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Abstract 11 

Airborne virus transmission during the COVID-19 pandemic increased the demand for indoor 12 

air cleaners. While some commercial electronic air cleaners could be effective in reducing primary 13 

pollutants and inactivating bioaerosol, studies on the formation of secondary products from 14 

oxidation chemistry during their use are limited. Here, we measured oxygenated volatile organic 15 

compounds (OVOCs) and the chemical composition of particles generated from a hydroxyl radical 16 

generator in an office. During operation, enhancements in OVOCs, especially low-molecular-17 

weight organic and inorganic acids, were detected. Rapid increases in particle number and volume 18 

concentrations were observed, corresponding to the formation of highly-oxidized secondary 19 

organic aerosol (SOA) (O:C ~1.3). The organic mass spectra showed an enhanced signal at m/z 44 20 

(CO2+) and the aerosol evolved with a slope of ~ -1 in the Van Krevelen diagram. These results 21 

suggest that organic acids generated during VOC oxidation contributed to particle nucleation and 22 

SOA formation. Nitrate, sulfate, and chloride also increased during the oxidation without a 23 
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corresponding increase in ammonium, suggesting organic nitrate, organic sulfate, and organic 24 

chloride formation. As secondary species are reported to have detrimental health effects, further 25 

studies are needed to evaluate potential OVOCs and SOA formation from electronic air cleaners 26 

in different indoor environments.  27 

 28 

Keywords: hydroxyl generator, air purifier, air cleaning, indoor air, oxidation, organic aerosol, 29 

volatile organic compounds  30 

 31 

Synopsis: We observed formation of oxygenated volatile organic compounds and secondary 32 

organic aerosol from an electronic air cleaner.  33 

 34 

Introduction 35 

People spend most of their time indoors, making the air quality in these spaces an important 36 

factor for human health. Indoor air quality (IAQ) depends on several factors, including but not 37 

limited to: exchange with outdoor air, filtration, emissions from indoor sources, chemical reactions 38 

i.e., via oxidation or multi-phase processes, and deposition onto surfaces.1 Due to the impact of 39 

IAQ on health, there is a growing demand for air cleaning technologies meant to reduce exposure 40 

to potentially detrimental substances indoors. This demand has increased considerably during the 41 

course of the recent COVID-19 (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) 42 

pandemic due to the increased recognition of the role of airborne virus transmission, especially 43 

indoors.2-6 44 

Air cleaners are usually deployed with the intention to remove indoor pollutants such as 45 

particles or volatile organic compounds (VOCs), as well as to inactivate pathogens. Two types of 46 
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air cleaning technologies are commonly used to remove particles: mechanical filtration and 47 

electronic air cleaners (e.g., ionizers and electrostatic precipitators). Gaseous pollutants such as 48 

odors and VOCs can be removed via a number of different technologies: adsorbent media air filters 49 

(e.g., activated carbon) and various electronic air cleaning devices such as photocatalytic oxidation 50 

(PCO), plasma, and ozone-generating equipment among others.7-9 In addition, hydroxyl radical 51 

(OH) generation via photolysis of ozone or water is also used to destroy odors and VOCs, usually 52 

as a substitute for ozone-generating air cleaners.10, 11 Among these cleaning technologies, 53 

ultraviolet germicidal irradiation (UVGI), ionizers, ozone oxidations, and PCO purifiers have been 54 

shown to be capable of inactivating viruses, bacteria, and other bioaerosol.6, 8, 9, 12-19  55 

There are increasing concerns regarding the use of electronic air cleaners as these devices can 56 

potentially generate unintended byproducts via oxidation chemistry similar to that in the 57 

atmosphere.20, 21 The oxidation mechanism of VOCs in the atmosphere can be simplified as the 58 

following: (1) initial attack of the VOCs by oxidants (OH, O3, and NO3), (2) organic peroxy radical 59 

reactions, and in some cases (3) alkoxy radical reactions.22, 23 Organic peroxy radicals can react 60 

with other species in the atmosphere (e.g., NO, NO2, HO2, etc.) and undergo functionalization or 61 

form alkoxy radicals. Alkoxy radicals can fragment and form smaller organic compounds in the 62 

atmosphere that can be oxidized further. Fragmentation leads to increased volatility whereas 63 

functionalization decreases volatility and increases solubility.22 These complex, multi-generational, 64 

gas-phase oxidation processes result in the formation of a large variety of organic compounds, 65 

which can undergo gas-particle partitioning and/or nucleation to form secondary organic aerosol 66 

(SOA). While some byproducts of VOC oxidation can have adverse health effects,24-29 systematic 67 

investigations of potential formation of organic gases and aerosol during the operation of 68 

oxidant/ion-generating air cleaners indoors are scarce. Previous studies are limited to investigating 69 
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the formation of ozone, NOx, CO, CO2, less-oxidized VOCs, or particle number and mass 70 

concentrations, but not on the composition of more-oxidized VOCs or aerosol.8, 9, 30  71 

In this work, we evaluated the effect of a commercial electronic air cleaner (hydroxyl radical 72 

generator) operated inside an office. We monitored gas-phase oxidized products and PM1 73 

(particulate matter less than 1 µm in diameter) size distribution and composition. We show that 74 

the operation of this device leads to the formation of small organic acids and increases PM1 number 75 

and mass concentrations. These results show that care must be taken when choosing an adequate 76 

and appropriate air cleaning technology for a particular environment and task. 77 

 78 

Materials and methods 79 

The experiment was performed in an office (~ 16 m2) in the Ford Environmental Sciences and 80 

Technology Building at the Georgia Institute of Technology. We performed the experiment in the 81 

following sequence: 1) 2.33 hours of office background sampling, 2) 1.5 hours of hydroxyl 82 

generator operation (Titan Model #4000, International Ozone Technologies Group, Inc., Delray 83 

Beach, FL), and 3) 1.5 hours of sampling after the device was turned off. Briefly, the device 84 

generates OH radical and hydrogen peroxide (H2O2) via photocatalytic reaction of TiO2 with UV-85 

A range (365 - 385 nm) light and H2O and O2 in the air.31, 32 Many other brands of hydroxyl 86 

generator are available in the market and employ a similar technology. 87 

Gas-phase organic compounds were measured and reported as counts per second using a high-88 

resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS, Aerodyne 89 

Research Inc., Billerica, MA) with iodide (I-) as a reagent ion, which selectively measures 90 

oxygenated organics.33 O3 and NOx were monitored using an O3 Analyzer (T400, Teledyne, City 91 
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of Industry, CA), a NO-NO2-NOx Analyzer (42C, Thermo Fisher Scientific, Waltham, MA), and 92 

a Cavity Attenuated Phase Shift NO2 monitor (CAPS, Aerodyne Inc.). 93 

Size-resolved PM1 number and volume concentrations were measured using a scanning 94 

mobility particle sizer (SMPS). The SMPS is a combination of a differential mobility analyzer 95 

(DMA) (TSI 3040, TSI Inc., Shoreview, MN) and a condensation particle counter (CPC) (TSI 96 

3775). In addition, we deployed a separate CPC (TSI 3025 A) to monitor the total number 97 

concentration of particles (all particles under roughly 3 µm). Aerosol chemical composition was 98 

monitored using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, 99 

Aerodyne Research Inc.). HR-ToF-AMS quantifies organics, nitrate, sulfate, ammonium, and 100 

chloride mass concentrations and measures the bulk elemental composition of the particles (e.g., 101 

O:C and H:C ratios).34, 35 The elemental ratios for particles were calculated based on the 102 

“Improved-Ambient” method.35 103 

 104 

Results 105 

Formation of oxidized VOCs (OVOCs). The immediate formation of oxygenated products 106 

was observed by the HR-ToF-CIMS (Figure 1) when the device was turned on. Formic acid (m/z 107 

173, CH2O2I-), acetic acid (m/z 187, C2H4O2I-), iminoacetic acid (m/z 200, C2H3NO2I-), oxamide 108 

(m/z 215, C2H4N2O2I-), glyceraldehyde (m/z 217, C3H6O3I-), glycerol (m/z 219, C3H8O3I-), alanine 109 

(m/z 216, C3H7NO2I-), and acetoacetic acid (m/z 229, C4H6O3I-) are identified and showed the most 110 

obvious enhancements during the operation period. Enhanced glyceraldehyde and glycerol at the 111 

beginning of the experiment (12:10 pm) was likely due to the presence of people in the office 112 

initially (to set up instruments for this study), as these compounds are formed as intermediates in 113 

metabolism and widely used in cosmetics or as an additive in foods.36-38 Nitrous acid (m/z 174, 114 



6 
 

HONOI-), which is an inorganic acid, also increased during the operation. Hydrogen peroxide (m/z 115 

161, H2O2I-) increased during the background period and decreased during the operation of device. 116 

As mentioned in the previous section, TiO2 photocatalytic technology is reported to produce H2O2 117 

as another product.31 However, H2O2 decreased when the device was turned on and rebounded 118 

after the device was turned off. The pre-existing H2O2 in the office could have been interacting 119 

with the generated OH radical but flattened as a result of regeneration via self-reaction of 120 

hydroperoxyl radical. 121 

Formation of secondary organic aerosol. Particle number and volume concentrations started 122 

increasing once the device was in operation (Figure 2a). Both the number and volume 123 

concentrations increased rapidly in the first 30 minutes after the device was turned on and slowed 124 

down after reaching ~4000 particle cm-3 and ~5 µm3 cm-3, respectively. This was followed by a 125 

rapid decrease in concentrations after the device was turned off. The increase in particles was 126 

mostly within the PM1 size range based on the agreement between the SMPS (PM1 only) and the 127 

CPC (all particles under roughly 3 µm). During the operation, an enhancement was observed in 128 

the 100 - 200 nm size range for both particle number and volume concentrations (Figure S1). It is 129 

noted that a similar experiment was performed in a laboratory space (~ 140 m2) and similar results 130 

were observed (Figure S2). 131 

The time series of the species measured by the HR-ToF-AMS are shown in Figure 2b. A 132 

collection efficiency of 0.45 was applied to the data as the inorganic concentrations were low and 133 

the aerosol did not contain high mass fractions of acidic sulfate or ammonium nitrate.39 The 134 

chemical composition of the particles during the operation period confirmed SOA formation, with 135 

organics reaching 2.1 µg m-3 after the device was turned on. Figure 2 also shows that the mass 136 

concentrations of non-refractory species reported by the HR-ToF-AMS were somewhat lower than 137 
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the volume concentration enhancement measured by the SMPS (converted to mass concentration 138 

by the density of each species, Figure S3). This difference was expected since both instruments 139 

sampled particles without the use of a dryer at the instrument inlets. Thus, the particle 140 

concentration reported by the SMPS included water whereas particle water can be evaporated in 141 

the low-pressure aerodynamic lens and vacuum system of HR-ToF-AMS.39-42 The discrepancy 142 

diminishes when accounting for particle water as shown in Figure S3. Ammonium concentration 143 

was low throughout the experiment and showed little changes whereas nitrate, sulfate, and chloride 144 

increased during the device operation period. Since we did not observe ammonium increasing 145 

along with nitrate, sulfate, or chloride, these species are likely in the form of organic nitrate, 146 

organic sulfate, and organic chloride. Organic mass spectra comparison shows enhanced fraction 147 

at m/z 44 (CO2+) during the device operation (Figures 3a and S4), with increased O:C and 148 

decreased H:C (Figure S5a). The increase in the degree of oxidation of aerosol is further illustrated 149 

in the Van Krevelen diagram in Figure 3b.43-45 The aerosol evolution followed a slope of ~ -1, with 150 

particle carbon oxidation state (OSC = 2 O:C - H:C ) increasing during device operation, as a result 151 

of enhancements in O:C and reductions in H:C.46  152 

 153 

Discussion 154 

Generation of hydroxyl radicals indoors reduces VOC concentrations in a similar manner to 155 

tropospheric VOC oxidation chemistry, which proceeds through complex, multi-generational 156 

chemistry and results in the formation of a large number of organic products. The byproducts 157 

formed from these reactions in this study depend on the identity of the VOCs in the office. VOCs 158 

were not measured in this work, however, Price et al.47 speciated total organic carbon (in both gas 159 

and particle phases) in an art museum and identified that over 80% of the carbon present are highly 160 
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reduced (OSC < -0.5) and volatile compounds with low carbon number (< C6). It is possible that 161 

the office has a similar VOC speciation, though it could have a lower total carbon budget due to 162 

no occupancy and no activities, such as printing,48 which can lead to VOC emissions. The observed 163 

oxygenated C1-C4 compounds can be formed from functionalization and fragmentation of such 164 

VOCs during the oxidation.22 Although we only observed small carboxylic acids in the gas phase, 165 

this does not exclude the formation of larger OVOCs, which might not be detected by I-CIMS, be 166 

lost in the instrument inlet line, interact with the surfaces,1, 47 or have participated in new particle 167 

formation and growth.49 Increasing particle number and mass concentrations and the formation of 168 

highly-oxidized SOA suggest that new particle formation and condensation growth can be a loss 169 

process of larger, less-volatile OVOCs. The SOA formed has an O:C of ~ 1.3, which is higher than 170 

the typical O:C range observed for more-oxidized oxygenated organic aerosol (MO-OOA) in 171 

ambient environments.44, 50 While both nucleation and gas-particle partitioning can lead to SOA 172 

formation, nucleation is likely the main process as particle elemental composition changed (O:C 173 

decreased and H:C increased) as soon as the device was turned off. The prevalence of nucleation 174 

is likely due to the small condensation sink with low aerosol background (~581 # cm-3) in the 175 

office. The enhancement of m/z 44 (CO2+) in the HR-ToF-AMS organic mass spectra indicates the 176 

contribution of organic acids in SOA formation, as their thermal decarboxylation gives rise to the 177 

CO2+ fragment.44, 51-54 In the Van Krevelen diagram, the SOA evolved along the ~ -1 line, which 178 

corresponds to the addition of carboxylic acids and/or simultaneous increases in alcohol and 179 

carbonyl groups. 43, 44 Taken together, these results show that carboxylic acids were formed during 180 

the oxidation process and contributed to new particle formation owing to their low volatility. 22, 49, 181 

55  182 
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Nitrate, sulfate, and chloride enhancements are expected to be associated with organic nitrate, 183 

organic sulfate, and organic chloride formation (Figure S5). The average NO+/NO2+ ion ratio from 184 

the HR-ToF-AMS is widely used as an indicator to differentiate inorganic vs. organic nitrate.56-58 185 

The NO+/NO2+ ratio for inorganic nitrate during the instrument calibration was 1.98, and previous 186 

laboratory studies have shown that this ratio is much higher for organic nitrate than inorganic 187 

nitrate.56, 59-61 The average NO+/NO2+ ratio during the operation period was ~17, implying that 188 

virtually all the particle-phase nitrate was organic nitrate. The contribution of organic sulfate can 189 

be examined by evaluating the fractions of HSO3+ and H2SO4+ in HxSOy+ fragments (SO+, SO2+, 190 

SO3+, HSO3+, and H2SO4+).62 Both fractions decreased when the device was turned on, implying 191 

the presence of organic sulfate. Organic chloride formation can be associated with chlorine-192 

containing VOCs which may be emitted or formed through interactions with cleaning products.63, 193 

64  194 

To our knowledge, this is the first study that monitored the chemical composition of secondary 195 

products in both gas and particle phases during the operation of an electronic air cleaner that 196 

dissipates oxidants in a real-world setting. Although we lack parent VOC measurements, the 197 

limited number of OVOCs and small enhancement in SOA observed during this work were 198 

assumed to be due to low initial VOCs concentrations in the office where this study was conducted. 199 

Much larger enhancements in OVOCs and SOA could be observed in other types of indoor 200 

environments such as industrial settings, homes, and restaurants, which can have much larger VOC 201 

concentrations, even more than in outdoor locations. 1, 47, 64-66 Secondary VOC oxidation products 202 

have been shown to have detrimental effects on human health. 24, 26, 27, 67, 68  Specifically, SOA has 203 

been reported to induce cellular reactive oxygen species (ROS) generation, inflammatory cytokine 204 

production, and oxidative modification of RNA.69-71 The toxicity of SOA could increase with 205 
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increasing OSC.28, 72 Therefore, future studies on air cleaning technologies should not be limited to 206 

the inactivation of bioaerosol or reduction of particular VOCs, but should also evaluate potential 207 

OVOCs and SOA formation during their operation. The electronic air cleaner tested in this study 208 

is similar to many other commercially available devices and similar experiments should be 209 

conducted with other devices.  210 
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Figures  444 

 445 

Figure 1. HR-ToF-CIMS results showing (a) grey: office background mass spectrum / blue: mass spectrum during 446 

hydroxyl generator operation, (b) the mass spectrum difference between before and during the operation of hydroxyl 447 

generator, and (c) time evolution of selected species. The data are 10-min averaged data and are normalized by the 448 

maximum signal of each species. The hydroxyl generator was in operation from 2:30 pm to 4:00 pm (highlighted in 449 

yellow). Glyceraldehyde (m/z 217, C3H6O3I-) is not included in the mass spectrum in (b) due to its rapid decay after 450 

the formation. 451 
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 452 

Figure 2. Time series of (a) particle number (CPC and SMPS) and volume concentrations (SMPS) and (b) non-453 

refractory species concentrations (HR-ToF-AMS). The mass fraction of different non-refractory species during the 454 

hydroxyl generator operation is shown in the pie chart. The hydroxyl generator was in operation from 2:30 pm to 4:00 455 

pm (highlighted in yellow). 456 

 457 

 458 

 459 

 460 
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 461 

Figure 3. HR-ToF-AMS results showing (a) organic mass spectra comparison between during device operation and 462 

office background and (b) VK-triangle diagram of organics. The black lines encompass the triangular space occupied 463 

by ambient SOA.44 The carbon oxidation states (OSC) are shown with grey dotted lines. The blue data points 464 

correspond to office background and the red data points correspond to device operation. 465 
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