Abstract
Genetic pleiotropy is the phenomenon where a single gene or genetic variant influences multiple traits. Numerous statistical methods exist for testing for genetic pleiotropy at the variant level, but fewer methods are available for testing genetic pleiotropy at the gene-level. In the current study, we derive an exact alternative to the Shen and Faraway functional F-statistic for functional-on-scalar regression models. Through extensive simulation studies, we show that this exact alternative performs similarly to the Shen and Faraway F-statistic in gene-based, multi-phenotype analyses and both F-statistics perform better than existing methods in small sample, modest effect size situations. We then apply all methods to real-world, neurodegenerative disease data and identify novel associations.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
There is no external funding to report at this time.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This research is exempt.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
1000 Genomes data are publicly available for download. National Alzheimer's Coordinating Center (NACC) and Alzheimer's Disease Genetics Consortium (ADGC) are available for research, but specific data requests must be submitted to each organization.
https://www.internationalgenome.org/data/
https://www.niagads.org/user/login?destination=data/request/new_request/