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ABSTRACT 

Several of the hypothesized or studied exposures that may affect dementia risk are 

known to increase the risk of death. This may explain counterintuitive results, where 

exposures that are known to be harmful for mortality risk sometimes seem protective 

for the risk of dementia. Authors have attempted to explain these counterintuitive 

results as biased, but the bias associated with a particular analytic method cannot be 

defined or assessed if the causal question is not explicitly specified. Indeed, we can 

consider several causal questions when competing events like death, which cannot be 

prevented by design, are present. Current dementia research guidelines have not 

explicitly considered what constitutes a meaningful causal question in this setting or, 

more generally, how this choice justifies and should drive particular analytic 

decisions. To contextualize current practices, we first perform a systematic review of 

the conduct and interpretation of longitudinal studies focused on dementia outcomes 

where death is a competing event. We then describe and demonstrate how to address 

different causal questions (referred here as “the total effect” and “the controlled direct 

effect”) with traditional analytic approaches under explicit assumptions. Our 

application focuses on smoking cessation in late-midlife. To illustrate core concepts, 

we discuss this example both in terms of a hypothetical randomized trial and with an 

emulation of such a trial using observational data from the Rotterdam Study.   
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1. INTRODUCTION 

Much research on dementia etiology focuses on understanding the role of biological 

factors in the pathophysiological process, and the impact of modifiable factors that 

could prevent or delay the onset of the disease[1]. As such, the field is often interested 

in causal questions. However, proper causal inference in dementia research faces 

many methodological and substantive challenges[2]. One of these challenges, which 

arises even in randomized trials, is that individuals at risk of dementia may die of 

other causes prior to its onset. In this setting, death is a competing event because an 

individual who dies from another cause prior to dementia onset cannot subsequently 

experience dementia[3].  

Several of the hypothesized or studied exposures that may affect dementia risk can 

also increase the risk of death. This may explain counterintuitive results, where 

exposures that are known to be harmful for mortality risk, such as smoking[4,5] or 

history of cancer[6], sometimes seem protective for the risk of dementia. Authors 

have attempted to make sense of these counterintuitive results by naming biases such 

as “competing risk bias” or “survival bias”[7,8].  However, the bias associated with a 

particular analytic method cannot be defined or assessed if the causal question is not 

explicitly specified. We can envisage several causal questions when competing events 

like death are present, as we will discuss below. 

Current dementia research guidelines[2] have not explicitly considered what 

constitutes a meaningful causal question in this setting or, more generally, how this 

choice justifies and should drive particular analytic decisions. Previous 

recommendations in the statistical and epidemiologic methods literature have 

advocated for the cause-specific hazard ratio when the aim is “etiologic”[9–12], 

relying on the popular Cox proportional hazards (PH) model. However, such 

recommendations cannot be justified (or criticized) without reference to the causal 

question which the analysis seeks to answer. The lack of explicit consideration of 

questions has contributed to confusion about the interpretation of different approaches 

to data analysis, including the misconception that “censoring” competing events is 

equivalent to somehow “ignoring” them. Recently, Young and colleagues placed core 

statistical concepts like risk and hazard within a formal causal inference framework 

and mapped common analytic strategies for competing events to questions about an 
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intervention’s effect either with and without elimination of the competing event[13]. 

This work clarifies the role of censoring with respect to question formulation, 

assumptions needed for causal interpretation given real-world data, and particular 

analytic choices.  

The goals of the current study are two-fold. To contextualize current practices, we 

first perform a systematic review of the conduct and interpretation of longitudinal 

studies focused on dementia outcomes where death is a competing event. Second, to 

contextualize the ideas formalized by Young and colleagues[13] in the setting of 

dementia research, we describe and demonstrate how to translate different causal 

questions (what we will refer to as questions concerning “the total effect” and “the 

controlled direct effect”) to popular analytic approaches under explicit assumptions. 

Our application focuses on smoking cessation in late-midlife, one of the twelve 

modifiable risk factors for dementia prevention described in the 2020 report of the 

Lancet Commission[1]. To illustrate core concepts, we discuss this example both in 

terms of a hypothetical randomized trial and with an emulation of such a trial using 

observational data from the Rotterdam Study[14].   

2. SYSTEMATIC REVIEW OF LONGITUDINAL STUDIES OF 

DEMENTIA 

2.1. Methods 

We conducted a systematic review of recent original research articles with dementia 

outcome. We aimed to describe how death during follow-up is handled in the design, 

analysis, reporting, and interpretation.  

Eligibility for our systematic review included: original research with longitudinal data 

on dementia or Alzheimer’s disease outcomes, published between January 2018 to 

December 2019. We limited our systematic review to nine journals in applied 

dementia or applied general medical research: Alzheimer’s and Dementia, Annals of 

Neurology, BMJ, JAMA, JAMA Neurology, Lancet, Lancet Neurology, Neurology, 

New England Journal of Medicine.  We searched PubMed for papers that contained 

the words in the abstract: Alzheimer’s disease or dementia; longitudinal or cohort; 

hazard or risks (Supplemental Data 1).  
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We collected the following information from each eligible article: (1) reported study 

characteristics (type of exposure, median length of follow-up, study aim); (2) 

reporting on death and loss to follow-up (number of people who died over time, 

number of people who died over time by level of an exposure of interest, number of 

people lost to follow-up); (3) information on specific methodologic considerations 

(explicitly mentions how the competing event of death is handled in the analysis plan, 

primary target parameter, primary statistical method, explicitly mentions the 

assumptions needed for valid inference given the competing event of death and 

additional analyses and measures reported); and (4) interpretation (valid  

interpretation of the primary result given the competing event of death, discusses 

mortality in discussion). 

2.2. Results 

We retrieved 210 papers using the specified terms, 78 of which met eligibility criteria 

(Supplemental Data 1). Though we intended to classify articles according to the type 

of aim (descriptive, predictive and causal), this was not possible since most articles 

are not specific, and more frequently the term “association” is used to represent an 

ambiguous aim. Over 80% of the studies (n=63) reported associations between 

dementia and a single measure of a time-fixed or time-varying exposure (Table 1). 

Mean or median follow-up was over 5 years for 70% (n=55) of the studies. The 

number or proportion of individuals who died over time was reported in 41 (53%) 

papers; 12 (15%) presented these numbers by exposure level and 41 (53%) reported 

losses to follow up. Only 27% (n=21) explicitly reported how the competing event of 

death was handled in the methods section. The vast majority presented estimates of a 

hazard ratio (88%) based on a Cox proportional hazard model (85%). A table with the 

additional reported summary measures is present in Supplemental Data 1. Of all 

papers, only four explicitly mentioned assumptions pertaining to the presence of 

deaths by other causes (i.e., competing events). No papers that reported estimated 

coefficients of a (cause-specific) Cox proportional hazard model considered their 

explicit interpretation (see below)[3,13,15–18]. Overall, only one-third of the 

publications (n=25) mentioned death in some context (e.g., interpretation, limitation) 

in the discussion section. 
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With the findings of this systematic review in mind, we next turn to describing 

important features of data structures with competing events, causal questions that can 

be posed, and under what assumptions and using what methods those questions can be 

answered. 

3. FROM QUESTIONS TO METHODS IN DEMENTIA STUDIES 

WHERE SOME INDIVIDUALS DIE DURING STUDY: A 

PEDAGOGIC EXAMPLE  

3.1. Observed data structure 

Consider the effect of smoking cessation (versus continuing) in late-midlife on 

developing dementia after 20 years of follow-up.  In order to focus on the challenges 

to causal inference created by competing events, let us begin by considering an 

idealized randomized trial such that middle-aged smokers are randomly assigned to a 

strategy to quit smoking versus continue smoking. Dementia onset is rigorously 

measured through constant screening, with date of death during follow-up recorded 

through linkage with municipal records. Further, suppose in the idealized trial we 

have complete follow-up (all individuals remain in the study until end of follow-up or 

until death) and perfect adherence. 

Trial participants will be observed to follow different possible event trajectories 

through the study period: death without developing dementia; dementia onset (some 

dying after dementia onset); or remaining alive and dementia-free until end of follow-

up. For those individuals who died without developing dementia, after the time of 

death, they cannot subsequently develop dementia. This is the key implication of 

competing events: they make it impossible for the event of interest to subsequently 

occur. It is precisely this determinism that makes choosing a causal question more 

difficult than when competing events are absent (e.g., when the event of interest is all-

cause mortality rather than dementia). 

The causal diagram in Figure 1 represents some key features of this data structure, 

where an arrow from one node A into another node B on a causal diagram reflects that 

A may cause B[19].  Gaining familiarity with the key features in this causal diagram 

will illuminate the tradeoffs in interpretation of different definitions of a causal effect 

on dementia in the presence of death, as well as the assumptions used for identifying 

these effects from observable data. In this graph, Smoking represents an individual’s 
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smoking status, and Death19 and Dementia20 represent indicators of death by 19 years 

of follow-up and dementia risk by 20 years of follow-up, respectively. By 

randomization, we know there are no shared causes of Smoking and other variables 

represented on the graph (the only cause of quitting smoking is a “coin flip”).  

However, we have no such guarantee for death and dementia status over the follow-

up; therefore, the graph depicts shared causes C of dementia and death (such as 

cardiovascular comorbidities) that may or may not be measured. The arrows from 

Smoking to Death19 and Smoking to Dementia20 illustrate that smoking may affect 

both dementia and death through different mechanisms. The bold arrow from Death19 

to Dementia20 represents the key feature of a competing events data structure: an 

individual who dies by year 19 of follow-up cannot subsequently develop dementia at 

the next time point, with the boldness here indicating the determinism. Though we 

present death and dementia at years 19 and 20 respectively, the causal diagram could 

be expanded to include their assessments in previous years as well. This simplified 

causal diagram is sufficient, however, for our consideration of the causal question. 

3.2. Choosing a causal question: the total and controlled direct effect 

We say the study we have conceptualized is "ideal" because, in the case of a 

randomized trial with no loss to follow-up and perfect adherence, we can identify the 

exposure effect on the outcome of interest through all possible pathways: the total 

effect. In our example, the following is a question about a total effect: What would the 

difference in dementia risk by 20-year follow-up be had all individuals in the study 

population quit smoking versus, instead, had all individuals continued smoking? This 

dementia risk is an example of a “cause-specific cumulative incidence” or “crude 

risk”[3,17].  

Unfortunately, the total effect captures all pathways by which exposure affects 

dementia, including those mediated by death. In the causal diagram in Figure 1 this 

includes both the direct effect on dementia (Smoking→Dementia20) and indirect of 

smoking via mortality (Smoking→Death19→Dementia20). This indirect effect is 

necessarily “protective” since participants who die due to smoking at an earlier time 

point are “protected” from developing dementia. This "pathological mediation" 

structure gives the total effect a potentially problematic interpretation, since smoking 

cessation may increase the risk of dementia but primarily or solely because it delays 
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death. Thus, the total effect may not answer a desirable causal question in these 

settings, especially when there is an arrow between the exposure and competing 

event. Empirical support for this arrow and, in turn, for quantifying the concerns 

about “pathological mediation” of the total effect, can be obtained by also estimating 

the effect of smoking cessation on all-cause mortality.  

Instead of a total effect, a direct effect of smoking on the risk of dementia (that does 

not also capture the pathways mediated by death) may be of interest. There are 

multiple ways to define a direct effect[20–22].  Here we will consider one definition 

that has been historically considered and may lead to familiar statistical methods as 

will be described in the next section: the controlled direct effect. In our example, this 

question is phrased as: What would the difference in dementia risk by 20-year follow-

up be had all individuals in the study population quit smoking and not died 

throughout the study period versus, instead, had all individuals continued smoking 

and not died throughout the study period? This dementia risk (under elimination of 

death) is an example of a “net risk” or “marginal cumulative incidence”[3,17]. This 

effect only captures the direct effect of smoking on dementia because it refers to a 

hypothetical setting in which somehow death could be eliminated. As we discuss in 

the next section, while our idealized trial allows us to identify the total effect by 

design, it does not guarantee this for the controlled direct effect. 

The risk differences above both quantify causal effects because they both refer to a 

comparison of outcome distributions under different interventions but in the same 

individuals. In contrast, while cause-specific hazard ratios are the basis of the majority 

of analyses in dementia studies, these generally do not quantify causal effects, even 

under the conditions of an ideal trial.  Unlike risks, hazards are defined conditional on 

not yet having had the outcome or competing event. This conditioning means that 

hazard contrasts do not compare outcomes under different exposures in the same 

individuals when exposure affects these events[13,23,24]. Therefore, in dementia 

studies, cause-specific hazard ratios will not generally have a causal interpretation 

when exposure affects either dementia or death (directly or indirectly). For this 

reason, we will focus on risks even though many studies in our literature review 

reported hazard ratios. 
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In sum, there is no single way to define “the” causal effect on dementia when deaths 

occur. Choosing either of these research questions should be done in a case-by-case 

basis, and we will address this, as well as introduce other alternative questions, in the 

discussion section. Presenting information on the relation between exposure and 

mortality can complement both questions. 

3.3. Identifying the total versus controlled direct effect in a real-world study 

In this section we consider assumptions that help us connect our causal quantity of 

interest to observable data (i.e., identification). Consider again Figure 1: because 

exposure was randomized, there are no non-causal paths connecting Smoking and 

Dementia20[19,25].  This is consistent with the assumption of “no confounding”, 

allowing identification of the total effect. In contrast, to identify the controlled direct 

effect of smoking cessation on the risk of dementia, we need to make additional 

assumptions; that is, “no confounding” ensured by randomization of the exposure is 

not sufficient. 

In Figure 1, we observe the non-causal path between death and dementia through their 

shared cause C, Dementia20C→Death19.  Thus, even in our ideal trial, we need to 

measure C to identify this effect. The reason we need to measure and adjust for C 

when interest is in the controlled direct effect is because death is a form of censoring 

for this question[13]. Censoring is a type of missingness in the outcome of interest. 

Therefore, what constitutes censoring depends on the question of interest.  A , as such 

the controlled direct effect is a question about dementia outcomes in hypothetical 

settings where death is eliminated.  When an individual dies prior to dementia onset, 

dementia onset “under elimination of death” is missing for that individual. While 

many researchers equate “death” with “censoring”, these terms are not synonymous: 

death is only a type of censoring (leading to missingness of the dementia outcome) 

when the question of interest is about outcomes “under elimination of death”.   

In turn, measuring and including the shared cause C in Figure 1 of dementia and death 

is consistent with an assumption often referred to as conditional independent 

censoring (here, conditional on C) [3,10,11,13,17,18,26]. This assumption becomes 

more plausible in most studies if time-varying shared causes are included rather than 

only baseline covariates. Assuming that there are no shared causes between death and 

dementia (i.e., assuming the absence of the dotted arrows from C to Death19 and 
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Dementia20 in Figure 1) coincides with the assumption of unconditional independent 

censoring.  This is implausible for nearly all dementia research since both events are 

related to the aging process and consequences of it. Thus, even in our ideal trial, given 

interest in the controlled direct effect, we must measure a rich set of covariates related 

to both dementia and mortality risk at baseline and repeatedly throughout follow-up.  

On a separate note, loss to follow-up is a form of censoring (missingness) whether 

interest is in total or direct effects. Though loss to follow-up can in principle be 

prevented by design, in trials or other studies of dementia, mechanisms of loss to 

follow-up might be related to impaired cognition and dementia[27], and as such, 

shared causes of loss to follow-up and dementia should be measured as well for 

similar reasons as for measuring C[28,29]. Further details on censoring and graphical 

identification of both effects, including scenarios with loss to follow-up, can be found 

in Young et al.[13]. 

3.4. Statistical methods to estimate the total effect or the controlled direct 

effect    

Choosing an appropriate statistical method depends jointly on the choice of causal 

effect and the identifying assumptions we make.  In an ideal trial, the total effect can 

be trivially estimated by simply comparing two proportions: the proportion diagnosed 

with dementia at 20-year follow-up in the “quit smoking” arm versus the proportion 

diagnosed with dementia at 20-year follow-up in the “do not quit smoking” arm.  In 

both proportions, individuals who die before developing dementia will contribute to 

the denominator but never to the numerator. Likewise, these quantities can be 

estimated with the Aalen-Johansen estimator[13,17,18], which extends to settings 

with loss to follow-up under the assumption of unconditional independent censoring 

by loss to follow-up. 

In contrast, the controlled direct effect requires covariate adjustment on the shared 

causes of death and dementia, even in an ideal trial.  For example, the controlled 

direct effect could be estimated by comparing the risk estimates from the complement 

of a weighted version of the Kaplan-Meier estimator[13], where weights represent the 

inverse probability of censoring by death conditional on covariates[13,26,30–32]. 

These covariates should be those assumed to ensure the conditional independent 

censoring assumption for this form of censoring (e.g., the covariates C in Figure 1).   
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We note that the historic survival-analysis terminology classifies this structure as 

“semi-competing events” since death is a competing event for dementia but not the 

other way around. Therefore, we can estimate the risk of all-cause mortality using 

standard methods like the Kaplan-Meier estimator. In all cases, straightforward 

extensions exist for covariate adjustment (e.g., by inverse probability weighting) to 

address loss to follow-up as well as for confounding [13,29,33–35]. As such, these 

methods can be used in realistic trials and in observational studies, though our 

consideration of estimation in an ideal trial helps illuminate the unique feature of 

competing events.  

4. APPLICATION TO THE ROTTERDAM STUDY 

We now illustrate an application of inverse probability weighted methods to estimate 

total and controlled direct effects of smoking cessation on dementia using data 

collected from the Rotterdam Study. Briefly, the Rotterdam Study is a population-

based prospective cohort study among persons living in the Ommoord district in 

Rotterdam, the Netherlands[14]. Participants older than 55 years underwent 

questionnaire administration, physical and clinical examinations, and blood sample 

collection at baseline (1990-1993) and at follow-up visits from 1993-1995, 1997-

1999, 2002-2005, and 2009-2011. Smoking habits were assessed through 

questionnaires at study entry via self-reported status as “former", “current smoker’’ or 

“never smoker”. Dementia diagnosis was collected by screening at each visit and 

through continuous automated linkage with digitized medical records and regional 

registries (Supplemental Data 2). Death certificates were obtained via municipal 

population registries and through general practitioners’ and hospitals’ databases, with 

complete linkage. This ascertainment method means the Rotterdam Study has 

functionally no loss to follow-up with respect to dementia diagnosis and death. 

Individuals ages 55-70 years who reported smoking (current or former) and who did 

not have history of dementia at cohort entry were eligible for the current study. To 

emulate the ideal trial described in Section 3, we contrast former and current smokers. 

This contrast has some limitations when viewed as an emulation of the ideal trial 

described in Section 2. For example, there may be unmeasured confounding, selection 

bias due to misaligning "time zero"[36,37], and measurement error[19]. A thorough 

consideration of these other issues would be critical for evaluating the effect size of 
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smoking cessation on dementia risk, but go beyond the scope of this exercise. For 

didactic purposes, we therefore focus our discussion on how the competing event of 

death affects the interpretation, analytic decisions, and assumptions evoked.  

4.1. Methods 

To estimate the total effect of smoking cessation on dementia risk, we compared a 

weighted Aalen-Johannsen estimator in current versus former smokers with weights 

defined as a product of inverse probability of treatment weights[19] to adjust for the 

following possible confounders: age at study entry, sex, APOE ε4 status, and 

educational attainment. Briefly, the weight for a current smoker is defined as the 

inverse of the probability of smoking conditional on confounders, and for a former 

smoker as the inverse of quitting conditional on covariates.  We estimated these 

probabilities with a logistic regression model for smoking as a function of the above-

mentioned covariates. Specific modeling specifications and weights assessment are 

presented as Supplemental Data 3.  

To estimate the controlled direct effect, we compared the complement of a weighted 

Kaplan-Meier survival estimator in smokers versus former smokers with time indexed 

in years. The weights in this case are time-varying by follow-up year, defined as a 

product of the time-fixed weights above and a year-specific inverse probability of 

censoring by death weights.  For an individual still alive in year t, the time t censoring 

weight is the product of the inverse probability of surviving in each year prior to t, 

conditional on measured shared causes of death and dementia (that is, variables such 

as C in Figure 1). For an individual who has died by time t, the year t censoring 

weight is zero. We estimated survival probabilities using a logistic regression model 

for death as a function of baseline and time-varying covariates. Baseline covariates 

included smoking status, age at study entry, sex, APOE ε4 status, and educational 

attainment; time-varying covariates included systolic blood pressure, BMI, and 

prevalent and incident comorbid heart disease, cancer, stroke, and diabetes.  

We also estimated the total effect of smoking on mortality risk applying the Kaplan-

Meier estimator with the weights calculated for handling confounding. We therefore 

are assuming the same set of measured confounders used to estimate the total effect of 

smoking on dementia risk are sufficient for addressing confounding of the total effect 

of smoking on mortality risk. 
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Estimates of the total and controlled direct effect at 20 years of follow-up are 

presented as risk differences (RD) and risk ratios (RR). All 95% confidence intervals 

were calculated using percentile-based bootstrapping based on 500 bootstrap samples. 

All analysis were performed using R, code is available in 

https://github.com/palolili23/competing_risks_dementia. 

Standard protocol approvals, registrations, and patient consents: The Rotterdam 

Study has been approved by the Medical Ethics Committee of the Erasmus MC 

(registration number MEC 02.1015) and by the Dutch Ministry of Health, Welfare 

and Sport (Population Screening Act WBO, license number 1071272-159521-PG). 

The Rotterdam Study has been entered into the Netherlands National Trial Register 

(NTR; www.trialregister.nl) and into the WHO International Clinical Trials Registry 

Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under shared catalogue 

number NTR6831. All participants provided written informed consent to participate 

in the study and to have their information obtained from treating physicians. 

Data availability: Rotterdam Study can be obtained via requests directed toward the 

management team of the Rotterdam Study (secretariat.epi@erasmusmc.nl), which has 

a protocol for approving data requests. Because of restrictions based on privacy 

regulations and informed consent of the participants, data cannot be made freely 

available in a public repository.  

4.2. Results 

Out of 10994 individuals included in the Rotterdam Study, 4179 individuals met 

eligibility criteria (55-70 years who reported smoking history at baseline and who did 

not have history of dementia at study entry). The mean age was 62 years and 1870 

(44.7%) were women (Table 2). In total, 368 (8.8%) developed dementia and 1318 

(31.5%) died over 20 years of follow-up. The median time to dementia was 15.5 years 

and the median time to death was 13.1 years. Overall, from 1572 who were current 

smokers at baseline, 117 (7.4%) developed dementia and 630 (40.1%) died; of the 

2607 former smokers, 251 (9.6%) developed dementia and 688 (26.4%) died. 
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We estimated a total effect of smoking cessation (compared to continued smoking) on 

20-year dementia risk of 2.1 (95%CI: -0.1, 4.2) percentage points (Table 3; Figure 

2). This slightly harmful effect estimate of quitting smoking (with wide confidence 

intervals) includes all causal pathways, including that through death. The presence of 

this pathway is evidenced in the estimated total effect of quitting smoking on 20-year 

mortality risk: -17.4 (95%CI: -20.5, -14.5) percentage points. Alternatively, we 

estimated a controlled direct effect of quitting smoking on 20-year dementia risk had 

death been fully prevented during the study period as -1.9 (-5.1, 1.4) percentage 

points. 

5. DISCUSSION 

In longitudinal (randomized and observational) studies where dementia is the main 

outcome and deaths occur during follow-up, understanding the different causal 

questions and making explicit the assumptions required for answering them can lead 

to better interpretation of results, and a deeper understanding about plausible sources 

and magnitudes of bias. We considered two causal questions that can be addressed 

with common statistical methods, beginning with the total effect which captures all 

causal pathways including those mediated by death. This makes the total effect 

difficult to interpret as illustrated in our example: the small estimated harmful total 

effect of smoking cessation on dementia risk necessarily captures some “protection” 

against dementia by death. This is not a “bias” but rather a problematic feature of the 

total effect as the research question.     

The controlled direct effect does not have this problematic feature, and in our 

example, we estimated that smoking cessation reduced the risk of dementia if death 

was eliminated. However, residual bias from failing to adjust for a sufficient set of 

shared causes of death and dementia can remain. In addition, the independent 

censoring assumption cannot be verified empirically, though bounding can be used to 

assess extreme scenarios of dependency[3,30,38–40]. Furthermore, the controlled 

direct effect is not an ideal measure of direct effect because it refers to a fictional 

scenario where everyone remains alive and therefore it generally will not provide 

useful information for decision-making.  

Since both of these questions can seem unsatisfactory, we note that there are yet 

further alternative questions that can potentially be posed. For example, the so-called 
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“survivor average treatment effect” quantifies the effect of a treatment on a subgroup 

of individuals who would not die during the study period under either level of 

treatment. Although this option has been widely considered in the methodology 

literature[22,41], the utility of this question is questionable in public health and 

clinical dementia research as this subgroup is not observable and may not even exist. 

One can also consider a combined outcome endpoint, such as the effect on dementia 

or death, but this too is unsatisfactory in many cases: in our example, the effect of 

smoking on risk of death would overwhelm. A novel alternative, the so-called 

separable effects avoid evoking consideration of implausible scenarios that “eliminate 

death” or unobservable subpopulations[21]. The separable effects are effects of 

modified treatments that are assumed to operate like the study treatment but with 

particular mechanisms removed. These may be a physical decomposition of the 

exposure assumed to operate on dementia and death through separate pathways or 

completely different treatments that operate like the study treatment. While 

identifying these effects similarly rely on strong assumptions, including necessitating 

measuring a rich set of shared causes of dementia and death, estimates of these effects 

can be confirmed with future studies on these modified treatments. In this work we 

focused on the two questions because of their relation to commonly used estimators in 

dementia research, but we suspect in the future that separable effects will become a 

more explicit question of interest with the increasing development of useable tools for 

aiding reasoning.  

Too often, we start by defining the statistical method that appears to fit the complexity 

of data, and we let this decision define the target parameter and thus implicitly 

determine the research question to be answered. In a setting with competing events, 

there is no “one size fits all”. Through our discussion and application, we hope that 

readers will see an opportunity to re-conceptualize how to ask clearer questions in the 

context of competing events and let the question define the methods that best suit the 

research aim.  
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Table 1. Current reporting practices relevant to competing events in dementia 

research (N=78 articles) 
 

N (%) 

Exposure type 
 

Not applicable 2 (3%) 

Time-fixed or time-varying measured at one time point 63 (81%) 

Time-varying 4 (5%) 

Time-varying treated as time-fixed 9 (11%) 

Median length of follow-up 

1 to 3 years 7 (9%) 

3 to 5 years 16 (21%) 

5 to 10 years 24 (31%) 

10 to 15 years 9 (12%) 

15 to 20 years 5 (6%) 

Above 20 years 17 (22%) 

Includes n or % of deaths 41 (53%) 

Includes n or % of loss to follow-up 41 (53%) 

Includes n or % of mortality By exposure level 

No 62 (79%) 

Yes 12 (15%) 

Not applicable 4 (5%) 

Explicitly mentions how the competing event of death is handled in the analysis 

plan 

21 (27%) 

Explicitly mentions the assumptions needed for valid estimation given the 

competing event of death 

4 (5%) 

Primary statistical method 
 

Cox-proportional hazard model 66 (85%) 

Cumulative incidence function 3 (4%) 

Fine-gray sub distribution hazard model 2 (3%) 

Multistate model 1 (1%) 

Poisson model 3 (4%) 

Other 3 (4%) 

Primary target parameter 

Hazard Ratios 69 (88%) 

Rates (cases per person-year) – rate differences 3 (4%) 

Risk Ratios 3 (4%) 

C-statistic 1 (1%) 

Cumulative Risks (absolute risk - risk difference) 1 (1%) 

Sub-distribution hazard ratios 1 (1%) 

Explicit interpretation of the primary estimate given the competing event of death 

No 56 (72%) 

No interpretation given 18 (23%) 

Yes 4 (5%) 

Mentions mortality in discussion section 25 (32%) 
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Table 2. Descriptive characteristics of former and current smokers in the 

Rotterdam Study 

Characteristics Former smokers 

n = 2607 

Current smokers 

n = 1572 

Age, mean years (SD)  62.35 (4.0) 61.69 (4.0) 

Women (%)                       1090 (41.8) 780 (49.6) 

Education (%)   

Primary education 258 (9.9) 198 (12.6) 

Lower or intermediate general education OR lower 

vocational education 

1080 (41.4) 693 (44.1) 

Intermediate vocational education OR higher 

general education 

862 (33.1) 483 (30.7) 

Higher vocational education OR university 399 (15.3) 190 (12.1) 

Unknown 8 (0.3) 8 (0.5) 

APOE-ε4 (%)   

Non-carrier 1747 (67.0) 1074 (68.3) 

One allele carrier 687 (26.4) 380 (24.2) 

Two allele carrier 71 ( 2.7) 33 (2.1) 

Unknown  102 ( 3.9) 85 (5.4) 

Systolic blood pressure, mean mmHg (SD)  137.59 (20.8) 135.22 (21.3) 

Body mass index, mean (SD)  26.93 (3.7) 25.86 (3.8) 

Prevalent hypertension diagnosis 1468 (56.3) 767 (48.8) 

Prevalent stroke (%)                             52 (2.0) 23 (1.5) 

Prevalent heart disease diagnosis (%)                                226 (8.7) 72 (4.6) 

Unknown heart disease diagnosis (%)                                42 (1.6) 28 (1.8) 

Prevalent diabetes diagnosis (%)  275 (10.5) 147 (9.4) 

Unknown diabetes diagnosis (%) 389 (14.9) 364 (23.2) 

Prevalent cancer diagnosis (%)                             69 (2.6) 27 (1.7) 

SD: Standard deviation 

Table 3.  Total effect and controlled direct effect of smoking cessation (compared 

to continued smoking) on the risk of dementia, and the total effect on risk of 

mortality, at 20 years of follow-up 
 

Causal Risk Difference 

(95%CI) 

Causal Risk Ratio 

(95%CI) 

Total effect on dementia 2.1 (-0.1, 4.2) 1.21 (0.99, 1.50) 

Controlled direct effect on 

dementia (with IPCW for death) 

-1.9 (-5.1, 1.4) 0.89 (0.75, 1.10) 

Total effect on mortality -17.4 (-20.5, -14.2) 0.68 (0.63, 0.72) 
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Figures 

  

Figure 1. A causal directed acyclic graph representing some key causal features of the 

data structure. Smoking represents the exposure status (quit smoking vs. continue 

smoking), Death(19) and Dementia(20) represent indicators of death by 19 years of 

follow-up and dementia by 20 years of follow-up, respectively. C represents possible 

shared causes of dementia and death (such as cardiovascular comorbidities). The key 

relations are: 1) smoking may independently affect both the risk of dementia and 

death over time through different mechanisms; 2) dying over the first 19 years of 

follow-up (without prior onset of dementia) determines that the indicator of dementia 

at 20 years of follow-up is zero (the bold arrow representing this key determinism 

induced by competing events); and 3) dementia and death can have shared causes.   

 

 

 

Figure 2. Risk of dementia and death by smoking cessation status over 20 years of 

follow-up 
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