

(see Eq. A.5) respectively. Thus the actual number of contacts in set328

S(t), AS(t), and E(t) ∪ I(t) are329 (
N̂S
i (t), N̂AS

i (t), N̂E
i (t) + N̂ I

i (t)
)

= (A.19)

Multinomial [κ̂i;πiS, πiA, 1− πiS − πiA]

We note that only N̂S
i (t) and N̂AS

i (t) are of interest because indi-330

vidual in states E and I cannot be reinfected. Also, we make the331

assumption below that the first infection that an individual in set332

A contracts in this contact loop, is the one that counts (i.e., there333

will be no simultaneously infections with multiple variants). Finally,334

since contacting individuals is tantamount to sampling with replace-335

ment, the number of unique contacts (i.e., all multiple contacts are336

counted as a single contact) that agent Ai has with individuals in the337

set S is N̂S
i (t) reduced by excluding multiple contacts (which under a338

random contact model is a negative exponential correction) to obtain339

NS∗
i (t) = min

{
N̂S
i (t), Binomial

[
κ̂i(t), e

−κ̂i(t)/N̂
S
i (t)
]}

(A.20)

Thus if κ̂i(t) << N̂S
i (t), NS∗

i (t) is expected to be very close to the340

upper value κ̂i(t). On the other hand, if κ̂i(t) ≈ N̂S
i (t), then NS∗

i (t) is341

expected to be around κ̂i(t)/e ≈ 0.37κ̂i(t). Additionally, after dealing342

with each agent i reduce in the size of NS(t) to take account of those343

agents that had been infected by agent Ai and had now entered the344

ranks of the set A.345
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(c) Identify all infectious agents and their pathogens variants. Among
all agents in the set A(t) (Eq. A.4), identify those that have an
infectious variant Ij for some j = 0, · · · , 2J − 1. Thus, if the number
of infectious agents with infectious variant j is NIj(t) then consider
the set

Ij(t) = {Aj
i1

(t),Aj
i2

(t), . . . ,Aj
NIj

(t)}

with index set
IIj (t) = {i1j

, · · · , iNIj
(t)}

Initially, most of these sets will be empty, but will fill in over time.346

(d) Susceptible contacts. The probability that an agent Ai with a vari-347

ant j major infection infects a susceptible (nominally denoted by348

individuals of type A0) who then becomes infectious with dominant349

variant `′ is given by the probability πi0,j`′ computed in Eq. A.14,350

which itself relies on expressions Eq. A.7-A.13. The actual number351

of individuals in the set S will make effective contact with one more352

infectious individuals is NS∗
i (t) obtained using Eq. A.20. Thus, from353

a multinomial drawing, we can now generate the number of newly354

exposed individuals, NE+
0`′ (t+ 1) (the “+” is used to denote these are355

newly added and the “0” that they are coming from the set S), with356

major variant `′ at time t + 1, have been infected by agent Ai with357

major pathogen variant j on the time interval [t, t+ 1):358

(N̂E+
00 (t), · · · , N̂E+

02J−1
(t)) ∼ (A.21)

Multinomial
[
NS∗
i (t);πi0,j0(t), · · · , πi0,j 2J−1(t)

]
These individuals will be used to update list of currently infected359

individuals in the sets AEj
, j = 0, ..., 2J − 1 at time t+1, which is360

computed in the outer loop computation, as presented below. We also361

note that the probabilities in the above multinomial add to less than362

1, so that at the end of the drawing a proportion of the individuals363

NS∗
i (t) remain uninfected.364

(e) Agent contacts. The number of agents N̂AS
i (t) ∈ IA\(E∪I) that come365

into contact with agent Ai over the interval (t, t + 1) is given by366

Eq. A.19. This number is drawn from the set IA\(E∪I) with replace-367

ment and the following multinomial computation is used to determine368

how to update agent Ah at time t+ 1 when coming into contact with369

agent Ai on the interval (t, t+ 1) using the probabilities of transmis-370

sion given in Eq. A.14. Specifically, agent Ah will become infected371

with major variant `′ at time t+ 1 is determined by the multinomial372

drawing373

Ah ∈ AEj
for some j ∼ Multinomial

[
1;πih,j0(t), · · · , πih,j 2J−1(t)

]
(A.22)

We note here that since the agents Ah, h ∈ IA\(E∪I) are drawn with374

replacement as the computation proceeds and the agents Ai, i ∈ I are375

cycled through, if a previously drawn Ah is drawn again, but has already376
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been infected in the current round then we ignore the latest event, but keep377

the previous infection event intact. To obviate bias in this procedure, we378

need cycle through the agents Ai, i ∈ I at random rather than in numerical379

order.380

5. Time t: disease progression loop.381

(a) Individuals in AE at time t. An individual Ai ∈ AE at time t and in382

state Ej(t, τi), j = 0, ..., 2J − 1, becomes either an individual in state383

Ej(t+ 1, τi) with probability384

πEj
(t) =

1

1 +
(
t−τi
σEj

)4 (A.23)

or transfers to state Ij(t+1, τi) with probability
(
1− πEj

(t)
)

thereby385

entering class AI at time t+ 1.386

(b) Individuals in AI at time t. An individual Ai ∈ AI at time t and in387

state Ij(t, τi), j = 0, ..., 2J − 1, becomes either an individual in state388

Ij(t+ 1, τi) with probability389

πIj (t) =
1

1 +
(

t−τi
σEj

+σIj

)4 (A.24)

or leaves the set Ij(t + 1, τi) with probability
(
1− πIj (t)

)
. In this390

latter case, the individual either dies with probability pαj
or enters391

the state Vj(t+ 1, τi) at time t+ 1 with probability 1−pαj
The total392

number of individuals dying over the interval [t, t + 1) is noted as393

having a value ∆ND(t).394

6. Time t+ 1: outer loop update. The outer loop records all the events395

that took place in the contact and disease progression loops and updates396

the agents state at the next time step. It also updates all other states as397

follows.398

(a) Individuals in AS at time t. For the NS(t) individuals in AS at time
t, we have NE+

0j (t) enter set AEj (t+ 1) and we update

NS(t+ 1) = NS(t)−
2J−1∑
j=0

NE+
0j (t)

where Eq. A.20 ensures that NS(t+ 1) ≥ 0399

(b) Individuals in AS that are infected again over [t, t + 1). These in-400

dividuals can become reinfected as calculated in the contact loop.401

Those that become reinfected with variant j, j = 0, ..., 2J − 1 enter402

state Ej(t+ 1, t+ 1) at time t+ 1.403

(c) Updating the immunity of individuals in AS. Every individual within404

AS at time t must have its immunity status updated so that for405

j = 0, ..., 2J − 1, if Ai is in state Vj(t, τij) at time t then it transfers406

to state Vj(t+1, τij) at time t+1, even if reinfected, as in b.) above.407
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(d) Transfer from S to A. The N̂E
0j(t) computed in Eq. A.21 become408

newly listed members of the set A by entering state Ej(t+ 1, t+ 1),409

j = 0, ..., 2J − 1. This involves updating the equations for NS(t) and410

NA(t), including taking account of the number of individuals ∆ND(t)411

that died from the disease in the immediate time period, i.e.:412

NS(t+ 1) = NS(t)−
2J−1∑
j=0

N̂E
0j(t)

NA(t+ 1) = NA(t) +
2J−1∑
j=0

N̂E
0j(t)−∆ND(t) (A.25)

ND(t+ 1) = ND(t) + ∆ND(t)

(e) Along with input parameter values tvac on ≥ 0, tvac off and pv ∈413

[0, 0.1], we also need to specify the valency of the vaccination by414

selecting 1 to 4 numbers that take on values 0, ..., 2J − 1 (if more415

valencies are needed than 4, then the platform needs to be modified416

accordingly). We also need specify whether Nselect will just be indi-417

viduals in the set S(t) (Nselect = NS) or will be any individual other418

than those in the set AI(t) (Nselect = NS +NA −NI).419

In Algorithm 1 we summarise the steps of the simulation algorithm, as de-420

scribed in this section. On the right we report the name and numbering of the421

subsections while in the for loops we list the various steps respecting the item422

letters. Note that technical steps not explicitly described in the text (e.g. store423

updates, store set progression) do not present letters or numbers. The time set424

is defined with T while to describe temporal progression of set S,A and D we425

use the symbols S,A,D respectively.426

A.4 Estimation of R0.427

In a finite population, a pathogen can emerge from a single infection with prob-428

ability poutbreak = 1−1/R0 if R0 > 1, otherwise an outbreak will not occur [42].429

Thus we can estimate R0 if we have an estimate of poutbreak and the use the430

following relationship to compute R0431

R0 =
1

1− poutbreak
(A.26)

For the set of parameters listed in Table 2, from 100 runs (runtime seed432

goes from 0 to 99 in 100 separate simulations) of the single strain case, we433

estimated poutbreak ≈ 0.68 from the the proportion of simulations that had434

positive prevalence after 100 days. From Eq. A.26 this implies that R0 ≈ 3.1,435

with a 95% confidence interval of R0 ∈ [2.4, 4.3] (this of course can be narrowed436

down with additional simulations, but a more precise estimate is not particularly437

relevant to our illustrative results).438
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Algorithm 1: Summary of simulation algorithm

input N0, J , β̄j , t
half
j , σEj

, σIj , pαj
, j = 0, ..., 2J − 1 // 1)parameters

{
(
η̄j , β̄j , λj , pαj ; ζjm and cmj for m = 0, ..., 2J − 1

)
// 2a) pathogen∣∣ j = 0, ..., 2J − 1} // list

t = 0, NI(0) = 1, NS(0) = N0 − 1 // 2b) initialization

for t in T do
if NI > 0 then

for agent in S ∪ (A \ I) do // 3) vaccination loop
3a) Vaccination process
Update NS and NA

for agent in I do // 4) contact loop
4a) Numbers in various sets and associated index sets
4b) Infectious contacts with each group
4c) Identify all infectious agents and their pathogens variants
4d) Susceptible contacts
4e) Agent contacts
Store updates

for agent in E do // 5a) disease progression loop
5a) Individuals in AE at time t
Store updates

for agent in I do // 5b) disease progression loop
5b) Individuals in AI at time t
Store updates

Updates from loops 4), 5a) and 5b)
6a) Individuals in AS at time t // 6) updates in outer loop

6b) Individuals in AS that are infected again over [t, t+ 1)
6c) Updating the immunity of individuals in AS

6d) Transfer from S to A
6e) Specify the valency of the vaccination
S[t]← S(t) // store set progression

A[t]← A(t)
D[t]← D(t)

return S,A,D
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B RAMP Details439

B.1 General description440

An open and expressive design of the model platform aids in and encourages ex-441

ploration and experimentation. The RAMP design augments a desktop simula-442

tion platform with several novel features that increase flexibility and expressive-443

ness, and promote experimentation and interoperability with other platforms.444

These include an API (“application programming interface”) fully supporting445

remote operation and direct retrieval of data for external processing on other446

platforms, such as Python, Javascript or the R statistical platform. The API447

can also be accessed by an onboard scripting interface that uses the Nashorn448

Javascript engine.449

Additionally, using a novel design, elements of the internal algorithm are450

exposed for possible reprogramming in a secure fashion that will not damage451

the overall system. These runtime alternative modules (RAMs) may also be452

controlled from the API to facilitate selective algorithm redefinition during the453

run of the simulation.454

Use of the RAMP features require some experience with scripting and/or455

Java coding, however the resulting modifications to the algorithm can be of great456

significance. The RAM platform is implemented to support program redefinition457

with no risk to damaging the underlying code base. It should be accessible to458

anyone with moderate scripting experience.459

A major goal of the RAMP project is to prepackage these functionalities so460

that they can be readily deployed as part of simulation system design. This goal461

has been partially realized with respect to the RAM platform: annotations can462

be added to the simulator’s source code that direct the automatic generation of463

Java code to integrate into the simulations’ source and provide the functionality.464

The following discussion assumes some familiarity with script or program465

development.466

B.2 Runtime alternative modules467

Figure B.1 shows the RAM redefinition frame. The available RAMs appear as468

radio buttons along the bottom of the frame. Each RAM is a set of options469

for defining a relatively short Java method implementing some key aspect of470

the simulation algorithm. For example, included in this simulation are the471

implementation for cross immunity given in Eq. 1; the implementation for β472

given in Eq. A.11; and the implementation for φ given in Eq. A.8; etc. Each473

RAM initially contains only a single option, Option 0, the default, internally474

defined implementation. Option 0 cannot be edited and appears for reference475

purposes only.476

Additional options may be added to each RAM containing code redefining477

the method. Two editor panes and one console pane are stacked in the frame478

and display the code and output of the RAM. These panes show the content479

associated with the currently selected RAM and option. The top editor pane480

contains the code for the method being redefined. The second editor pane con-481

tains definitions of any new help functions required by the definition in the top482
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Figure B.1: RAM frame shows the implementation of a generic nearest-neighbor cross-
immunity formulation C as the default. In the red-bordered insets are the cascading
cross-immunity without (blue highlighted radio button 1) and with an idealized escape
mutation (blue highlighted radio button 2), as formulated in Eqs. 1 and 2 respectively.
Note the “+” button which allows for an unlimited number of alternatives to be set up
using consecutive integer numbers for the new radio-buttons that appear and pertain
to the selection of each alternative. Also, note the bottom list of functions that can be
altered at runtime. The “load default” button on the upper left-hand side allows the
user, when starting a new alternative, to insert the default code (which is immutable
in radio-button 0) as a starting point. The frame also documents a list of terms in the
upper panel that can be used to build any function.

pane. The console pane contains messages and output that are useful during the483

development of the option. For convenience, a “Load Default” button initializes484

the editor to an editable version of the Option 0 default to use as a starting485

point.486

Figure B.1 shows the Option 0 default definition for the cross immunity487

matrix function, as described by Eq. 1. Clicking the “+” button produced two488

new options, which appear in the insets. These option implement the alternative489

cascading cross immunity schemes presented in Eqs. 1 and 2. code appears490

below:491
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double crossImmune(int j, int k) {492

if (l == j) return 1;493

if (j < pathSize()/2 && l >= pathSize()/2) return 0;494

return Math.pow(Params.cImmune(), Tools.hdist(j, l));495

}496

Note that we have substituted the function pathSize for a hard-coded value497

of 63. pathSize returns the number of pathogens, allowing us to use this498

formulation for any choice of entropy. Documentation for pathSize is at the499

top of the window in the list of available help functions and parameters. There500

is also more extensive documentation in a separate user guide (see Fig. B.2).501

Figure B.2: A description from our User Guide of the immunity waning function ω.

The platform duplicates a mini-development environment for building alter-502

native definitions. Once code has been entered the “Compile” button checks503

the legality of the code and makes it available for use at runtime. Legally com-504
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piled code will produce a “Compilation Successful” message. Errors will appear505

with line numbers if they occur. Once the code is legal, the “Test” button can506

be used with actual parameters entered into the small text fields to determine507

correctness of the code. It is also possible to include print and println state-508

ments in the code during development to further check correctness. Output509

from print statements will appear in the bottom console window. The entire510

RAM set can be saved and will reappear during subsequent launches of the511

simulator platform.512

To use an alternate RAM definition at runtime simply select the dM-SEIRed513

option. (Selected options will be restored from a saved RAM set during subse-514

quent launches.) The system will compile any uncompiled code the first time it515

is accessed. If an error occurs during a runtime compilation an alert will notify516

the user that the system is returning to the default definition of that RAM. At517

no time is the internal logic of the program overridden.518

Finally, RAM option selection is part of the API described in the next sec-519

tion. This means that a script may run a simulation selecting different options520

at different points in time, using logic that considers the state of the model. For521

example, such an adaptive protocol might be appropriate for determining the522

contact rate κ.523

B.3 Application programming interface524

The API is a simple bytecode1 called BPL (Blackbox Programming Language)525

that addresses all available user interactions with the simulator. Instructions526

fall into three categories: parameter assignment and retrieval; simulator oper-527

ation; and data retrieval. A complete list of instructions is shown in Fig. B.3.528

Instructions are comprised of opcodes (e.g., reset, step, get) followed by 0529

or more arguments. Every BPL operation returns a result, even if empty, for530

synchronization purposes. A string consisting of a sequence of opcodes and531

arguments may be submitted to the BPL interpreter, an example of which is532

shown in the notes in Fig. B.3.533

534

Parameter assignment and retrieval. Every user-configurable element (in-535

cluding random number generator seeds) is addressed from BPL using a unique536

three-letter “airport code” (see Table. B.31). Additionally, pathogens are ad-537

dressed by their id number (0 to 2J − 1) and agent states using identifiers S, E,538

I, V, DI+ and DD (the latter two represent ∆I and ∆D, respectively). RAM539

options are addressed in setOption and getOption using the name of the RAM540

(e.g., “crossImmune”). Get and set operations can be used on each of these with541

the exception of ENT (variant entropy), which is read-only.542

543

Simulator operation. Simulation runs begin by executing the BPL reset544

instruction, followed by step, run for or run. The BPL interpreter operates545

synchronously with the simulator by waiting to process subsequent commands546

during a simulation run. Operational instructions can be interspersed with pa-547

rameter set/get or data retrieval to use in runtime decision-making. Note that548

1a bytecode is computer source code that is processed immediately by a program, usually
referred to as an interpreter or virtual machine.
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the reset operation restores the simulator to its state at the time of the last549

reset, so that no parameter changes made during a run are persistent.550

551

Data retrieval Operations to obtain the current population in each state, and552

to retrieve the runtime population history of each state and pathogen are also553

included. These can be easily transformed into R data frames, for example, for554

further analysis.555

556

Scripting can be deployed using either one of the two on-board script inter-557

preter interfaces, or remotely from another platform using drivers provided with558

the simulator. The remote drivers use TCP/IP sockets. Sockets are integral to559

Internet communication, and so are found on any system supporting the Inter-560

net. In this case the simulator acts as a server fielding API requests from the561

remote drivers.562

On our main dashboard, we provide two scripting windows that are opened563

using the “S On” and “JS On” buttons (see button second and third from left at564

bottom of Fig. 2A). The former allows the user to write simulation driver scripts565

directly as command strings. (The commands listed in Fig. B.3 are accessed566

by pressing the “Command Reference” button in the “S On” window.) This567

window is used primarily to test and monitor scripts intended to be deployed on568

a remote platform. The JS window contains a Nashorn Javascript interpreter569

enhanced to accept and execute BPL operations. Scripts can developed, saved,570

and used to drive the simulator from this interpreter. For example, Fig. B.4, lists571

the code used to implement the adaptive vaccination programs. The SEIV object572

referenced in this code contains methods corresponding to the BPL operations573

detailed in Fig. B.3.574

Table B1: Airport codes for parameter and variables used in the model algorithm

Name Math Code Name Math Code

Epidemic codes
% mortality pα MOR transmission β XMT
env. persist. η PST within-host replication λ INV
median latent period σE MLP median infectious period σI MIP
population size N0 POP contact rate κ̄ CPT
mutation rate µ MUR abruptness of waning σ AOW
cross immunity c CIM waning half-life thalf WHA
seas. trans. peturb δseason STP seas. trans. shift θ STS
seas. trans. period k PER adap. contact param. phalf

I IPC
variant entropy J ENT shedding rate ζ̄ SHD
-[2pt] mortality peturb δα MOP transmission perturb δβ TRP

Vaccination codes
enable vaccination VEN vaccine on/off ton

v /t
off
v VOO

variant valency type VA#, #=1,..,4 selection composition VCP
vaccinate susc. only VSU vaccinate non-infectious NVI
vaccinate non-vacc. VNV
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Figure B.3: The list of Blackbox Programming Language (BPL) commands that can
be used to write a simulation driver script, using the three-letter “airport codes” listed
in Table A1 to access the parameters and variables in our coded algorithm. This list
of commands can be accessed using the “Command Reference” button at the bottom
of the Scripting Window.
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Figure B.4: The JS scripting window accessed by selecting the “JS On” button in
the main dashboard (see button second from left at bottom of Fig. 2A). The script
shown here (broken into two columns 1-74 and overlaid over JS window) was used to
execute the adaptive vaccination strategy discussed in the main text.

B.4 R Integration575

As previously mentioned, the API supports remote control of the simulator from576

independent platforms using the operating system’s socket interface2. Of partic-577

ular interest is integration with the R statistical programming environment. An578

R-package called “seiv” acts as a driver by synchronously issuing BPL command579

strings and waiting for results. Consequently, a simulation can be driven entirely580

from within the R platform, treating the simulator as a “virtual package”.581

Fig. B.5 shows the code used to run the simulator multiple times with dif-582

ferent random number generator seeds. Following each run, the time history of583

the population in the I, DI+ and DD states is extracted directly to an R data584

frame (without the need to save, for example, in a comma-separated list). At585

the end of the run sequence the data frame is used to build the plots shown in586

Fig. 3D & E.587

R could be used in a more direct way by analyzing data at various points588

throughout a single run and adjusting parameters programmatically, similar to589

the adaptive vaccination strategy carried out in Javascript, only taking advan-590

tage of the R environment’s powerful toolkit.591

2By using internet sockets, the simulator and R platform could conceivably run on different
systems.
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Figure B.5: Our M-SEIR can be treated as an R-package called “seiv” and run as such
in conjunction with other packages, such as ggplot2 and reshape to conduct multiple
simulations and then carry out data and statistical analyses of the simulation results.
The code shown here was used to produce the plots illustrated in Fig. 3D & E.
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