NON-PHARMACEUTICAL INTERVENTIONS AND THE EMERGENCE OF PATHOGEN VARIANTS

Ben Ashby¹* and Robin N. Thompson²,³

1. Department of Mathematical Sciences, University of Bath, Bath, UK
2. Mathematics Institute, University of Warwick, Coventry, UK
3. Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK

*Corresponding author: benashbyevo@gmail.com

Keywords: pathogen evolution, transmissibility, immune escape, cross-immunity, social distancing, lockdowns
Non-pharmaceutical interventions (NPIs), such as social distancing and contact tracing, have been widely implemented during the COVID-19 pandemic. In addition to playing an important role in suppressing transmission, NPIs influence pathogen evolution by mediating mutation supply and altering the strength of selection for novel variants. However, it is unclear how NPIs might affect the emergence of novel variants of concern that are able to escape pre-existing immunity (partially or fully), are more transmissible, or cause greater mortality. Here, we analyse a stochastic two-strain epidemiological model to determine how the strength of NPIs affects the emergence of variants with similar or contrasting life-history characteristics to the wildtype. We show that, while stronger and timelier NPIs generally reduce the likelihood of variant emergence, it is possible for more transmissible variants with high cross immunity to have a greater probability of emerging at intermediate levels of NPIs. However, since one cannot predict the characteristics of a variant, the best strategy to prevent emergence is likely to be implementation of strong, timely NPIs.
AUTHOR SUMMARY

During the COVID-19 pandemic, a wide range of non-pharmaceutical interventions, including mask wearing, quarantine, isolation, and lockdowns, have been used by governments around the world to suppress virus transmission. Although considerable efforts have been made to understand how such interventions affect transmission, much less attention has been paid to their effects on pathogen evolution. While vaccines are well-known to affect virus evolution, non-pharmaceutical interventions also influence mutation supply and the strength of selection, and hence play a key role in the emergence of novel variants. Here, we use a relatively simple mathematical model to explore how non-pharmaceutical interventions during an epidemic affect the emergence of a novel variant of a pathogen. We show that in general, it is important to implement effective transmission-reducing public health measures in a timely manner to prevent the emergence of novel variants, which may be more transmissible, more deadly, or able to escape immunity.
INTRODUCTION

Understanding the impact of interventions for infectious disease control on pathogen evolution is a major challenge at the interface of public health and evolutionary biology [1–3]. During the COVID-19 pandemic, a wide range of non-pharmaceutical interventions (NPIs) have been implemented across the world, including social distancing, improved hygiene practices, lockdowns, quarantining exposed or isolating infected individuals, and contact tracing. Such measures have been credited with reducing cases and bringing epidemics under control, both prior to and in conjunction with vaccine rollouts [4–7]. Recently, there has been renewed interest in the effects of vaccination programmes on pathogen evolution and subsequent transmission. This includes the potential for more transmissible or more virulent variants, or those that are able to escape naturally- or vaccine-induced immunity [8–13]. However, while the impact of vaccination on SARS-CoV-2 evolution has been the subject of significant recent interest, there has been relatively little attention directed at the effects of NPIs on the emergence on novel variants of concern [1,14].

The emergence of a novel variant occurs in two stages. First, the variant must be generated through mutation or recombination ("appearance"). Mutation supply governs the appearance of a new variant and depends on the rate at which the pathogen replicates in the host population (determined by the number of infected hosts [10]), the mutation rate, and the number of mutations required to generate the variant. By reducing opportunities for transmission, NPIs effectively lower the rate at which the pathogen replicates, and hence lower the mutation supply. NPIs should therefore always make the appearance of novel variants less likely.
If a variant does appear, then the second stage for emergence requires sustained transmission between hosts ("establishment" – Fig. 1a). It should be noted that many variants are likely to appear that have little or no impact on pathogen transmission or virulence [1,15]. Variants may appear but remain undetected as they are unable to become established due to selection (if the variant is less fit than the wildtype) [16] or stochastic extinction (if by chance the variant dies out before it can infect many hosts) [17–19]. NPIs are likely to have more complex effects on the establishment phase as they mediate both the strength of selection and the likelihood of stochastic extinction. For example, stronger NPIs will slow the rate at which a variant can spread and will increase the likelihood of stochastic extinction, but will also change how immunity accumulates in the host population. Increased immunity to the wildtype virus could strengthen selection for the variant.

Here, we analyse a stochastic model of pathogen evolution to explore the effects of NPIs on the emergence of novel variants. We show how the strength and timing of NPIs, along with the life-history characteristics of the variant, affect its emergence and impact on the host population.

Methods

To explore the key factors underlying the emergence of novel variants in a simple setting, we model infectious disease dynamics in a well-mixed, homogeneous host population over a relatively short period, ignoring host births and natural mortality for simplicity (see Fig. 1b for model structure). We restrict our model to two strains, a wildtype (\(w\)) and a variant (\(v\)),

whose transmission rates are both equally affected by NPIs, as determined by the parameter r ($0 \leq r \leq 1$). We assume that, for each strain, the baseline transmission rate is β_i ($i \in \{w, v\}$), the infection fatality rate (IFR) for single infections is α_i (i.e. a proportion α_i of individuals die from infection, on average), and the average infectious period is $1/\gamma$.

Following a primary infection, an individual is assumed to be fully immune to the strain by which they were infected, and to have acquired partial cross-immunity, c, to the other strain ($0 \leq c \leq 1$). Thus, when $c = 0$ there is no cross-immunity between strains and when $c = 1$ there is full cross-immunity. Immunity is assumed to act to reduce a host’s susceptibility to reinfection [20]. We assume that the variant differs from the wildtype at a single genetic locus, and that mutations occur between strains at rate ξ, leading to coinfections by both strains. The IFR for coinfections is assumed to be the average of the wildtype and variant, $\alpha_c = \frac{1}{2}(\alpha_w + \alpha_v)$.

At time, t, we use the following notation: S_t is the number of hosts that are susceptible to both the wildtype and the variant (initially all individuals are susceptible to both strains), I_t^i is the number of primary infections by strain i, I_t^{ij} is the number of secondary infections by strain j following recovery from primary infection by strain i, C_t is the number of coinfections, R_t^i is the number of individuals who have recovered from a primary infection by strain i (and are immune to strain i), and R_t the number of individuals who have recovered from both strains (and are therefore immune to both strains). In the absence of NPIs, the per-capita force of infection on fully susceptible hosts for strain i is denoted $\lambda_t^i = \beta_i(I_t^i + I_t^{ii} + C_t)$ ($i \neq j$ throughout). We assume that NPIs are triggered (and remain in place for the rest of a simulation) when the total disease prevalence, $I_t^w = (I_t^w + I_t^v + I_t^{ww} +$
\(I_t^{iw} + C_t \)/\(N \), first exceeds a threshold of \(\epsilon \). Primary infections by strain \(i \) therefore occur at per-capita rate \(\lambda_i^1 \) before NPIs are triggered and \(\lambda_i^1 (1 - r) \) after NPIs are triggered. Similarly, secondary infections and coinfections (not arising from mutation) occur at per-capita rates \(\lambda_i^1 (1 - c) \) and \(\lambda_i^1 (1 - r)(1 - c) \) before and after NPIs are triggered, respectively. The effective (or time-varying) reproduction number \([21,22]\) of strain \(i \) at time \(t \) in the absence of restrictions, \(R^*_t \), is therefore:

\[
R^*_t = \frac{\beta_i}{\gamma} \left(S_t + (I_t^1 + R_t^1)(1 - c) \right)
\]

We run simulations of the model using the direct method version of the Gillespie stochastic simulation algorithm \([23]\) using a population size of \(N = 100,000 \) and initial condition \(\{S_0, I_0^{iw}, I_0^v\} = \{N - 100,100,0\} \), with 1,000 simulations per parameter set. Since here we are only interested in the emergence of a new variant, we fix the following parameters as they do not qualitatively change our results: \(\alpha_w = 0.005 \), \(\xi = 5 \times 10^{-5} \), \(\gamma = 1/5 \), \(\beta_w = \frac{R^w_0}{N} \), and \(R^w_0 \approx 3 \). We choose \(\beta_v \) such that the variant is less \(\left(\frac{\beta_v}{\beta_w} < 1 \right) \), equally \(\left(\frac{\beta_v}{\beta_w} = 1 \right) \), or more \(\left(\frac{\beta_v}{\beta_w} > 1 \right) \) transmissible than the wildtype. We also vary the threshold for triggering NPIs \((\epsilon \in \{0,0.2\}) \), the level of cross-immunity between the wildtype and variant \((0 \leq c \leq 1) \), the strength of NPIs \((0 \leq r \leq 1) \), and the relative IFR of the variant \(\left(\frac{\alpha_v}{\alpha_w} \in \{1,2,3\} \right) \). We define emergence by concluding that the variant has emerged if the frequency of infections caused by the variant exceeds 10% at any time during a simulation. Simulations are terminated when the number of hosts infected reaches 0.
Figure 1 – Schematics demonstrating the phenomenon of novel variant establishment and the model used to explore the factors underlying novel variant emergence (appearance followed by establishment). (a) Establishment. Following appearance in the population, the variant may either establish and spread around the population or fail to establish (either because it is less fit than the wildtype or due to stochastic extinction, shown by the thin blue line along the x-axis). (b) Model schematic. Arrows show transitions between classes, as described in the main text.
RESULTS

WHEN IS THE VARIANT FITTER THAN THE WILDTYPE?

We consider a scenario in which the variant is initially rare relative to the wildtype. The variant is fitter than the wildtype when \(R_v^t > R_w^w \), which requires:

\[
\frac{R_v^t}{R_w^w} = \frac{\beta_v S_t + (I_t^w + R_t^w)(1 - c)}{\beta_w S_t + (I_t^v + R_t^v)(1 - c)} \\
\approx \frac{\beta_v}{\beta_w} \left(1 + \frac{(I_t^w + R_t^w)(1 - c)}{S_t} \right) > 1
\]

Hence, a variant is always fitter when it is at least as transmissible as the wildtype and there is not full cross immunity \((c < 1)\). However, a less transmissible variant may also be fitter provided the wildtype has already infected a sufficient proportion of the population and there is not full cross immunity. Clearly, when \(c < 1 \) the fitness of the variant will increase relative to the wildtype as the pool of susceptible hosts for the latter is depleted. Note that NPIs do not affect whether a variant is fitter than the wildtype since there is no differential effect on transmission. NPIs will, however, affect mutation supply (and hence the appearance of the variant) and the rate at which the variant can spread (establishment).

TIMELY NPIs \((\epsilon = 0)\)

We initially consider the case when NPIs are triggered immediately \((\epsilon = 0, \text{ Fig. 2})\) and are sufficiently strong to prevent the wildtype from initially spreading \((r > 1 - \frac{1}{R_0^w})\). Unless the mutation rate is very high, it is unlikely that the variant will appear before the wildtype is driven extinct. Thus, the probability of a variant emerging is close to 0 whenever \(r > 1 - \frac{1}{R_0^w} \)
regardless of transmissibility or cross immunity (Fig. 2g-i). When $r < \min\left\{1 - \frac{1}{R_S}, 1 - \frac{1}{R_P}\right\}$, the probability of a variant emerging depends on the relative transmissibility of the variant, the strength of cross immunity, and the strength of NPIs. When cross immunity and NPIs are both relatively weak, there is a high probability of variants emerging (Fig. 2g-i). This is because there is a high mutation supply (weak restrictions) to generate the variant and a large pool of susceptible individuals to exploit.

When the variant is less or equally as transmissible as the wildtype, there is an inverse effect of cross immunity and NPIs on the probability of the variant emerging: weaker NPIs require stronger cross immunity, and vice versa, to prevent the variant emerging (Fig. 2g-h). When the variant is sufficiently more transmissible, however, it has a high probability of emerging even when cross immunity is strong (Fig. 2i). Most notably, the variant is more likely to emerge for intermediate NPIs when cross-immunity is very high or complete ($c \approx 1$). This is because when NPIs are weak ($r \ll 1$), there is a large outbreak of the wildtype, which leads to a high mutation supply but also rapidly depletes the pool of hosts for the variant due to cross-immunity (Fig. 3a, d). Thus, while a variant is likely to appear, it is unlikely to spread widely in the population due to herd immunity [24]. When NPIs are stronger (but not too strong) the wildtype causes a smaller outbreak, leading to a lower build-up of cross-immunity in the population while still maintaining a sufficient mutation supply for the variant to appear with high probability (Fig. 3b, e). This creates just the right conditions to allow the variant to sweep into the population. As a result of this phenomenon, it is possible for total deaths (for both strains) to peak at intermediate NPIs when the variant is both more transmissible and more deadly than the wildtype (Fig. 4).
Figure 2 – Effects of the strength of NPIs (r), strength of cross immunity (c), and relative transmissibility of the variant (β_v/β_w; as indicated at the top of each column) on: (a)-(c) median proportion of hosts infected by the variant; (d)-(f) median total deaths (per 100k) for both strains; and (g)-(i) the probability of the variant emerging (reaching a frequency of at least 0.1). Data are shown for 100 simulations of each parameter combination. The NPI trigger threshold is $\epsilon = 0$ (i.e. NPIs are triggered at the start of each simulation). Other parameters as described in the main text, with: $\alpha_v/\alpha_w = 1$.

Data are shown for 100 simulations of each parameter combination. The NPI trigger threshold is $\epsilon = 0$ (i.e. NPIs are triggered at the start of each simulation). Other parameters as described in the main text, with: $\alpha_v/\alpha_w = 1$.

185
186 Figure 2 – Effects of the strength of NPIs (r), strength of cross immunity (c), and relative transmissibility of the variant (β_v/β_w; as indicated at the top of each column) on: (a)-(c) median proportion of hosts infected by the variant; (d)-(f) median total deaths (per 100k) for both strains; and (g)-(i) the probability of the variant emerging (reaching a frequency of at least 0.1). Data are shown for 100 simulations of each parameter combination. The NPI trigger threshold is $\epsilon = 0$ (i.e. NPIs are triggered at the start of each simulation). Other parameters as described in the main text, with: $\alpha_v/\alpha_w = 1$.

191
Figure 3 – Simulations with full cross immunity and a more transmissible variant ($\frac{\beta_v}{\beta_w} = 1.5$) for different levels of NPIs: (a, d) no NPIs ($r = 0$); (b, e) intermediate NPIs ($r = 0.5$); (c, f) strong NPIs ($r = 0.75$). (a-c) Proportion infected by the wildtype (blue) and by the variant (red). (d-f) Frequency of the variant. Simulations were terminated when the pathogen was driven extinct. Other parameters as described in the main text, with: $\alpha_v/\alpha_w = 1$ and $\epsilon = 0$.

CC-BY 4.0 International license
Figure 4 – Effects of NPIs (r) and the relative virulence (IFR) (α_v/α_w) of a more transmissible variant ($\beta_v/\beta_w = 1.5$) on total deaths (per 100k) when there is full cross immunity ($c = 1$) and NPIs are timely ($\varepsilon = 0$). Plots show the median (black) along with the upper and lower quartiles (grey) over 100 simulations. Other parameters as described in the main text.
Delayed NPIs ($\epsilon = 0.2$)

We now consider the case where NPIs are delayed until 20% of the population is infected (Fig. 5). There are three notable effects of delaying NPIs. First, since NPIs are delayed, a non-negligible number of deaths now occur over the full range of NPI strengths (Fig. 5d-f).

Second, as the initial mutation supply is no longer curtailed by NPIs, variants can emerge during the early stages for $r > 1 - \frac{1}{R_0}$ (Fig. 5i). Third, more transmissible variants which experience sufficiently high cross immunity with the wildtype ($c \approx 1$) are no longer likely to emerge at intermediate NPIs (compare Fig. 2i and Fig. 5i). This is because cross immunity accumulates in the population to prevent the more transmissible variant from establishing.

Consequently, there is no effect of varying the relative mortality on total deaths when NPIs are delayed for a more transmissible variant with high cross immunity (Fig. S1).
Figure 5 – Effects of the strength of NPIs (r), strength of cross immunity (c), and relative transmissibility of the variant (β_v/β_w); as indicated at the top of each column) on: (a)-(c) median proportion of hosts infected by the variant; (d)-(f) median total deaths (per 100k) for both strains; and (g)-(i) the probability of the variant emerging (reaching a frequency of at least 0.1). Data are shown for 100 simulations of each parameter combination. The NPI trigger threshold is ε = 0.2 (i.e. NPIs are triggered when 20% of the host population is infected by either strain). Other parameters as described in the main text, with: α_v/α_w = 1.
DISCUSSION

The emergence of novel variants depends on the interaction between mutation supply and the strength of selection, both of which are influenced by NPIs. Here, we have shown how NPIs and the stage of an epidemic at which they are triggered affect the emergence of novel variants with a range of life-history characteristics. Although stronger, earlier implementation of NPIs generally reduces the likelihood that a novel variant will emerge, more transmissible variants that exhibit a high degree of cross immunity with the wildtype may be most likely to emerge when NPIs are enacted early but are of insufficient strength to drive the wildtype extinct quickly (Fig. 2i, Fig. 3b). This echoes a theoretical result for vaccination, which suggests that imperfect vaccination may provide the optimal conditions for vaccine-escape variants to emerge [8,25]. This is because imperfect vaccination can allow a significant mutation supply while also exerting selective pressure for vaccine-escape variants.

Here, we found a similar result for NPIs. When NPIs are weak, a large outbreak of the wildtype can occur. This allows a variant to appear (high mutation supply) but prevents it from spreading widely due to the accumulation of cross immunity in the host population (the variant cannot establish). When NPIs are at an intermediate level, however, there may be sufficient mutation supply to allow the variant to appear but insufficient accumulation of cross immunity from the wildtype. The higher transmissibility of the variant then facilitates its establishment. If the variant is also sufficiently more virulent, then it is possible that this will increase the overall number of deaths (Fig. 4). These patterns at high cross immunity disappear when NPIs are delayed, but in general the variant is able to emerge over a wider set of conditions compared to when NPIs are introduced quickly.
While it is possible that intermediate strength or timely NPIs may occasionally lead to more negative outcomes than weaker or delayed NPIs as described above, we note that this requires the variant to have a specific set of characteristics. Since it is challenging to predict the phenotypic characteristics of novel variants, we contend that the optimal strategy to prevent variants of concern arising is almost always to ensure that NPIs are strong and implemented in a timely fashion. If this is done, then the mutation supply is constrained, preventing novel variants from appearing in the first place.

Of course, when deciding to implement strong and timely NPIs, a range of factors must be accounted for. The possibility that the wildtype might fade out without invading the host population in the absence of NPIs could be considered [26,27]. In that case, it may be unnecessary to introduce costly NPIs [28]. On the other hand, it may be impossible to contain or eradicate a pathogen, even if strong NPIs are introduced [5]. In that scenario, potential negative non-disease health outcomes of NPIs should be considered, particularly if NPIs are maintained over long periods. Comparing the costs and benefits of a range of public health measures is an essential area of research [29,30]. As we have demonstrated, potential evolutionary consequences of different NPIs could be an important component of such analyses.

In order to explore the potential effects of NPIs on the emergence of pathogen variants, we made several simplifying assumptions in our modelling approach. First, we assumed that there is no differential effect of NPIs on the wildtype and the variant transmission rates. While this is often likely to be true, it is possible that NPIs may affect some variants more...
than others. For example, if symptomatic people are more likely to be identified and
isolated, then selection may favour variants that cause more asymptomatic infections or
that have a longer incubation period. Similarly, if individuals are isolated following contact
tracing, then variants with shorter generation times may be favoured. Second, our model
does not include population heterogeneity or contact structure, both of which affect
pathogen transmission and the emergence of variants. If, for example, some individuals are
less likely to adhere to NPIs, then it may be easier for new variants to emerge. This effect
may be particularly pronounced if those individuals belong to specific groups in a population
within which transmission may occur. Third, for simplicity we assumed that the wildtype
and variant only differed by one mutation at a single genetic locus with potential pleiotropic
effects on antigenicity, transmissibility, and virulence. In reality, genetic and phenotypic
landscapes are complex, with multiple mutations sometimes required to transition between
variants, some of which may be initially neutral or deleterious due to epistasis. For example,
the B.1.1.7 SARS-CoV-2 variant that emerged in the United Kingdom in late 2020, and the
B.1.351 variant that emerged in South Africa, were found to have unusually large numbers
of genetic changes, particularly in the spike protein [31,32]. Finally, we did not model the
effects of vaccination programmes on the potential for new variants to emerge, as these
have been considered elsewhere [8–11,33].

Despite these simplifications to our model, our results allowed us to demonstrate important
principles about the effects of NPIs on the emergence on variants and are likely to be
qualitatively robust with respect to the effects of NPIs. For instance, some differential
effects of NPIs are simply equivalent to altering the transmissibility of the variant.
Population heterogeneity and contact structure both affect pathogen transmission, and so
are also likely to affect the initial spread of variants. We would therefore expect the emergence probability to increase in some cases and decrease in others. However, the qualitative patterns shown here are unlikely to change. Finally, increasing the genetic and phenotypic landscape will tend to make it more difficult for variants to emerge. This is because a greater number of mutations, some of which may be deleterious due to epistasis, are likely to be required to generate the variant. One could crudely model this by reducing the mutation supply in our model to mimic the lower rate of accumulating multiple mutations, which would quantitatively, but not qualitatively, change our results.

In conclusion, NPIs have significant impacts on the emergence of novel variants by mediating both the mutation supply and the strength of selection. Although stronger NPIs generally reduce the probability that a new variant of concern will emerge, there are circumstances – namely, when cross immunity is high and the variant is more transmissible – where NPIs of intermediate strength can increase variant emergence, potentially leading to a higher level of mortality. However, this requires a very particular set of circumstances and one cannot predict where a variant will emerge in phenotype space (i.e. its transmissibility, virulence, and level of cross immunity). The optimal strategy to prevent variants emerging is therefore to ensure that NPIs are sufficiently strong to drive the wildtype extinct, thereby cutting off the mutation supply.

AUTHOR CONTRIBUTIONS

BA conceived the study and carried out the modelling work. BA and RNT wrote the manuscript.
DATA ACCESSIBILITY

Source code for the simulations is available in the online Supplementary Materials and at https://github.com/ecoevogroup/Ashby_Thompson_2021.

ACKNOWLEDGEMENTS

BA is supported by the Natural Environment Research Council (grant numbers NE/N014979/1 and NE/V003909/1).

REFERENCES

30. Newbold SC, Finnoff D, Thunström L, Ashworth M, Shogren JF. Effects of physical distancing to control COVID-19 on public health, the economy, and the environment. Environ Resour Econ. 2020;76.

