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two tasks continue to provide weak evidence for group differences in mean drift-rate when 1 

both age and PIQ are controlled for.  2 

 3 

Joint modelling of EEG and behavioural data 4 

 
Figure 8. EEG slope measure extracted for inclusion in the joint model  
Violin plots showing the kernel probability density for the EEG slope measure extracted for 
inclusion in the joint model for each group (typically developing: grey; dyslexia: blue) for 
each difficulty level. The extracted measure was the slope of a linear regression line fitted 
to each participant’s deconvolved (with regularisation) response-locked waveform, from 
200 ms prior to the response to the response (see shaded area of schematic response-
locked waveform in inset). The dotted line reflects a flat slope. Dots and vertical lines 
represent the group mean and ±1 SEM. 

 5 

Figure 8 shows the distribution of slope measures that were extracted from each 6 

participant’s deconvolved (with regularisation) response-locked waveform, which were used 7 

in joint modelling to explore links between EEG and model parameters, with the effects of 8 

age partialled out. As expected, the children with dyslexia had shallower slopes than the 9 

typical children, on average, reflecting a more gradual build-up of activity in the centro-10 

parietal component. First we established whether this EEG measure was related to drift-rate 11 

across the whole sample, estimating a single correlation for both groups. For both tasks, the 12 
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EEG measure was positively related to both the mean drift-rate across difficulty levels, 1 

though the evidence was only weak in the case of the direction integration task (motion 2 

coherence: posterior mean r = .44, 95% credible intervals (CI) = [.26,  .6], BF = 8869.49; 3 

direction integration: posterior mean r = .25, CI = [.03, .45], BF = 1.65). The posterior means 4 

were in the direction of a positive relationship between the difference in EEG measure and 5 

the difference in drift rate between difficulty levels, although the evidence was inconclusive 6 

(motion coherence: posterior mean r = .22, CI = [-.02, .44], BF = .73; direction integration: 7 

posterior mean r = .17, CI = [-.08, .4], BF = 0.43; see Figure S2 for scatterplots). 8 

 

 
Figure 9. Posterior density plots showing the correlation between drift-rate and 
the EEG measure 
Inset provides a schematic representation of the drift-rate parameter (v; left) and EEG 
measure (slope of response-locked waveform from -200 ms to 0 ms around the 
response; right) that were correlated in the joint model, where ρ represents the 
correlation. Posterior density plots in the left column reflect the correlation between the 
mean drift-rate across difficulty levels (v.mean) and the mean EEG slope measure 
across difficulty levels (EEG.mean). Posterior density plots in the right column reflect the 
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correlation between the difference in drift-rate between difficulty levels (v.diff) and the 
difference in EEG slope measure between difficulty levels (EEG.diff). Plots for the 
motion coherence task are presented in the upper row and plots for the direction 
integration task are presented in the lower row. The orange distribution shows the 
correlation across all participants, and the grey and blue distributions show separate 
correlations estimated for typical children and children with dyslexia, respectively. 

 

 1 

Next we fit joint models in which we estimated a separate correlation coefficient 2 

between drift-rate and the EEG measure for the children with dyslexia and typical children 3 

(Figure 9, Figure S4). Note that our intention was not to explicitly test for differences in 4 

correlations between groups, but rather to see if the previous findings seem to hold for each 5 

group; any separation between the groups below is intended to merely describe our 6 

estimated posterior distributions. A positive correlation can be seen for both groups in the 7 

motion coherence task for the mean drift-rate across difficulty levels (typical: posterior mean 8 

r = .41, CI = [.13, .63], BF = 7.45; dyslexia: posterior mean r = .43, CI = [.15, .64], BF = 9 

12.75). The posterior means were in the direction of a positive relationship for the difference 10 

in drift-rate between difficulty levels, but the evidence was inconclusive (typical: posterior 11 

mean r = .18, CI = [-.2, .51], BF = .39; dyslexia: posterior mean r = .20, CI = [-.12, .49], BF = 12 

.46). The strength of correlations was weaker in the direction integration task, particularly for 13 

the typical children, for whom the Bayes factors suggested moderate evidence for no 14 

relationship (mean drift-rate across difficulty levels: posterior mean r = .10, CI = [-.22, .4], BF 15 

= .29; difference between difficulty levels: posterior mean r = .04, CI = [-.31, .38], BF = .24). 16 

The strength of the correlations in children with dyslexia were slightly stronger than in the 17 

typical children, with the mean drift-rate across difficulty levels showing weak evidence for a 18 

relationship, though the difference in drift-rate between difficulty levels showed weak 19 

evidence for no relationship (mean drift-rate across difficulty levels: posterior mean r = .34, 20 

CI = [.04, .58], BF = 2.59; difference between difficulty levels: posterior mean r = .24, CI = [-21 

.09, .53], BF = .61). 22 

 23 

Discussion 24 
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 We analysed the performance of children with dyslexia and typically developing 1 

children in two global motion tasks using diffusion modelling, to identify the processing 2 

stages that are altered in dyslexia. In both the motion coherence and direction integration 3 

tasks, we found that children with dyslexia accumulated sensory evidence at a slower rate 4 

than typically developing children, once controlling for differences in age. Moreover, we 5 

found a neural correlate of this evidence accumulation process that was attenuated in 6 

dyslexia, thus linking brain and behavioural measures with a latent model parameter. 7 

 The finding of reduced evidence accumulation for children with dyslexia during the 8 

motion coherence task echoes that of a recent study by O’Brien and Yeatman (2020) and 9 

helps to explain previous reports of elevated motion coherence thresholds in dyslexic 10 

individuals (Benassi et al., 2010). Importantly, the current study goes further by showing that 11 

reduced evidence accumulation is also found in a direction integration task that does not 12 

require segregation of signal-from-noise. This result suggests that dyslexic individuals have 13 

general difficulties with extracting global motion information, rather than solely having 14 

difficulties with noise exclusion (cf. Conlon et al., 2012; Sperling et al., 2006). These general 15 

difficulties could reflect reduced temporal and/or spatial integration of motion signals 16 

(Benassi et al., 2010; Hill & Raymond, 2002; Raymond & Sorensen, 1998). This conclusion 17 

does not negate the possibility that dyslexic individuals face additional difficulties when 18 

segregating signal from noise, as we suggested based on stimulus-locked analyses using a 19 

similar dataset (Toffoli et al., under review).  20 

By supplementing our diffusion modelling analysis with EEG, we have identified a 21 

neural index of reduced evidence accumulation in dyslexia. Specifically, we used a data-22 

driven component decomposition technique to find a centro-parietal component resembling 23 

that previously linked to the decision-making process (Kelly and O’Connell, 2013; O’Connell 24 

et al., 2012; Manning et al., 2021), and then used a linear deconvolution technique to ‘unmix’ 25 

overlapping stimulus- and response-locked activity. We found that children with dyslexia 26 

showed a more gradual build-up in the response-locked centro-parietal component 27 

compared to typically developing children, and the gradient of the build-up was positively 28 
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correlated with drift-rate in the joint model. While the EEG analysis was exploratory, with the 1 

precise analysis steps not pre-registered, the results are consistent with an earlier study of 2 

typically developing children which linked build-up in a comparable centro-parietal 3 

component with drift-rate (Manning et al., 2021) and follow the pattern we hypothesised 4 

(https://osf.io/enkwm). 5 

 Alongside reductions in drift-rate, we hypothesised that children with dyslexia would 6 

show wider boundary separation compared to typically developing children, reflecting more 7 

cautious responses, and no differences in non-decision time. We found some evidence for 8 

increased boundary separation in children with dyslexia in the motion coherence task, but 9 

this was inconclusive evidence. There was also little evidence for group differences in non-10 

decision time, but the evidence was again inconclusive. These inconclusive results are 11 

therefore not at odds with O’Brien and Yeatman (2020), but suggest that more data would be 12 

required to reach a firm conclusion regarding these parameters. Therefore it seems that any 13 

group differences in these parameters are more subtle than group differences in drift-rate. It 14 

is worth noting that the inferential method used by O’Brien and Yeatman (2020) differed from 15 

our own: while they also fit a hierarchical Bayesian model, they then extracted point 16 

estimates of diffusion model parameters for each individual which they used to draw 17 

statistical inferences. Importantly, this means that the approach of O’Brien and Yeatman 18 

(2020) ignored the uncertainty in the individual-level parameters, which can inflate the 19 

evidence in favour of the winning model (Boehm et al., 2018; Evans & Wagenmakers, 2019).  20 

 Together with the results from stimulus-locked analyses using the same dataset 21 

(Toffoli et al., 2020), our results suggest that early sensory encoding of motion information is 22 

not altered in children with dyslexia. In the current study we found no evidence of group 23 

differences in non-decision time – a measure which includes the time taken for sensory 24 

encoding, and Toffoli et al. showed that early peaks reflecting motion-specific processing 25 

were similar in children with dyslexia and typically developing children, with differences 26 

arising only after ~430 ms following stimulus onset, specifically in the motion coherence 27 

task. The current analyses show that differences in dyslexia arise due to the efficiency with 28 
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which evidence is extracted from global motion stimuli and integrated towards a decision 1 

bound, which is often attributed to parietal areas (Hanks et al., 2006; Shadlen & Newsome, 2 

1996; 2001; de Lafuente et al., 2015). Without a comparable form task, it is unclear from the 3 

current study whether reduced evidence accumulation is restricted to tasks that rely heavily 4 

on the dorsal stream. However, we suggest that within the magnocellular/dorsal stream, 5 

early sensory processing is unaffected in dyslexia (cf. Livingstone et al., 1991; Stein, 2001, 6 

2019; Stein & Walsh, 1997), with group differences emerging only at later processing stages, 7 

including those involved in decision-making. Future work will be required to determine how 8 

specific reduced evidence accumulation in dyslexia is to visual motion processing. Slower 9 

responses have been reported in dyslexia for other tasks (Catts et al., 2002, Nicolson & 10 

Fawcett, 1994) which could reflect pervasive reduced evidence accumulation. However, 11 

slowed responses could arise for different reasons (e.g., increased non-decision time, or 12 

wider boundary separation), so diffusion model decompositions on a range of tasks are 13 

required.  14 

 A number of future directions for further research in this area emerge. What cognitive 15 

skills other than magnocellular / dorsal stream processing contribute to reduced drift-rate in 16 

dyslexia? As highlighted by O’Brien & Yeatman (2020), future research will need to assess 17 

whether and how reduced evidence accumulation is related to rapid automatized naming 18 

(RAN) skills or processing speed measures more generally. General processing speed is a 19 

unique predictor of word reading and comprehension (Christopher et al., 2012) and RAN is a 20 

recognized independent contributor to variation in reading ability, complementing 21 

phonological skills (e.g., O’Brien & Yeatman, 2020). Future work will need to establish the 22 

extent to which reduced processing speed and slower RAN associate with reduced drift-rate 23 

in dyslexia. In addition, performance IQ varied across our two samples and was associated 24 

with drift-rate. Exploratory models revealed that, even when controlling for both age and 25 

performance IQ, there was still relatively more evidence for group differences in drift-rate 26 

than for a lack of group differences. Yet the strength of evidence was weaker than in models 27 

controlling only for age. Importantly, partialling out differences in performance IQ could lead 28 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257878doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257878
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

to removing some of the variance related to the group differences we are interested in, as 1 

atypical development could lead to both dyslexia and reduced IQ (Dennis et al., 2009). 2 

Indeed, performance IQ has been shown to strongly predict reading skills, independently of 3 

phonological skills (O’Brien & Yeatman, 2020). Future work will need to investigate the 4 

contribution of processing speed and performance IQ to decision making in dyslexia as a 5 

whole spectrum, for subgroups of children with reading difficulty (Bonifacci & Snowling, 6 

2008), and across typical development more generally.  7 

 By combining diffusion modelling and EEG measures that are sensitive to the 8 

multiple processes contributing to visual motion perception, we have uncovered differences 9 

between children with dyslexia and typically developing children that could not be observed 10 

in children’s behavioural responses alone. Moreover, diffusion modelling provides a way to 11 

measure sensitivity to motion information without confounding speed-accuracy tradeoffs. 12 

Given that reduced behavioural sensitivity to motion has been reported in a range of 13 

developmental and psychiatric conditions (Braddick et al., 2003; Chen et al., 2003; 14 

McKendrick & Badcock, 2004), we suggest that diffusion modelling may provide a useful 15 

framework to identify whether similar or distinct processing stages are affected in different 16 

conditions, with implications for understanding the development of these conditions and their 17 

relationship to other cognitive processes. 18 
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Supplementary Materials 1 
 2 
 3 
 4 

 5 
Figure S1. Model fits 6 
Defective cumulative density function plots for each of the four models, for typically 7 
developing children (upper rows) and children with dyslexia (bottom rows) for difficult and 8 
easy levels. Green represents correct responses and red represents error responses, at 9 
each of 9 quantiles. The dots reflect the observed data and crosses with connecting lines 10 
reflect the model fit. The dots and crosses at 2.5 seconds reflect the observed and model 11 
predicted misses. 12 
 13 
  14 
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 1 

Figure S2.Scatterplots plotting individual parameter estimates against performance IQ  2 
Maximum likelihood estimates contained within the posterior for each participant’s mean 3 
drift-rate across difficulty levels (v.mean), boundary separation (a), non-decision time (ter), 4 
difference in drift-rate between difficulty levels (v.diff), and starting point (z/a), plotted as a 5 
function of performance IQ (PIQ), for the motion coherence task (left column) and direction 6 
integration task (right column). Typically developing children are plotted in grey and children 7 
with dyslexia are plotted in blue. 8 
  9 
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 1 

Figure S3. Exploratory analyses: prior and posterior density distributions for model 2 
with age and performance IQ partialled out 3 

While our pre-registered analysis did not control for performance IQ, we conducted an 4 
exploratory analysis to investigate whether group differences in drift-rate were still apparent 5 
when controlling for performance IQ. The figure shows prior (green) and posterior (purple) 6 
density distributions for the group-level parameters reflecting group differences in each of 7 
the 5 model parameters (v.mean = mean drift-rate across difficulty levels; a = boundary 8 
separation; ter = non-decision time; v.diff = difference in mean drift-rate between difficulty 9 
levels; z/a = relative starting point) for each task, when both age, performance IQ (PIQ) and 10 
their interaction are partialled out. Negative values reflect lower parameter values in the 11 
dyslexia group compared to the typically developing group. BF = Savage-Dickey Bayes 12 
factors in favour of the alternative hypothesis (H1) over the null hypothesis (H0). BF > 1 13 
support H1. 14 

As in Figure 7, the posterior distribution for v.mean is shifted leftwards, reflecting lower mean 15 
drift-rate in the dyslexia group than the typically developing group. The corresponding Bayes 16 
factors are smaller in these analyses, indicating weaker evidence for group differences. As 17 
we reflect on in the Discussion of the main manuscript, the decision to partial out PIQ should 18 
not be taken lightly, as PIQ seems to contribute to both decision making variables (drift-rate) 19 
and group differences, so it is likely that partialling out PIQ removes some of the variance 20 
related to the group differences we are interested in. 21 
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 1 
Figure S4. Scatterplots showing relationship between drift-rate and EEG 2 
Left panels show maximum likelihood estimates contained within the posterior for each 3 
participant’s mean drift-rate across difficulty levels (v.mean) plotted against the slope of EEG 4 
activity averaged across difficulty levels (EEG.mean) for the motion coherence (top) and 5 
direction integration (bottom) tasks. Right panels show point estimates for each participant’s 6 
difference in drift-rate between difficulty levels (v.diff) plotted against the difference in slopes 7 
of EEG activity between the two difficulty levels (EEG.diff), for each task. Typically 8 
developing children are plotted in grey and children with dyslexia are plotted in blue. 9 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257878doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257878
http://creativecommons.org/licenses/by-nd/4.0/

