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Abstract  30 

Background: Novel small molecule therapies for cystic fibrosis (CF) are showing promising efficacy 31 

and becoming more widely available since recent FDA approval. The newest of these is a triple therapy 32 

of Elexacaftor-Tezacaftor-Ivacaftor (ETI, Trikafta®). Little is known about how these drugs will affect 33 

polymicrobial lung infections, which are the leading cause of morbidity and mortality among people with 34 

CF (pwCF). 35 

Methods: we analyzed the sputum microbiome and metabolome from pwCF (n=24) before and after 36 

ETI therapy using 16S rRNA gene amplicon sequencing and untargeted metabolomics.  37 

Results: The lung microbiome diversity, particularly its evenness, was increased (p = 0.044) and the 38 

microbiome profiles were different between individuals before and after therapy (PERMANOVA F=1.92, 39 

p=0.044). Despite these changes, the microbiomes were more similar within an individual than across 40 

the sampled population. There were no specific microbial taxa that were different in abundance before 41 

and after therapy, but collectively, the log-ratio of anaerobes to classic CF pathogens significantly 42 

decreased. The sputum metabolome also showed changes due to ETI. Beta-diversity increased after 43 

therapy (PERMANOVA F=4.22, p=0.022) and was characterized by greater variation across subjects 44 

while on treatment. This significant difference in the metabolome was driven by a decrease in peptides, 45 

amino acids, and metabolites from the kynurenine pathway. Metabolism of the three small molecules 46 

that make up ETI was extensive, including previously uncharacterized structural modifications.  47 

Conclusions: This study shows that ETI therapy affects both the microbiome and metabolome of 48 

airway mucus. This effect was stronger on sputum biochemistry, which may reflect changing niche 49 

spaces for microbial residency in lung mucus as the drug’s effects take hold, which then leads to 50 

changing microbiology. 51 

Funding: This project was funded by a National Institute of Allergy and Infectious Disease Grant 52 

R01AI145925 53 
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Introduction 56 

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic fibrosis 57 

transmembrane conductance regulator (CFTR) gene. CFTR is a cAMP-regulated ion channel used for 58 

the transport anions across epithelial cells (1). Mutations in this gene cause a thickening of mucosal 59 

secretions, primarily in the respiratory and gastrointestinal systems, and chronic polymicrobial infection 60 

of the airways (1). Common clinical representations of this disease include, but are not limited to, 61 

increased polymicrobial infections, infertility, decreased lung function, and pancreatic insufficiency (1). 62 

Pancreatic sufficiency is inherently linked to the specific mutation class, but other aspects of CF 63 

pathology have unclear links to genotype (2, 3). It is clear however, that those with severe disease, 64 

especially the delF508 mutation, are plagued by chronic lung infection throughout their lifetime (4). 65 

The lung microbiome of people with CF (pwCF) has been well characterized and includes 66 

bacteria, viruses, and fungi (5–7). Studies of sputum expectorated from the airways have demonstrated 67 

that the CF lung microbiome diversity decreases as the disease progresses over time, becoming 68 

dominated by opportunistic pathogens, such as Pseudomonas aeruginosa (4, 8). Thickened mucus 69 

within the lungs allows for these pathogens to form a biofilm and thrive (9). The chemical composition 70 

of this matrix has been shown to mainly include DNA, amino acids, peptides, antibiotics, inflammatory 71 

lipids, and a myriad of small molecules from host, microbial, and xenobiotic sources (10–14). 72 

In November 2019, a new triple therapy drug Elexacaftor-Tezacaftor-Ivacaftor (ETI, Trikafta®) 73 

was approved by the United States Food and Drug Administration (FDA) for the treatment of CF (15). 74 

ETI is composed of three different compounds: Tezacaftor, Elexacaftor, and Ivacaftor (16). People with 75 

at least one copy of the F508del mutation, which is the most common mutation across CF patients, are 76 

eligible to take ETI. Studies from clinical trials and data available since approval have shown that the 77 

treatment is providing remarkable improvements in lung function and other disease symptoms (17, 18). 78 

Little is known, however, about how this new therapy will affect the CF lung microbiome and 79 

metabolome.  80 

In this study, sputum samples from pwCF (n=24) were collected before and after therapy (within 81 

one year of FDA approval) and analyzed using an integrated multi-omics approach including 16S rRNA 82 

amplicon sequencing and LC-MS/MS untargeted metabolomics. Changes in both microbiome and 83 

metabolome were identified and indicate a significant shift in the niche space of airway mucus and its 84 

microbial occupancy from ETI therapy. 85 

Methods 86 

Further detail available in supplemental methods. 87 
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Sample Collection. Sputum samples were collected during routine clinical visits from adult pwCF (>18 88 

years) at two separate CF clinics (patient details table S1). Samples were obtained from the most 89 

recent clinical visit prior to ETI administration and the most recent visit after ETI administration if 90 

sputum production was possible. Ethical approval for the collections at the University of California San 91 

Diego adult CF clinic was obtained from the UCSD Human Research Protections Program Institutional 92 

Review Board under protocol #160078. Institutional review board approval was also provided for the 93 

collections at the Spectrum Health adult CF clinic in Grand Rapids, MI by the Spectrum Health Human 94 

Research Protection Program Office of the Institutional Review Board under IRB #2018-438.  95 

DNA Extraction, qPCR, and 16S rRNA single amplicon sequencing. A Qiagen® PowerSoil® DNA 96 

extraction kit was used to extract DNA from the sputum samples following standard protocol. PCR 97 

amplification was then performed using 27F and 1492R primers targeting the bacterial 16S rRNA gene 98 

to test for DNA amplification quality. Bacterial 16S rRNA V4 amplicon sequencing was performed with 99 

primers 515f/806r on an Illumina® MiSeq® at the Michigan State University Sequencing Core. The raw 100 

sequences were processed using QIITA (qiita.ucsd.edu( (19), which is driven by QIIME2 algorithms 101 

(20), and quality filtered to generate amplicon sequence variants (ASVs) through the deblur method 102 

(21). ASVs in the microbiome data were classified as ‘classic CF pathogens’ or ‘anaerobes’ based on 103 

the methods of Raghuvanshi et al. (2020) and Carmody et al. (2018) (22, 23). The specific ASVs and 104 

their classifications are available in table S2. qPCR was executed using universal 16S primers (43) and 105 

Applied Biosystems SYBR Green PCR Master Mix with three technical replicates were obtained for 106 

each sample. The microbiome data is publicly available at the Qiita repository under study #13507. 107 

 108 

Metabolomics. Organic metabolite extraction was performed by adding twice the sample volume of 109 

chilled 100% methanol, vortexing briefly, and incubating at room temperature for 2 hours. Samples 110 

were then centrifuged at 10,000 x g and the supernatant was collected. Methanolic extracts were 111 

analyzed on a Thermo Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer coupled to a 112 

Vanquish ultra-high-performance liquid chromatography system. All raw files were converted to 113 

.mzXML format and then processed with MZmine 2.53 software (24), GNPS molecular networking (25) 114 

and SIRIUS (26). MZmine 2 parameters are available in the supplementary information (Table S3). The 115 

network job is available at 116 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c700397169ff447490f764c34abb5abd and the 117 

mass spectrometry data were deposited on public repository massive.ucsd.edu under MassIVE ID 118 

MSV000087364. 119 

 120 
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Statistical Analysis. Statistical approaches for both the microbiome and metabolome data were 121 

similar, due to the inherent structural similarity of the multivariate data sets. Normality of the different 122 

quantitative measures was first tested using a Shapiro-Wilk (SW) test in order to determine appropriate 123 

statistical methods. If the data was normally distributed, a paired dependent means t-test (DM t-test) 124 

was used. Otherwise, a Wilcoxon signed-rank test (WSRT) was used. Alpha-diversity was calculated 125 

for both datasets using the Shannon index. Beta-diversity measures were calculated using the 126 

weighted UniFrac distance for the microbiome and Bray-Curtis distance for the metabolome. Beta-127 

diversity was visualized for both datasets using principal coordinates analysis (PCoA) and the EMPeror 128 

software (27). Beta-diversity clustering significance pre- and post-ETI were tested using a 129 

Permutational Multivariate Analysis of Variance (PERMANOVA) method with 999 permutations. Cross 130 

population beta-diversity comparisons were done between pwCF before ETI therapy, after therapy, 131 

across the whole dataset, and within individuals pre- and post-therapy. 132 

 To identify metabolite and microbial drivers of the difference pre- and post-therapy, a random 133 

forest (RF) machine learning approach was used via the randomForest package in R (28). The top 50 134 

variables of importance were further explored. As all individual metabolite and microbiome abundance 135 

data were not considered normally distributed, statistical significance for individual microbial and 136 

metabolite changes before and after ETI treatment were calculated using the WRST. The p-values 137 

were adjusted for multiple comparisons using the Benjamini-Hochberg method.  138 

Microbe and metabolite association vectors were calculated using mmvec (29). Detail of the 139 

mmvec paramaters and analysis is available in the online supplmement. 140 

 141 

Results 142 

 143 

Microbiome and Metabolome Diversity Changes from ETI Treatment. Shannon diversity and 144 

number of ASVs of the microbiome showed an increase between samples collected before and after 145 

ETI treatment, but this did not reach statistical significance (Shannon SW normality p=0.238, WSRT 146 

p=0.062; Number of ASVs SW normality p=0.0043, DM t-test p=0.12, Fig. 1a). The Pielou evenness, 147 

however, was significantly higher post-therapy than before ETI (SW normality p=0.074, WSRT 148 

p=0.044). The metabolome did not show a significant change in Shannon index after ETI therapy (SW 149 

p=0.0017, DM t-test, p=0.45, Fig. 1b) or evenness (Pielou evenness SW p=0.13, DM t-test p=0.30). 150 

However, the number of molecular features did decrease after therapy (SW p=0.0027 DM t-test 151 

p=0.010). Collectively, this alpha-diversity analysis demonstrates that new ASVs were not being 152 

introduced into the sputum microbiome, but rather became more even with previously present taxa. In 153 
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regard to the alpha-diversity of the metabolome, there was a decrease in the total number of 154 

metabolites present. 155 

 PCoA plots were used to visualize beta-diversity differences between samples of the two data 156 

types (Fig. 1c, d). In both the microbiome and metabolome, there was a cluster of more similar samples 157 

and a spread along the first and second axis indicating samples with greater diversity. PERMANOVA 158 

testing showed that the microbiome profile of the sputum samples changed after ETI treatment 159 

(p=0.044). The metabolome profile also changed significantly after treatment (p=0.002), with a stronger 160 

metric of difference in the metabolome compared to the microbiome (F-value=1.92 microbiome, F-161 

value=3.12 metabolome, Fig. 1c, d). There was statistically significant movement along the first 162 

principal coordinate axis after ETI therapy for both the microbiome (SW test p=0.02, DM t-test 163 

p=0.0027) and the metabolome (SW p=0.0011, DM t-test p=0.00071) indicating that changes in these 164 

measures occurred similarly within this beta-diversity space. There was no significant change along the 165 

second axis. The beta-diversity differences among samples were also compared before, between, and 166 

after ETI treatment across subjects and within subjects (SW normality on beta-diversity distributions 167 

microbiome p=1.4 x 10-15, metabolome p=2.2 x 10-16). The microbiome showed the smallest change 168 

within subjects before and after therapy than across subjects at any period, indicating that although the 169 

microbiome profiles change significantly (Fig. 1e), there was still more similarity within an individual 170 

before and after therapy than across the population no matter the treatment category. The metabolome 171 

beta-diversity comparisons showed different trends than the microbiome. The largest beta-diversity in 172 

metabolite profiles was seen across patients in samples collected after therapy, signifying that the 173 

chemical makeup of sputum becomes far more varied across people once administered ETI (Fig. 1f). In 174 

contrast, the metabolomes were the most similar across subjects prior to ETI therapy, indicating that 175 

sputum metabolite profiles were relatively similar prior to ETI administration, but varied greatly across 176 

individuals after treatment. 177 

 178 

Microbial Changes After ETI Treatment. A random forest classification was used to determine how 179 

well the microbiome data reflected the pre- or post-treatment groups and to rank the ASVs by their 180 

contribution to that classification. Overall, the random forest model poorly classified the microbiome 181 

data with an error rate of 44.7%. Veillonella parvula and Staphylococcus sp. were ASVs with strong 182 

classifiers (Table S4) with a high overall abundance. However, none of the ranked ASVs were 183 

significantly different between pre- and post-treatment samples after correction for false-discovery 184 

(Benjamini-Hochberg corrected, WSRT p>0.05). The ASV representing Pseudomonas showed 185 

dynamic changes in some individuals, but it was not significantly different in the overall paired data (Fig. 186 

2). Similarly, at the family level, there was no significant difference before and after therapy following 187 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.02.21257731doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21257731


false discovery rate correction. We also summed the abundance of all ‘CF pathogens’ and ‘anaerobes’ 188 

(as described in table S2) and compared the log-ratio of pathogens/anaerobes, as described by 189 

Raghuvanshi et al. (2020) (22), and found it significantly decreased following ETI therapy (SW p = 190 

0.233, WSRT p = 0.013, Fig. 2). 191 

A qPCR assay using universal primers for the bacterial 16S rRNA gene (43) was used to 192 

calculate the total number of rRNA copies/mL of sputum pre- and post-therapy. The mean prior to 193 

therapy was 1.17 x 109 copies/mL and after therapy was 7.62 x 108 copies/mL. This difference was not 194 

statistically significant but did show a decreasing trend (SW p = 0.0027, DM t-test p = 0.061, Fig. 2). 195 

 196 

Metabolite Changes After ETI Treatment. Annotated metabolites were first grouped into molecular 197 

families and summed to determine overall changes. This analysis showed the major metabolomic 198 

signature due to ETI therapy was a decrease in peptides and amino acids. Though phosphocholine and 199 

phosphoethanolamine abundance did not change before and after ETI, peptide and amino acid 200 

abundance significantly decreased (Fig. 3a). This demonstrates an overall change in the relative 201 

abundance of this compound class, while other classes remained static. 202 

 A random forest machine learning classification was used to assess how well the complete 203 

metabolomic data reflected changes after ETI therapy. The out-of-bag error rate of the classification 204 

was 22.92% indicating that there was a metabolomic signal for ETI therapy, but not all samples were 205 

correctly classified as pre- or post-treatment. The importance of each metabolite in the construction of 206 

the random forest model was produced, noting the impact of each metabolite on differentiating pre- and 207 

post-treatment groups (Table S5). Of the 50 most important classifiers, 13 were annotated in the GNPS 208 

database and of those, 10 were annotated as amino acids or peptides. These were primarily 209 

dipeptides, including Phe-Glu, Ile-Leu, Glu-Val, and Ser-Phe, as well as the amino acid tryptophan; all 210 

of which significantly decreased after ETI therapy (Fig 1b). Molecular network analysis (Fig. 3c) showed 211 

a diverse set of peptides that were more abundant prior to ETI therapy. Metabolites from the 212 

kynurenine pathway (which includes tryptophan) were also identified as strong classifyers in the model. 213 

Kynurenine, formylkynurenine, and indole abundance significantly decreased after ETI therapy (Fig. 214 

3b). The P. aeruginosa siderophore pyochelin was detected in only 10 of the 24 patients. Comparing 215 

pyochelin abundance within those 10 individuals showed that it significantly decreased after ETI 216 

therapy as well (Fig. 3b). Though commonly detected in CF sputum with the metabolomics methods 217 

used here, other P. aeruginosa specialized metabolites were not detected in this study, except for one 218 

quinolone (NHQ) that was detected in 6 samples.  219 

 220 
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Trikafta Metabolism in CF Mucus. ETI is a triple therapy of the compounds Ivacaftor, Elexacaftor, and 221 

Tezacaftor. All three drugs were identified in the sputum metabolome by MS/MS analysis with similar 222 

fragmentation behavior to that described by Reyes-Ortega et al. (2020) (30). This included the known 223 

and unknown metabolized products of the parent drugs with related MS/MS spectra (Fig. 4). Ivacaftor 224 

had extensive metabolism revealed by molecular networking with the parent drug having six related 225 

nodes with unique retention times. Two of these are known, M1 and M6, as hydroxymethyl ivacaftor 226 

and ivacaftor carboxylate, respectively. Other modifications of the compounds were also seen, 227 

including further hydroxylations and carboxylations. Tezacaftor metabolism was also identified. This 228 

included dehydrogenation (metabolite M1, m/z 519.1400, C26H26F3N2O6+H+). Also detected, but not 229 

shown, was a phosphorylated metabolite (m/z 599.1401, C26H27F3N2O9P+H+) and a known glucuronate 230 

(metabolite M3, Fig. 4a). Elexacaftor exhibited only one metabolic transformation – the loss of a methyl 231 

group on its pyrazole ring (Fig. 4).  232 

Ivacaftor and Tezacaftor were detected in sputum samples both prior to and after ETI 233 

administration. These two compounds were released as therapies in prior formulations of CFTR 234 

correctors, likely explaining their presence. Elexacaftor, the next generation corrector unique to ETI, 235 

was present in sputum after its prescription as expected. However, one subject unexpectedly had 236 

Elexacaftor present in their lung sputum prior to clinical knowledge of administration of ETI. The 237 

presence of Ivacaftor and Tezacaftor in the sputum of pwCF prior to administration of ETI led to the 238 

investigation of whether or not the presence of previously approved correctors/potentiators in sputum 239 

prior to administration of ETI may have buffered the microbiome dynamics observed. Ivacaftor (a 240 

component of Kalydeco®, Orkambi®, and Symdeko®) was found in 11 of the 24 patients prior to ETI 241 

therapy. There was no significant difference in the alpha or beta-diversity changes between subjects 242 

that had Ivacaftor in their sputum prior to ETI and those that did not (p>0.05, Fig. S1). This indicates 243 

that prior CFTR corrector/potentiator therapy was not contributing significantly to the overall changes 244 

seen with ETI in this study, allowing these changes to be definitively attributed to this specific triple 245 

therapy  246 

 247 

Microbiome/Metabolite Associations Through ETI Therapy. To associate microbiome and 248 

metabolome dynamics across the dataset, we employed mmvec. This is a novel algorithm robust to the 249 

challenges of compositionality of omics datasets that calculates conditional probabilities of the 250 

association between all ASVs in the microbiome data with all metabolite features. The overall neural 251 

network showed a strong association between a changing microbiome and metabolome (Fig. S2). 252 

Additionally, the biplot of the mmvec algorithm enabled visualization of the microbiome vectors 253 

associated with the metabolomic space. In the biplot, a clear separation in vector directionality was 254 
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found between pathogen and anaerobe associations with the metabolome. This indicates that the 255 

metabolites that change in association pathogens are not the same metabolites that associate with 256 

changing anaerobes. Drivers of the metabolite changes associated with pathogens were mostly 257 

peptides (Fig. 5a); those same peptides shown to be decreasing after ETI therapy. Plotting the 258 

conditional probabilities of each peptide with the mean of all pathogens and all anaerobes in the 259 

dataset showed that the peptides were significantly associated with pathogens (WSRT p<0.001) (Fig. 260 

5b). Kynurenine, another metabolite found to decrease with ETI therapy, was most strongly associated 261 

with pathogens. This analysis indicates the decrease of peptides and kynurenine in sputum samples 262 

collected from pwCF is associated with a decrease in the relative abundance of pathogens (Fig. 5c).  263 

Discussion 264 

 This study assessed the multi-omic changes in sputum from pwCF after administration of the 265 

novel CF triple therapy ETI. This promising new therapy has shown significant improvement in lung 266 

function and symptom measures of pwCF in clinical trials with great potential to improve the lives of 267 

these individuals (15, 16). Improving CFTR function is a major goal of ETI therapy as it is the underlying 268 

cause of CF. However, many adult patients have been living with persistent lung infections and an 269 

evolving microbiome for decades. Promising as the treatment is, it is mostly unknown how the therapy 270 

will affect lung infections and the chemistry of sputum. This is of paramount importance; if the microbial 271 

infections in the lungs of pwCF do not clear and/or change favorably, then the full benefits of the 272 

therapy may not be realized. Preliminary studies of other CFTR modulators and correctors, specifically 273 

Ivacaftor which has received the most attention due to having the earliest FDA approval, have shown 274 

some changes in microbial diversity measures with treatment (31), specifically in the gut (32, 33), but 275 

most studies find little change in the airway microbiome (33–36). The addition of CFTR correctors, such 276 

as Lumacaftor, have shown an increase in microbial diversity in the CF airways (37), but other studies 277 

also show less marked responses (38). This study, to our knowledge, is the first to look specifically at 278 

the microbiome and metabolome changes resulting from ETI therapy (which includes the new highly 279 

effective potentiator Elexacaftor). Effects of the treatment were seen in both the microbiome and the 280 

metabolome. By beta-diversity measures, the effect was stronger in the metabolome, demonstrating 281 

that the drugs were altering the biochemical environment of CF mucus.  282 

Microbial diversity increased with ETI therapy, indicating that the microbiome in the lungs of 283 

pwCF is becoming more complex. This increase was driven by a higher microbial evenness, a metric 284 

that contributes to the Shannon diversity, though the Shannon index itself did not reach statistical 285 

significance. Therefore, the lung microbiome of pwCF was not necessarily gaining new or losing old 286 

microbial members after ETI therapy, but those present became more similar in their relative 287 
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abundances, possibly an indication of greater community stability. The overall profiles of the 288 

microbiome were significantly changed after ETI therapy and did so in a similar way, as shown by the 289 

homogeneous directional movement across the first principal component axis. Despite these overall 290 

changes, there was no single organisms that significantly altered from ETI therapy after multiple-291 

comparisons correction. This is likely due to the widely known personalization in the CF microbiome (8, 292 

39). Individuals have very different microbial profiles, so the start and endpoints from any 293 

pharmaceutical treatment may not be universal across subjects. This personalization was again 294 

observed here; subjects were still more similar to themselves after ETI therapy than to other subjects. A 295 

larger sample size in this study may have reached statistical significance for microbial taxa of interest 296 

because the trends for pathogens, such as P. aeruginosa and Staphylococcus, were showing strong 297 

reductions in abundance, while anaerobes were showing an increase. Accordingly, a collective 298 

comparison of the decrease in the log-ratio of the pathogen:anaerobe abundances did reach statistical 299 

significance. This finding validates this approach of simplifying the microbiome to these two 300 

communities and indicates that there is an overall reduction in the relative abundance of collective 301 

clinical pathogens, even though not all patients have the same pathogen. There was also a trend in the 302 

decreased bacterial load after ETI therapy, supporting that the increase in diversity seen from 303 

microbiome measures may be associated with a decrease in total bacterial load from expectorated 304 

sputum, though this too did not reach statistical significance. In summary, ETI therapy significantly 305 

altered the lung microbiome, exemplified as an increased microbial evenness driven by a reduction in 306 

the relative abundance of pathogens in place of an increase in the relative abundance of anaerobes. 307 

This increase in anaerobes may have clinical relevance for treating lung infections in the new era of 308 

highly effective CFTR modulators. The role of anaerobes within the CF lung is rather unclear as they 309 

are associated with better lung function (40),  but also pulmonary exacerbations (22, 23, 41). In light of 310 

these findings, antibiotic treatment with more anaerobic coverage may be an effective approach to treat 311 

CF infections in those prescribed ETI.  312 

The metabolome showed significant changes following ETI therapy, with stronger metrics than 313 

the microbiome. This was characterized by an increase in variability across subjects. Lung sputum 314 

metabolomes were relatively similar prior to ETI therapy, but, when on drug, the sputum metabolomes 315 

were highly diverse across subjects. These interesting chemical dynamics indicate that ETI induces a 316 

sort of metabolomic turmoil within the airways of pwCF, where the lung sputum biochemistry changes 317 

significantly with a highly varied outcome across individuals. However, similar to changes in the 318 

microbiome, the directionality of change was uniform, indicating a common metabolomic shift driven by 319 

ETI. Despite this variability, there were some uniform changes identified, particularly changes in 320 

peptides, amino acids, and kynurenine metabolism. The latter was identified as an important pathway 321 
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associated with P. aeruginosa dynamics from Lumacaftor/Ivacaftor therapy in a previous study (38), 322 

which the findings here and may be a universal consequence of CFTR modulator treatment. The 323 

decrease in the overall abundance of peptides, particularly dipeptides, links these metabolites to a 324 

previous study that associated them with worsening lung function (13). These peptides were shown to 325 

be sourced from neutrophil elastase activity. Thus, the decrease in these metabolites with ETI therapy 326 

may also represent a reduction in this inflammatory process, though inflammatory markers were not 327 

measured in this study. There may be a link between the decrease in kynurenine metabolism and 328 

amino acids/peptides, as it is a principal pathway for the metabolism of tryptophan in humans and 329 

bacteria. The reduction of peptides in sputum may reduce their availability for pathogens, particularly P. 330 

aeruginosa, to metabolize through the kynurenine pathway or others. The association of kynurenine 331 

metabolism with P. aeruginosa in a previous CFTR modulator study supports the hypothesis that this 332 

therapeutic approach may reduce these compounds and reshape the carbon source available to the 333 

pathogen. 334 

Microbial metabolite vector associations further supported the changing relationship between 335 

peptides, kynurenine metabolism, and pathogens. This approach, robust to the statistical challenges of 336 

cross-omics comparisons from compositional datasets (29, 42) in addition to identifying microbiome 337 

and metabolome changes, showed that the decrease in peptides and kynurenine was associated with a 338 

reduction in pathogens. In light of this finding, we propose the hypothesis that ETI therapy, and possibly 339 

other CFTR modulators, reshape CF microbiome niche space by reducing peptide and amino acid 340 

availability. This shift may squeeze out pathogens, which are known to preferentially metabolize amino 341 

acids in CF mucus (43–46). 342 

Metabolomics of complex clinical samples often identifies xenobiotics such as drugs 343 

administered to patients (14). Prior CFTR modulators were detected in the clinical samples from pwCF 344 

in this study, including evidence of diverse metabolism of these drugs, particularly ivacaftor. This 345 

created a unique opportunity to determine whether or not the presence of a previously approved CFTR 346 

modulator therapy in a patient’s sputum affected the microbiome and metabolome dynamics of ETI. 347 

Interestingly, there was no difference in the microbial and metabolite dynamics described between 348 

those taking CFTR modulators and those not. This is evidence the significant changes described in this 349 

study were driven by ETI, perhaps Elexacftor itself, which is known to be a highly effective CFTR 350 

potentiator. These results show promise that ETI therapy may have a particularly strong effect on the 351 

CF sputum microbiome and metabolome where other CFTR modulators have not (33–36). 352 

There are several caveats to our study, perhaps most importantly, ETI therapy is known to 353 

reduce sputum production in pwCF. It is difficult to discern if the changes we identified here are due to 354 

sputum chemical and microbial dynamics or a change in the ability to produce sputum when on CFTR 355 
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modulators. Instructions for expectoration were not varied before and after ETI to normalize the 356 

sampling approach and all subjects in this study were able to produce sputum for collection both prior 357 

to and during ETI therapy. Furthermore, the relatively small sample size may have masked some 358 

specific changes, particularly with individual microbial ASVs. Larger studies of pwCF before and after 359 

ETI therapy are warranted, though with the wide availability of these CFTR modulators currently makes 360 

collecting ETI naïve sample difficult. Harvesting sputum samples for CF biobanks could be an effective 361 

alternative. Finally, as with all untargeted metabolomics methods, a single protocol for metabolite 362 

extraction and mass spectrometry analysis identifies only a fraction of the total metabolite pool. Future 363 

studies on the metabolome of CF sputum in response to ETI therapy with more varied protocols may 364 

reveal other important pathways that are altered by these drugs. 365 

This study shows that the highly effective CF triple therapy ETI induces significant changes in 366 

the CF sputum microbiome and metabolome. This is exemplified by an overall reduction in pathogens 367 

compared to anaerobes in addition to reduced amino acid availability and kynurenine metabolism with 368 

therapy. This shows promise for the future of CF infection therapeutics because if pathogens are 369 

decreasing in abundance in place of anaerobes, antimicrobial therapy can be targeted to these 370 

organisms that may have less intrinsic resistance than notorious pathogens, such as P. aeruginosa and 371 

S. aureus.  372 
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 539 

Figure Legends. 540 

 541 

Fig. 1. Alpha and Beta-diversity of Lung microbiomes before and after ETI. Alpha-diversity measures of 542 

a) microbiome data and b) metabolome data before (N_ETI) and after ETI therapy. P-values shown are 543 

from either the DM t-test or WSRT after testing for normality. Principal coordinate analysis plots of beta-544 

diversity data for c) microbiome data with significance calculated utilizing the weighted UniFrac distance 545 

and d) metabolome data with significance calculated utilizing the Bray-Curtis distance. PERMANOVA 546 

statistics and the percent of variance explained by each axis are shown. Boxplots of positions on the 547 

first principal coordinate are shown tested for significance with the DM t-test. Beta-diversity cross 548 

comparisons within the e) microbiome and f) metabolome data. Cross comparisons were done across 549 

patients before and after ETI therapy, across the entire dataset, and within subjects before and after 550 

ETI therapy (within). Statistical significance was first tested with an ANOVA followed by an ad-hoc 551 

Tukey’s test. Shared letters denote distributions that are significantly different from each other. 552 

 553 

Fig. 2. Microbiome changes throughout ETI therapy. a) Taxonomic dynamics at the family level of 554 

ASVs in each subject before (N) and after (T) ETI therapy. b) The rRNA copies/mL of sputum, log-555 

ration of pathogen:anaerobes and ASV dynamics before and after ETI therapy.  556 

 557 

Fig. 3. Metabolite network of peptides and other metabolite changes. a) Molecular family metabolite 558 

abundance changes pre- and post-therapy. b) Individual metabolite changes pre- and post-therapy. c) 559 
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Molecular network of peptides identified by GNPS library searching. Each node represents a unique 560 

MS/MS spectrum (putative metabolite), connections between the nodes are determined and width-561 

scaled by the cosine score from MS/MS alignment. Pie charts are the total feature abundance colored 562 

according to the legend.  563 

 564 

Fig. 4. ETI metabolism detected in sputum metabolomic data. a) Three separate molecular networks 565 

are shown for Ivacaftor, Tezacaftor, or Elexacaftor and their related metabolic products as identified by 566 

MS/MS spectral alignments. Each node in a network represents a unique MS/MS spectrum and 567 

connections between the nodes indicate spectral similarity as identified by the cosine score. The width 568 

of the edges are scaled to the cosine score and the pie chart inside nodes represent the sum of the 569 

area-under-curve abundance of that molecule in either pre- (red) or post-treatment (blue) sputum 570 

samples. The nodes are highlighted by whether they represent parent drug, known metabolized 571 

product, or putative unknown metabolized product. Putative structures of the metabolites are shown 572 

with their molecular formulas, retention times, and exact masses. Note that the stereochemistry of 573 

some of the metabolized products cannot be discerned with this level of MS/MS annotation. b) Boxplots 574 

of the area-under-curve abundance of the three parent drugs in pre- and post-ETI samples.  575 

 576 

Fig. 5. Mmvec analysis of sputum microbiomes and metabolomes from pwCF. a) Biplot of the 577 

metabolite and microbe vector associations. Each diamond represents a metabolite (only metabolites 578 

annotated within the GNPS library are shown) and they are colored by their molecular family. The 579 

vectors are the top 15 ASVs associated with the metabolomic dynamics and they are colored by 580 

whether or not they are considered clinical pathogens or anaerobes. b) Conditional probability 581 

distributions for the mean of all peptides identified in the dataset and their association with either 582 

anaerobes (red) or pathogens (purple, p-value from DM T-test). c) Rank abundance of the conditional 583 

probabilities of kynurenine with different anaerobes (red) and pathogens (purple) ASVs. 584 
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