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2 

Abstract 19 
Wastewater-based genomic surveillance of the SARS-CoV-2 virus shows promise to 20 

complement genomic epidemiology efforts. Multiplex tiled PCR is a desirable approach 21 

for targeted genome sequencing of SARS-CoV-2 in wastewater due to its low cost and 22 

rapid turnaround time. However, it is not clear how different multiplex tiled PCR primer 23 

schemes or wastewater sample matrices impact the resulting SARS-CoV-2 genome 24 

coverage. The objective of this work was to assess the performance of three different 25 

multiplex primer schemes, consisting of 150bp, 400bp, and 1200bp amplicons, as well as 26 

two wastewater sample matrices, influent wastewater and primary sludge, for targeted 27 

genome sequencing of SARS-CoV-2. Wastewater samples were collected weekly from 28 

five municipal wastewater treatment plants (WWTPs) in the Metro Vancouver region of 29 

British Columbia, Canada during a period of increased COVID-19 case counts from 30 

February to April, 2021. RNA extracted from clarified influent wastewater provided 31 

significantly higher genome coverage (breadth and median depth) than primary sludge 32 

samples across all primer schemes. Shorter amplicons appeared more resilient to sample 33 

RNA degradation, but were hindered by greater primer pool complexity in the 150bp 34 

scheme. The identified optimal primer scheme (400bp) and sample matrix (influent) was 35 

capable of detecting the emergence of mutations associated with genomic variants of 36 

concern, of which the daily wastewater load significantly correlated with clinical case 37 

counts. Taken together, these results provide guidance on best practices for 38 

implementing wastewater-based genomic surveillance, and demonstrate its ability to 39 

inform epidemiology efforts by detecting genomic variants of concern circulating within a 40 

geographic region. 41 

 42 
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Importance 43 
Monitoring the genomic characteristics of the SARS-CoV-2 virus circulating in a 44 

population can shed important insights into epidemiological aspects of the COVID-19 45 

outbreak. Sequencing every clinical patient sample in a highly populous area is a difficult 46 

feat, and thus sequencing SARS-CoV-2 RNA in municipal wastewater offers great 47 

promise to augment genomic surveillance by characterizing a pooled population sample 48 

matrix, particularly during an escalating outbreak. Here, we assess different approaches 49 

and sample matrices for rapid targeted genome sequencing of SARS-CoV-2 in municipal 50 

wastewater. We demonstrate that the optimal approach is capable of detecting the 51 

emergence of SARS-CoV-2 genomic variants of concern, with strong correlations to 52 

clinical case data in the province of British Columbia. These results provide guidance on 53 

best practices on, as well as further support for, the application of wastewater genomic 54 

surveillance as a tool to augment current genomic epidemiology efforts.    55 
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Observation 56 

Genomic surveillance of the SARS-CoV-2 virus plays a critical role in tracking its evolution 57 

during the current global COVID-19 pandemic (1–3). Recently, several emerging lineages 58 

of SARS-CoV-2, so-called variants of concern (VoCs), have been associated with 59 

increased levels of transmission (4), disease severity (5), and/or immune escape (6, 7). 60 

These VoCs have originated from various locations globally (4, 8), but are spreading 61 

within new geographic regions due to travel-associated and local transmission (9). 62 

Providing rapid detection of VoC infections within a population could thus help to inform 63 

effective public health outbreak mitigation strategies.     64 

 65 

As the SARS-CoV-2 virus is shed in feces during infection (10), viral genome fragments 66 

can be detected in municipal wastewater, and have been associated with clinical case 67 

numbers within contributing regions (11–14). Previous work has demonstrated the 68 

potential to sequence SARS-CoV-2 fragments in municipal wastewater and detect single 69 

nucleotide variants (SNVs) that correspond to clinical cases in the contributing sewershed 70 

(15–17). As SARS-CoV-2 titers in wastewater are relatively low (11, 13), an enrichment 71 

step is typically needed prior to sequencing to improve sensitivity (15). The two main 72 

approaches for enriching SARS-CoV-2 RNA in wastewater include oligonucleotide based 73 

capture (15), and multiplex tiled PCR based targeted amplification (16, 17). The latter 74 

approach is promising for wastewater-based viral genomic surveillance due to its lower 75 

reagent cost and potential to be deployed rapidly and in remote locations (18). An 76 

important consideration for applying multiplex tiled PCR is the average amplicon length, 77 

as this can impact assay sensitivity in the case of RNA degradation (19). This could be 78 
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particularly important for its application to wastewater based epidemiology, as SARS-79 

CoV-2 particles and free RNA can undergo variable levels of degradation (20, 21), and 80 

may vary based on the type of wastewater sample matrix (e.g. influent versus primary 81 

sludge) (22). We therefore hypothesized that there may be an optimal tiled PCR amplicon 82 

size and wastewater sample matrix type that enables adequate genome coverage of 83 

SARS-CoV-2 for the identification of genomic VoCs.  84 

 85 

Wastewater sample matrix and multiplex tiled PCR amplicon length impact SARS-86 

CoV-2 genome coverage.  87 

We sequenced a total of 96 wastewater samples collected between February 7th to April 88 

18th 2021 across five municipal WWTPs in Vancouver, Canada using three different 89 

primer schemes for multiplex tiled PCR of SARS-CoV-2: Swift Bioscience’s 150bp 90 

amplicon scheme (n = 10 total, 3 sludge and 7 influent), ARTIC 400bp amplicon scheme 91 

(23) (n = 62 total, 8 sludge and 54 influent), and Freed/midnight 1200bp amplicon scheme 92 

(24) (n = 24 total, 4 sludge and 20 influent) (detailed methods in Text S1). Sludge samples 93 

failed to produce libraries with over 32% breadth of genome coverage across all primer 94 

schemes and sample cycle thresholds (Ct’s) (Figure 1a-c). Conversely, influent 95 

wastewater samples produced libraries that had significantly higher breadth of coverage 96 

across all primer schemes (p<0.01, Tukey Test; Figure 1). One possible explanation for 97 

this finding could be that the sludge matrix was inhibitory to RT-PCR (11); however, no 98 

inhibition of RT-qPCR on sludge RNA extracts was detected using internal controls (Text 99 

S1, Table S2). Another potential reason for the lower genome coverage in sludge is that 100 

SARS-CoV-2 was more nonintact or its RNA more degraded with the direct sludge 101 
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extraction compared to ultrafiltration of influent wastewater, as has been previously 102 

hypothesized (22). A third potential cause of discrepancies in genome coverage between 103 

sludge and influent wastewater samples could be higher off-target amplification in sludge 104 

extracts. Correspondingly, the sample type significantly impacted read mapping rates for 105 

all schemes after accounting for Ct values (p<0.01, two-way ANCOVA), with mean 106 

mapping rates of sludge samples being over 100-times lower than that of influent samples 107 

(0.01% vs. 11.3%, respectively; Table S1). Therefore, ultrafiltration of influent wastewater 108 

provided more suitable RNA extracts for multiplexed tiled PCR of SARS-CoV-2 than did 109 

direct extraction from wastewater sludge, likely due to a combination of greater SARS-110 

CoV-2 RNA degradation and off-target amplification in sludge.  111 

  112 
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 113 

Figure 1: SARS-CoV-2 whole genome sequencing coverage results from three multiplex 114 
tiled PCR primer schemes, including breadth of genome coverage (over a read depth of 115 
50) for (A) 150bp amplicons, (B) 400bp amplicons, and (C) 1200bp amplicons, as well as 116 
the median depth of coverage across the genome for (D) 150bp amplicons, (E) 400bp 117 
amplicons, and (F) 1200bp amplicons. Values are plotted versus the sample Ct value for 118 
the US CDC N1 assay, measured by RT-qPCR (see Text S1). Data points aligned with 119 
the x-axis (plots D-F) had values of zero, and could not be log-transformed.  120 
 121 

If the level of RNA degradation within a wastewater sample impacts the resulting SARS-122 

CoV-2 genome coverage, we would expect to see less of a drop-off in coverage at high 123 

Ct’s for schemes with shorter amplicons. Indeed, we detected a significant effect of 124 

amplicon length on the breadth of genome coverage as a function of Ct (p<0.01, two-way 125 

ANCOVA). The median genome coverage with the 150bp amplicon scheme spanned one 126 

order of magnitude within influent wastewater samples with Ct values ranging from 31 to 127 

37 (Figure 1d), while that from the 400bp and 1200bp schemes spanned 3.2 and 3.0 128 
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orders of magnitude, respectively (Figure 1e and 1f). Improvements with the 400bp 129 

versus the 1200bp scheme were marginal, yet 83% of paired influent samples with Ct 130 

values over 32.5 (10 of 12) showed higher breadth of coverage with the 400bp scheme 131 

(Figure S1). Thus, shorter amplicon schemes may be more robust to sample RNA 132 

degradation at higher Ct values. However, there was a tradeoff between amplicon length 133 

and genome coverage, as the magnitudes of the median genome coverage and breadth 134 

of coverage obtained with the 150bp scheme and influent samples were significantly 135 

lower than that of the 400bp scheme (p=0.022, 5.0e-9, respectively, Tukey Test). The 136 

lower breadth of coverage with the 150bp scheme could have been caused by more 137 

primer-primer interactions with a larger number of primers (19). Therefore, the 400bp 138 

primer scheme appears to strike a balance between resilience to sample RNA 139 

degradation and mitigating issues around primer pool complexity and multiplex amplicon 140 

balancing.     141 

 142 

SARS-CoV-2 whole genome sequencing from wastewater captures emergence of 143 

genomic variants in a geographic region. 144 

The sequence data produced via the 400bp primer scheme and influent wastewater 145 

samples was used to measure the frequency of VoC-associated SNVs (Table S3) across 146 

the five WWTPs over the study period. SNVs associated with the VoC lineages, B.1.1.7 147 

and P.1, both increased to a maximum mean frequency of 60% across all WWTPs, 148 

respectively (Figure 2a, Figures S2-S4), while that of B.1.351 did not substantially 149 

increase (Figure S5). These findings align with the results clinical screening and 150 

sequencing of patient samples over the same period within the province of British 151 
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Columbia, during which P.1 and B.1.1.7 became the dominant lineages while B.1.351 did 152 

not appreciably spread (25) (Figure 2b, Figures S3 and S5). At the time of publishing, 153 

VoC frequency data for clinical cases was only available at the provincial level; yet the 154 

health service areas corresponding to the 5 WWTP sewersheds accounted for 74% of 155 

total cases in the province during the study period (25). The flow-normalized daily loads 156 

of P.1 and B.1.1.7 across all WWTPs (in genome copies/day) were strongly correlated 157 

with clinical case counts of those lineages within the province for the corresponding 158 

epidemiological weeks (log10-log10 transformed, R2 = 0.89 and 0.87, respectively; Fig. 2c 159 

and Figure S3). The frequency of VoC-associated SNVs within influent wastewater 160 

measured with multiplex tiled PCR is therefore suitable to monitor community 161 

transmission of genomic variants within a sewershed. The onset of P.1- and B.1.1.7-162 

associated SNVs within influent wastewater followed different patterns for the five 163 

WWTPs, providing additional support that wastewater SARS-CoV-2 sequencing can 164 

illuminate localized spread of genomic variants on a regional scale (15, 17). The rapid 165 

turnaround time (~3 days from sampling to data generation here), low capital cost and 166 

high portability of nanopore sequencing combined with highly multiplexed tiled PCR for 167 

SARS-CoV-2 sequencing of wastewater shows great promise to complement genomic 168 

epidemiology efforts during the COVID-19 pandemic by detecting the emergence of VoCs 169 

within a pooled population sample. 170 
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 171 
Figure 2: (A) Frequency of single nucleotide variants (SNVs) associated with the P.1 172 
lineage of SARS-CoV-2 within influent wastewater samples from five wastewater 173 
treatment plants in Vancouver, British Columbia (BC), from February 7th to April 18th, 174 
2021. Smaller grey dots represent the frequency of SNVs on sample dates, while the 175 
larger black points represent the mean across all detected SNVs. Only genome positions 176 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257861doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257861
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

with a read coverage over 50 are included in SNV frequency calculations. (B) Frequency 177 
of the P.1 lineage in clinical COVID-19 patient cases in the province of BC, Canada over 178 
the study period. The frequencies in clinical patient cases correspond to an average value 179 
detected over an epidemiology (epi) week, and were adapted from (25). (C) Correlation 180 
between the wastewater cumulative daily load of P.1 genomes summed across all five 181 
WWTPs and the total P.1 clinical cases in the province of BC observed within the same 182 
epidemiological week. The wastewater P.1 daily load (genome copies/d) was 183 
approximated by normalizing copies of the US CDC N1 gene (copies/L) by daily flow rates 184 
(L/d) to obtain N1 loads (copies/d) for all WWTPs, and multiplying that by the mean 185 
frequency of P.1-associated SNVs in each WWTP across all sample dates. For each 186 
date, the cumulative P.1 daily load was determined by summing the P.1 loads across all 187 
five WWTPs. The P.1 clinical case counts by week were adapted from (25) by multiplying 188 
total provincial COVID-19 case counts by the frequency of P.1 in clinical provincial cases. 189 
Data points with zero clinical cases are shown aligned to the x-axis.  190 
  191 
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Data Availability 192 
The raw reads associated with all samples are available in the Short Read Archive under 193 

BioProject PRJNA731975. The accession numbers for each sample are also provided in 194 

Table S1, along with the sample metadata.   195 
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