Incidence of delirium in an acute geriatric community hospital: an exploratory analysis of an observational cohort study controlled with a meta-analysis of incidences from literature.

Marthe E. Ribbink MD1,*, Emma Stornebrink, MD1,*, Remco Franssen MD, PhD1, Annemarieke de Jonghe MD, PhD2, Janet L. MacNeil Vroomen PhD1, Bianca M. Buurman RN, PhD1,3 on behalf of the AGCH-study group.

1 Amsterdam University Medical Centre, University of Amsterdam, Department of Internal Medicine, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
2 Tergooi hospitals, Department of Geriatrics, The Netherlands
3 ACHIEVE – Centre of Applied Research, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
*MER and ES share first authorship.

Corresponding author
M.E. Ribbink, MD
Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Geriatric Medicine, D3-335
PO Box 22600, 1100 DD Amsterdam, The Netherlands
Tel: 0031-20 5661647, email: m.e.ribbink@amsterdamumc.nl

Keywords: delirium, older adults, hospitalisation, community hospital, intermediate care.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Declaration of Sources of Funding

This work was supported by ZonMw, the Netherlands Organization for Health Research and Development [grant number 808393598041] and the PVE- fund. These funders played no role in the design or execution of this research. Moreover, the care provided at the AGCH is provided in a partnership between Cordaan, a community and home-care organization and the Amsterdam University Medical Centre, location Academic Medical Centre. The AGCH is financially supported by Zilveren Kruis, a health insurance company. Zilveren Kruis played a role in the initiation and design, but no role in the execution, analysis and writing of this research.

Conflicts of interest

All authors declare no conflicts of interest.

Acknowledgements

The authors thank all professionals who have worked on the development of the AGCH. Also, we would like to thank the members of the AGCH study group, these are the clinicians who work at the Geriatrics Department of the Amsterdam University Medical Centres and who support the data collection at the AGCH. We would also like to thank Marije Wolvers for her advice on the statistical analysis.

Collaborators

The AGCH study group: R H A van den Broek; W J Frenkel; M J Henstra; M A van Maanen; C J M Melkert, J L Parlevliet; E P van Poelgeest; M N Resodikromo; K J Kaland; I Oudejans; P M A van Rijn; N van der Velde; H C Willems; D Wyatt
Abstract

Background Delirium in hospitalised older adults is associated with negative health outcomes. Admission to an alternative care setting may lower the incidence of delirium. The Acute Geriatric Community Hospital (AGCH) was recently opened in the Netherlands and uses a multi-component non-pharmacological intervention strategy to prevent delirium.

Objective To describe the incidence of delirium found in the AGCH and compare this incidence to a hospital control group found in literature.

Design Prospective cohort study; exploratory meta-analysis of proportions.

Setting The AGCH is an acute geriatric unit in an intermediate care facility.

Participants Patients aged >65 years with acute medical conditions admitted to the AGCH.

Methods Delirium assessment using the Confusion Assessment Method (CAM) upon admission and on day one, two and three or until delirium had resolved. Patients’ charts were reviewed if CAM was missing. In a logistic mixed-effects model, the delirium incidence rate in AGCH was compared to pooled delirium incidence rates from six studies found in a high-quality review.

Results 214 patients from the AGCH (mean age 81.9 years, 47% male, 12% with a history of dementia) were included in the analysis. Delirium developed in 8% (18/214) [confidence interval 5-13%] of patients during AGCH admission compared to 16% (95% CI 12-21%) in hospitals. Admission to the AGCH was associated with a decreased delirium incidence rate compared to the hospital control group (OR [odds ratio]= 0.49, 95% CI 0.24-0.98, p-value=.044).

Conclusions The delirium incidence in the AGCH was relatively low compared to those incidences found in general hospitals.
Introduction

A common complication of hospitalisation in older adults is the development of delirium, an acute disturbance in attention and several cognitive functions (1). The aetiology of delirium is considered multifactorial (2). Delirium is associated with negative health outcomes, including functional and cognitive decline, institutionalisation, and mortality (3, 4). The prevalence and incidence of delirium is known to vary between settings and populations, with new-onset delirium during hospitalisation ranging from 10% to 56% (5).

An alternative to conventional hospitalisation is admission to an acute geriatric unit outside of a general hospital. This unit may be better adapted to the needs of older adults (6). In the Netherlands, the Acute Geriatric Community Hospital (AGCH) was introduced in 2018 (7). This geriatrician-led unit within an intermediate care facility integrates specialised medical treatment with geriatric nursing care. A non-pharmacological multi-component delirium prevention strategy has been implemented, consisting of nurses encouraging early mobilisation, preventing overstimulation (single rooms, noise reduction), management of delirium-inducing drugs and improving orientation through e.g. family involvement (6, 7). It is unknown what the effect of these interventions is on the incidence of delirium in this new care setting. This is the first unit of its kind in the Netherlands but there are other examples internationally (8).

We hypothesize that the non-pharmacological interventions at the AGCH may reduce the incidence of delirium compared to incidence rates found in general hospitals. Therefore, the objective of this study in the AGCH was to determine the incidence of delirium compared to those incidence rates found in literature from general hospitals.

As secondary aims, we determined the duration of delirium and we quantified the use of pharmacological delirium treatment. The duration of delirium is relevant as it can also be shortened by a multi-component non-pharmacological intervention (9). Moreover, it is clinically relevant to know if patients (with or without delirium) were prescribed antipsychotics and/or benzodiazepines...
for the pharmacological treatment or prevention of delirium. According to the Dutch delirium
guideline, prescription of antipsychotics and/or benzodiazepines is not indicated for the prevention
of delirium, but may be indicated when delirium is present in a patient (10).

Methods

Design and setting

Data from a prospective cohort study were used. The study protocol was published
elsewhere (7). Data collection started in February 2019 and was temporarily ceased in March 2020
during the Covid-19 pandemic. The aim of the study was to measure the readmission to hospital rate
90 days post-discharge and to compare this rate to the rate found in two historical cohort groups of
older adults admitted to general hospitals. This exploratory analysis focuses on one of the secondary
outcomes, incident delirium.

Patients seen at the emergency department (ED) of the Amsterdam University Medical
Centres were assessed by an on-call geriatrician. Patients admitted to the AGCH were 65 years or
older, presenting with an acute medical problem requiring hospitalisation and one or more geriatric
conditions, such as a fall, functional impairment or polypharmacy (11). Patients who did not require
hospitalisation, but needed short-term care in an intermediate care facility, i.e. nursing home, were
excluded from admission to the AGCH. See the study protocol (7) and appendix 1 for complete
admission eligibility criteria.

Ethical considerations

The local Ethics Committee of the Amsterdam UMC, location AMC waived the obligation for
the study to undergo formal ethical approval as described under Dutch law. We included patients
who, or whose legal representative, could provide written informed consent.
Control population

We wanted to compare the delirium incidence in our newly opened acute geriatric community hospital in the Netherlands to those incidences found in older adults in acute hospital medical or geriatric units. However we did not recruit a control group during the study period. Two historical control groups are planned to be used to compare the study’s primary outcome to, but these studies did not measure incident delirium (7, 12, 13). We therefore searched for sources of aggregated data on the incidence rate of delirium in medical or geriatric (non-surgical) inpatients with a mean age of about 80 years (search strategy- appendix 2). Furthermore, we excluded sources with case-control studies or with studies reporting the incidence of patients participating in an interventional study (excluded studies- appendix 3). Finally, we selected six studies from a review by Inouye et al. as a control group (5). One of the aims of this review was to provide an overview of delirium incidences in various hospital departments found in high quality studies— with a sample size of 100 or more, a prospective sampling method and meeting the Strengthening the Reporting of Observational Studies in Epidemiology [STROBE] criteria (14)., that were published between Jan 1st 2004 and August 31st 2012. The six studies that we selected reported delirium incidence on general medical and geriatric wards. We checked in each paper if multi-component delirium prevention strategies were implemented at the participating ward.

Primary Outcome

Incident delirium was the primary outcome of this study and was defined as ‘the number of new cases that develop within a cohort over a defined period’ based on the National Institute for Health and Care Excellence (NICE) guideline on delirium (15). As we wanted to evaluate if patients developed delirium during admission to the AGCH, patients were excluded from our analysis if delirium was already present at the ED. The diagnosis of delirium was made by the geriatrician or geriatric nurse specialist by clinical assessment and using the Confusion Assessment Method (CAM) (16). The CAM was filled out upon presentation to the ED and during the first three days of admission
or until delirium had resolved. Nurses screened for signs of possible delirium, three times a day,
during the first three days of admission using the Delirium Observation Screening Scale (DOSS) (17).
Patients were assessed by the same geriatrician/nurse specialist for several consecutive days to
recognize changes in mental status. On the weekend an on-call geriatrician assessed delirium status
if delirium was clinically suspected. The DOSS and nursing chart covering the previous 24 hours were
also considered in the delirium assessment. If there was a possible delirium after day three of
admission, CAM assessments were continued until delirium had resolved.

Duration of delirium

The duration of delirium was counted from the day the diagnosis was made until the CAM
was permanently negative and/or the treating physician stated the delirium had resolved. In patients
with an unresolved delirium at the time of discharge, we defined the first day of delirium until
discharge as the duration of delirium. We reported the median duration of delirium as this measure
is adequate for reporting skewed data and is least influenced when in some patients delirium had not
resolved upon discharge.

Use of antipsychotics and/or benzodiazepines

The administration of haloperidol, other antipsychotics, and benzodiazepines was collected
from patients’ charts. The researcher also checked if patients categorized as not delirious had
received antipsychotics. This was 1) a check to see if no patient with a delirium diagnosis was missed
by the researchers and 2) a measure to quantify the use of antipsychotics and/or benzodiazepines as
a preventive measure for delirium, although prescribing medication to prevent delirium is not
recommended by the Dutch guideline on delirium (10).

Statistical analysis

Descriptive statistics, chi-square, t-test, and Mann-Whitney U test were used to compare
patients with and without delirium upon admission. To compare incidence rates from literature we
pooled studies in a meta-analysis of proportions, using a random-effects model (18). We tested if the
difference in delirium incidence was statistically significant by creating a logistic mixed-effects meta-
regression model with the location of the study (hospital versus AGCH) as a moderator (19). We
found significant heterogeneity in our analysis, meaning there were large variations in estimates
between studies. We did not perform meta-regression of other covariates because the number of
included studies was limited (<10) (18). All analyses were performed using SPPS version 26.00 (IBM
SPSS Statistics, IBM Corporation, Armonk, NY) and R version 3.6.1. We used the metaphor
(Viechtbauer, 2010) and meta (Schwarzer et al., 2015) packages in R.

Results

Between January 31, 2019 and March 13, 2020, a total of 466 consecutive patients were admitted to
the AGCH (figure 1). 34 of these admissions were readmissions of study participants and 125 patients
were not approached based on the exclusion criteria. Of the remaining patients, 46 patients did not
consent to participation. Three patients were excluded because delirium assessments at the ED were
missing and 44 because of a prevalent delirium. The sample for this study therefore consisted of 214
patients (figure 1). Mean (SD) age was 81.9 (8.1) years, 47.2% was male, 12.1% had a diagnosis of
dementia, and 47.2% of the patients was frail (table 1). Development of delirium during admission
occurred in 18 out of 214 patients, which is an incidence rate of 8.4% (95% CI [confidence interval] 5-
13%). The median (IQR [interquartile range]) duration of delirium in the AGCH was 2.5 days (1.0-5.3)
table 1). Incomplete resolution of the delirium at the time of discharge occurred in two patients.
Mean length of stay (SD) was 9.6 (7.3) days in all patients, 9.4 (7.4) days in patients with no delirium
and 11.9 (6.4) days in patients with delirium. Median length of stay (IQR) was 7.0 (5.0-11.00) days in
patients with no delirium and 10 (7.5-16.8) days in patients with delirium.

Pharmacological treatment for delirium

Eleven out of 18 patients (61.1%) with a diagnosis of delirium were administered medication for the
treatment of delirium. Haloperidol was administered most frequently (n=11), followed by additional
benzodiazepines (n=4), and any other type of antipsychotics (n=1). The regular prescription of haloperidol was 0.5-2.0mg per dose, typically given once a day, or twice in case of severe delirium, with a maximum of three dosages. Five (5 out of 196, 2.6%) patients without delirium were administered haloperidol, either as prevention due to a high risk of delirium or as treatment for pre-existing symptoms unrelated to delirium (table 1).

Delirium incidence in comparison to reference group from literature

The reference group was based on six studies that were included in the 2014 review by Inouye et al. (5): in total 1546 study participants with an overall mean age of 80 years (figure 2 and table 2). None of the studies, except for Friedman et al. (20) reported to have multi-component delirium prevention strategies in place at the ward, we therefore assumed usual care was delivered. The pooled delirium incidence rate of these six studies was 16% (95% CI random effects model 12-21%) (figure 2). The meta-analysis showed a high heterogeneity ($I^2=84\%$). In a separate logistic mixed-effects model comparing general hospitals (reference category) versus the AGCH, we found that admission to the AGCH was associated with a decrease in delirium incidence (OR [odds ratio]= 0.49, 95% CI 0.24-0.98, p=.044).

Adherence to CAM evaluations and missing data

Based on the CAM evaluation and daily delirium assessment by the attending physician/nurse specialist we could ascertain the presence delirium in the first three days of admission in all patients. In patients with delirium 27.8% of total CAM evaluations and 46.3% of total DOSS scores were missing during the first three days of admission. For patients without delirium 46.9% and 66.7% were missing, respectively. In 15% of all cases all three CAM evaluations were missing, here we only used physicians’ notes and discharge letters to ascertain whether delirium had occurred. Discharge letters mentioned whether a patient had experienced a delirium or not in 88.9% of patients with delirium and in 84.8% of patients without delirium.
Discussion

We implemented a non-pharmacological multi-component delirium prevention strategy at the AGCH and found an incidence rate of delirium of 8.4%. This incidence is significantly lower compared to rates found in hospital medical or geriatric wards. We would expect to find a higher incidence in our study sample, because delirium risk factors such as higher age, previous delirium, dementia, comorbidities, poor ADL-function and polypharmacy were highly prevalent, moreover patients were admitted for acute medical events requiring hospitalisation which increases the risk on developing delirium compared to non-hospitalized patients (10, 21). A 2016 Cochrane review on interventions in preventing delirium in hospitalised patients reports moderate quality evidence that multi-component interventions in medical, non-surgical, patients lower delirium incidence, with a risk ratio of 0.63 (95% CI 0.43-0.92) for patients who receive a multi-component intervention versus those who did not (6). Our findings are in line with this finding because the incidence that we found is on the lower spectrum of those incidences reported in literature (5). Moreover, the median duration of delirium of 2.5 days is comparable to the duration that is found in literature on non-pharmacological interventions (22). The prescription rate of medication (61.1%) may be lower in the AGCH compared to other studies, which report rates of 74-86% (23, 24). The Dutch guideline on delirium, and international guidelines alike, recommends to take a cautious approach to the prescription of medication for the treatment of delirium (10, 25). Also, only a few patients received medication, in this case haloperidol, for the prevention of delirium, meaning that there were not many non-delirious patients receiving haloperidol. This is relevant because, administration of anti-psychotics such as haloperidol could lower delirium incidence rates in high incidence groups (10). Furthermore, in the Netherlands physicians prescribe relatively low dosages of haloperidol, 0.5-2.0 mg per dose.

Limitations

This study has multiple limitations. Firstly, the incidence rate of delirium could have been influenced by selection bias: legal representatives of patients could not always be contacted to obtain consent.
Secondly, several CAM and DOSS assessments were not reported during the first three days of admission. However, daily clinical delirium assessment by a geriatrician/trained nurse specialist and nursing charts from every nursing shift (three per day) were available. Therefore, we do not have missing data in the outcome incident delirium. Also, as this was an exploratory analysis of a secondary outcome, no sample size was calculated, and our analysis may therefore be underpowered. We also did not have insight into all of the baseline characteristics of the control group from literature; the mean age was similar, but we did not or could not review information on ADL (activities of daily living)-impairments or cognitive status available for each of these studies. This makes it more difficult asses the comparability of this control group to our study sample. Moreover, we could not definitively ascertain that ‘usual care’ was delivered in each unit or what this was composed of. Especially in the geriatric units, such as the Acute Care for the Elderly Unit described in Friedman et al. 2008 (20), an adapted environment may have been in place which is similar to the environment of the AGCH and this could lower the risk of developing delirium in hospital. Finally, we did not collect data on illness severity, which can be associated with delirium (26). Even so, patients admitted to the AGCH suffer from acute medical illnesses for which they would otherwise have been admitted to a general hospital. Also, they did have many other known delirium risk factors (21). In addition patients with solely social or care indications, who require admission to intermediate care but do not require hospital treatment are, by protocol, excluded from admission to the AGCH.

Clinical and research implications

Our exploratory analysis shows that the incidence rate of delirium in the AGCH is significantly lower than in studies performed in general hospitals. This may indicate that this acute geriatric unit situated in intermediate care could prevent delirium in older adults, at risk for delirium and requiring hospital admission. However, as this study is only exploratory, a randomized controlled study or a two-armed observational study using e.g. inversely weighted propensity scores (27) would be needed to ascertain whether there is indeed a lower incidence of delirium, as was found in this study.
Conclusion

Delirium is a common complication in older persons during hospitalisation. Preliminary evidence on the implementation of a multi-component, non-pharmacological intervention at the newly opened Acute Geriatric Community Hospital resulted in a relatively low delirium incidence rate compared to incidences reported in general hospitals.
References

https://www.metafor-project.org/doku.php/tips:comp_two_independent_estimates (Date Accessed 2020 Accessed, date last accessed)

25. Excellence NIfHaC. Delirium: prevention, diagnosis and management.
https://www.nice.org.uk/guidance/cg103/chapter/1-Guidance#interventions-to-prevent-delirium

Figure 1 – Participant flow-chart Acute Geriatric Community Hospital (AGCH) study.

Admissions to the AGCH between January 2019 and March 2020 (n = 466)

→ Readmissions of study participants (n = 34)

Admissions excluding readmissions of study participants (n = 432)

→ Excluded based on AGCH exclusion criteria (n = 125)
 - Could not be approached (n = 50)
 - Legal representative could not be approached (n = 44)
 - Too ill to participate (n = 17)
 - Died before consent could be asked (n = 9)
 - Did not speak Dutch or English (n = 5)

→ Approached for participation (n = 307)

→ Declined to participate (n = 46)

→ Included in AGCH study (n = 261)

→ Excluded based on delirium study exclusion criteria (n = 47)
 - No CAM upon admission (n = 3)
 - Prevalent delirium (n = 44)

→ Included in the study on incident delirium (n = 214)
Table 1. Baseline characteristics of the total study population grouped by patients with and without delirium.

<table>
<thead>
<tr>
<th></th>
<th>Total (n = 214)</th>
<th>No delirium (n = 196)</th>
<th>Incident delirium (n = 18)</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>81.9 (8.1)</td>
<td>81.6 (8.0)</td>
<td>85.2 (8.8)</td>
<td>.08</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>101 (47.2)</td>
<td>93 (47.4)</td>
<td>8 (44.4)</td>
<td>.81</td>
</tr>
<tr>
<td>Born in the Netherlands, n (%)</td>
<td>160 (74.8)</td>
<td>146 (74.5)</td>
<td>14 (77.8)</td>
<td>.99</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.58</td>
</tr>
<tr>
<td>Married/living together</td>
<td>69 (32.2)</td>
<td>65 (33.2)</td>
<td>4 (22.2)</td>
<td></td>
</tr>
<tr>
<td>Single/Divorced</td>
<td>45 (21.0)</td>
<td>40 (20.4)</td>
<td>5 (27.8)</td>
<td></td>
</tr>
<tr>
<td>Widow(er)</td>
<td>99 (46.3)</td>
<td>90 (45.9)</td>
<td>9 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Living arrangement before admission, n (%)</td>
<td>174 (81.3)</td>
<td>158 (80.6)</td>
<td>16 (88.9)</td>
<td>.80</td>
</tr>
<tr>
<td>Independent</td>
<td>5 (2.3)</td>
<td>5 (2.6)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nursing home</td>
<td>33 (15.4)</td>
<td>31 (15.8)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2 (0.9)</td>
<td>2 (1.0)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Level of education, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.44</td>
</tr>
<tr>
<td>Primary school</td>
<td>37 (17.3)</td>
<td>32 (16.3)</td>
<td>5 (27.8)</td>
<td></td>
</tr>
<tr>
<td>Elementary technical/domestic science school</td>
<td>45 (21.0)</td>
<td>43 (21.9)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Secondary vocational education</td>
<td>63 (29.4)</td>
<td>58 (29.6)</td>
<td>5 (27.8)</td>
<td></td>
</tr>
<tr>
<td>Higher-level high school/third-level education</td>
<td>49 (22.9)</td>
<td>43 (21.9)</td>
<td>6 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Polypharmacy (≥ 5 medications), n (%)</td>
<td>160 (74.8)</td>
<td>147 (75.0)</td>
<td>13 (72.2)</td>
<td>.80</td>
</tr>
<tr>
<td>Primary admission diagnosis, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.44</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>40 (18.7)</td>
<td>38 (19.4)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection (UTI)</td>
<td>27 (12.6)</td>
<td>25 (12.8)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Other infections (excl. pneumonia/UTI)</td>
<td>21 (9.8)</td>
<td>8 (4.1)</td>
<td>3 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>20 (9.3)</td>
<td>18 (9.2)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Cases 1</td>
<td>Cases 2</td>
<td>Cases 3</td>
<td>P-value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Neurologic disorders</td>
<td>19 (8.9)</td>
<td>17 (8.7)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>COPD exacerbation</td>
<td>15 (7.0)</td>
<td>15 (7.7)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fall(s)</td>
<td>13 (6.1)</td>
<td>12 (6.1)</td>
<td>1 (5.6)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disease</td>
<td>10 (4.7)</td>
<td>10 (5.1)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Electrolyte disturbance</td>
<td>6 (2.8)</td>
<td>4 (2.0)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>43 (20.1)</td>
<td>39 (19.9)</td>
<td>4 (22.2)</td>
<td></td>
</tr>
</tbody>
</table>

Katz-ADLb score two weeks before admission, median (IQR)

<table>
<thead>
<tr>
<th></th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katz-ADLb score</td>
<td>1.0 (0.0-2.0)</td>
<td>1.0 (0.0-2.0)</td>
<td>2.0 (0.8-3.0)</td>
<td>.054</td>
</tr>
</tbody>
</table>

Katz-ADLb score upon admission, median (IQR)

<table>
<thead>
<tr>
<th></th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katz-ADLb score</td>
<td>2.5 (1.0-4.0)</td>
<td>2.0 (1.0-4.0)</td>
<td>3.5 (0.8-5.3)</td>
<td>.34</td>
</tr>
</tbody>
</table>

Frailtyc, n (%)

<table>
<thead>
<tr>
<th>Frailtyc</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>101 (47.2)</td>
<td>92 (46.9)</td>
<td>9 (50.0)</td>
<td>.94</td>
</tr>
<tr>
<td>Unknown or not done</td>
<td>59 (27.6)</td>
<td>55 (28.1)</td>
<td>4 (22.2)</td>
<td></td>
</tr>
</tbody>
</table>

MMSEd score, median (IQR)

<table>
<thead>
<tr>
<th>MMSEd score</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>25.0 (22.0-28.0)</td>
<td>25.0 (23.0-28.0)</td>
<td>23.0 (20.0-24.8)</td>
<td>.035</td>
</tr>
<tr>
<td>Unknown or not done</td>
<td>56 (26.2)</td>
<td>50 (25.5)</td>
<td>6 (33.3)</td>
<td></td>
</tr>
</tbody>
</table>

History of dementia, n (%)

<table>
<thead>
<tr>
<th>History of dementia</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>26 (12.1)</td>
<td>22 (11.2)</td>
<td>4 (22.2)</td>
<td>.17</td>
</tr>
</tbody>
</table>

Cognitive impairmente, n (%)

<table>
<thead>
<tr>
<th>Cognitive impairment</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>88 (41.1)</td>
<td>76 (38.8)</td>
<td>12 (66.7)</td>
<td>.022</td>
</tr>
</tbody>
</table>

Charlson comorbidity index score, median (IQR)

<table>
<thead>
<tr>
<th>Charlson index score</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>3.0 (1.0-4.0)</td>
<td>2.5 (1.0-4.0)</td>
<td>3.0 (1.0-4.0)</td>
<td>.99</td>
</tr>
</tbody>
</table>

History of delirium/confusion during sickness, n (%)

<table>
<thead>
<tr>
<th>History of delirium/confusion</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>55 (25.7)</td>
<td>48 (24.5)</td>
<td>7 (38.9)</td>
<td>.23</td>
</tr>
</tbody>
</table>

Duration of delirium, in median days (IQR) NA= not applicable

<table>
<thead>
<tr>
<th>Duration of delirium</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2.5 (1.0-5.3)</td>
<td></td>
</tr>
</tbody>
</table>

Pharmacological treatment for delirium, n NA= not applicable

<table>
<thead>
<tr>
<th>Pharmacological treatment</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloperidol</td>
<td>NA</td>
<td>NA</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Other antipsychotics</td>
<td>16</td>
<td>5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

a Incident delirium compared to no delirium
b Katz Index score range 0-6, with a higher score indicating more dependence in activities of daily living (ADL) (28)
c Based on Fried criteria for frailty range 0-5 with a score of 3 and higher indicating presence of physical frailty (29)
d Mini Mental State Exam score ranging 0-30, MMSE score ≤23 indicating cognitive impairment (30)
e All patients with a diagnosis of dementia, a MMSE score ≤23, or, in case of missing MMSE score, subjective cognitive problems
f Range of 0-31, with a higher score indicating more or more severe comorbidity (31)
Figure 2 – Meta-analysis of proportions of delirium incidences in older hospitalised medical patients found in literature (5). The pooled incidence rate of these six studies was 16% (95% CI [confidence interval]random effects model 12-21%).
Table 2 – Studies included in meta-analysis of proportions of delirium incidence, studies from a 2014 review on delirium incidence by Inouye et al. CAM, Confusion Assessment Method; DRS, Delirium Rating Scale; DSM–IV, Diagnostic and Statistical Manual of Mental Disorders (4rd Ed). * original sample included prevalent delirium

<table>
<thead>
<tr>
<th>Study (authors, publication year, country)</th>
<th>Study setting</th>
<th>Study design</th>
<th>Patients with delirium (n)</th>
<th>Patients without delirium (n)</th>
<th>Total sample (n)</th>
<th>Incidence rate (%)</th>
<th>Age, years</th>
<th>Mean age</th>
<th>Sex: male/female</th>
<th>Criteria for delirium</th>
<th>Assessment frequency (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franco et al., 2010, Colombia (32)</td>
<td>Medical</td>
<td>Case control</td>
<td>34</td>
<td>257</td>
<td>291</td>
<td>12%</td>
<td>59</td>
<td>74</td>
<td>105/186</td>
<td>CAM, DRS</td>
<td>24</td>
</tr>
<tr>
<td>White 2005, United Kingdom (33)</td>
<td>Medical</td>
<td>Cohort</td>
<td>29</td>
<td>178</td>
<td>207*</td>
<td>14%</td>
<td>75</td>
<td>82</td>
<td>Only number of males in total group</td>
<td>DAM, DSMIV</td>
<td>24</td>
</tr>
<tr>
<td>Adamis 2007, United Kingdom (34)</td>
<td>Geriatric</td>
<td>Cohort</td>
<td>47</td>
<td>117</td>
<td>164</td>
<td>29%</td>
<td>70</td>
<td>85</td>
<td>54/110</td>
<td>CAM, DRS</td>
<td>72</td>
</tr>
<tr>
<td>Friedman 2008, United States (20)</td>
<td>Geriatric</td>
<td>Cohort</td>
<td>42</td>
<td>171</td>
<td>212</td>
<td>20%</td>
<td>65</td>
<td>79</td>
<td>85/127</td>
<td>CAM</td>
<td>24</td>
</tr>
<tr>
<td>Eeles 2010, United Kingdom (35)</td>
<td>Medical</td>
<td>Cohort</td>
<td>23</td>
<td>175</td>
<td>198*</td>
<td>11%</td>
<td>74</td>
<td>83</td>
<td>117 males in total group</td>
<td>DSMIV</td>
<td>48</td>
</tr>
<tr>
<td>Inouye et al. 2006, United States (36)</td>
<td>Medical</td>
<td>Cohort</td>
<td>60</td>
<td>400</td>
<td>460</td>
<td>13%</td>
<td>70</td>
<td>80</td>
<td>183/277</td>
<td>CAM</td>
<td>24</td>
</tr>
</tbody>
</table>
Appendix 1 – Admission criteria Acute Geriatric Community Hospital (AGCH)

Criteria upon assessment at the emergency department:
1) Acute medical problems in older patients that require hospitalization, e.g., acute events such as a pneumonia or an exacerbation of chronic conditions such as heart failure or minor acute events in very frail patients.

2) Hemodynamic stability.

3) No need for complex diagnostic testing such as CT- or MRI scans during admission.

4) Expecting to return to previous living situation in 14 days.

5) Geriatric conditions e.g., delirium, cognitive impairment, falls and/or functional impairment.
Appendix 2 – Search strategy studies reporting incident delirium in medical inpatients.

Methods
We looked for sources of aggregated data (guidelines) or reviews reporting the incidence of delirium in older adults admitted to acute medical units and extracted the data from the individual studies that reported in the guideline.

Secondly, we performed a search on PubMed looking for (systematic) reviews or meta-analyses reporting incidence of delirium in older adults admitted to acute medical units.

Search strategy in PubMed

((delirium[MeSH Terms]) AND ((internal medicine[MeSH Terms]) OR (medical[Title/Abstract]))) NOT (surgical[Title/Abstract]) NOT (orthopedic[Title/Abstract]) NOT (hip fracture[Title]) NOT (fracture[Title]) NOT (pediatric[Title/Abstract]) NOT (postoperative[Title/Abstract]))

Filters applied: Meta-Analysis, Systematic Review

Criteria for including studies were:

Inclusion criteria
- Older adults aged 60 years and older
- Admitted to medial or geriatric wards of acute or general hospitals
- Prospective cohort and cross-sectional studies
- Control arms of clinical trials

Exclusion criteria
- Mean age study population <65 years
- Including data from intervention arm of clinical trials
- Case-control studies
- Retrospective studies
- Data from surgical wards or intensive care units
Appendix 3 – found and excluded studies.

Clinical guideline on delirium and or review:

1) Excluded: NICE guideline delirium 2010 (15) We found a guideline reporting the incidence of delirium in general medicine wards; the NICE guideline for delirium which reports an incidence of 15.2% (range 12.5-17.9) based on two studies. (15) One of these studies included the intervention arm of a clinical trial (37) and therefore we decided not to use the NICE guideline report on incident delirium as a control group.

2) Included: Inouye et al. 2014 (5) This is the high-quality review from which we used included studies as a control group.

Results from PubMed search looking for systematic reviews or meta-analyses:

Our search yielded 21 hits (1,124 without filters) in which we found two relevant systematic reviews based on screening title and abstract:

1) Excluded: Siddiqi et al. 2006 (38) We found a systematic review by Siddiqi et al. (38) that reported on the incidence of delirium in 14 studies, due to the smaller sample sizes and studies being published before 2005 we decided not to use this systematic review.

2) Excluded: Ahmed et al. 2014 (21) We found a systematic review by Ahmed et al., (21) including 11 studies that report delirium incidence in older medical patients, but in this study there was a risk of bias because it aimed to describe risk factors for delirium and not solely the incidence of delirium. This meant case-control studies were used and possible relevant studies were excluded. Therefore, we decided not to use this review.

Flow-chart of selection of studies (aggregated data and (systematic reviews) for hospital control group:

Sources of aggregated data and/or reviews (n=2) + PubMed search (n=21)

Aggregated data/reviews:
NICE guideline 2010
Inouye et al. 2014
From PubMed search:
Siddiqi et al. 2006
Ahmed et al. 2014

Excluded from search based on title and abstract (n=19)

Excluded (n=3)
- Including intervention study (NICE guideline 2010)
- Low sample sizes and less recent studies compared to Inouye et al. 2014 (Siddiqi et al.2006)
- Including case-control studies and potential bias because of study aim (Ahmed et al. 2014)

Inouye et al. 2014, see table 2 for included studies