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Abstract  50 

Background: An urgent need exists for an early detection of cases with a high-risk of SARS-CoV-51 

2 infection, particularly in high-flow and -risk settings, such as emergency departments (EDs). The 52 

aim of this work is to develop and validate a predictive model for the evaluation of SARS-CoV-2 53 

infection risk, with the rationale of using this tool to manage ED patients. 54 

Methods: A retrospective study was performed by cross-sectionally reviewing the electronical 55 

case records of patients admitted to Niguarda Hospital or referred to its ED in the period 15 March 56 

to 24 April 2020. 57 

Derivation sample was composed of non-random inpatients hospitalized on 24 April and admitted 58 

before 22 April 2020. Validation sample was composed of consecutive patients who visited the ED 59 

between 15 and 25 March 2020. The association between the dichotomic outcome and each 60 

predictor was explored by univariate analysis with logistic regression models. 61 

Results: A total of 113 patients in the derivation sample and 419 in the validation sample were 62 

analyzed. History of fever, elder age and low oxygen saturation showed to be significant predictors 63 

of SARS-CoV-2 infection. The neutrophil count improves the discriminative ability of the model, 64 

even if its calibration and usefulness in terms of diagnosis is unclear. 65 

Conclusion: The discriminatory ability of the identified models makes the overall performance 66 

suboptimal; their implementation to calculate the individual risk of infection should not be used 67 

without additional investigations. However, they could be useful to evaluate the spatial allocation of 68 

patients while awaiting the result of the nasopharyngeal swab. 69 

Keywords: 70 

Diagnostic prediction model; COVID-19; SARS-CoV-2 infection; emergency department. 71 
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 90 

Key Messages box:  91 

What is already known on this topic 92 

1 year after the onset of the coronavirus disease 2019 (COVID-19) pandemic, the trend of its 93 

spread has not shown a substantial global reduction. An urgent need exists for efficient early 94 

detection of cases with a high risk of SARS-CoV-2 infection and a number of diagnostic prediction 95 
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models have been developed, but a few models were externally validated in high-flow and -risk 96 

settings, such as emergency departments (EDs). 97 

What this study adds 98 

This study develops and validate predictive models for the evaluation of SARS-CoV-2 infection 99 

risk, with the rationale of using these tools to promptly manage patients who are afferent to the ED, 100 

allocating them accordingly to the risk of infection while awaiting swab result. History of fever, older 101 

age and low oxygen saturation showed to be significant predictors of the presence of SARS-CoV-2 102 

infection. The use of laboratory findings, such as neutrophil count, showed to improve the 103 

discriminative ability of the model, even if its calibration and usefulness in terms of diagnosis is 104 

unclear.  105 
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INTRODUCTION  106 

1 year after the onset of the coronavirus disease 2019 (COVID-19) pandemic, the trend of its 107 

spread has not shown a substantial global reduction, with 238,031 new cases registered on 11 108 

March 2021, 117,573,007 total confirmed cases and 2,610,925 total deaths [1] and recurring new 109 

peaks of contagion are still observed locally in various geographical areas, including Italy (22,409 110 

new cases registered on 11 March 2021, 3,123,368 total confirmed cases, 100,811 total deaths 111 

[2]).  112 

Pending the effects of the vaccine, test and tracing methods still represent the most effective tools 113 

for containing the SARS-CoV-2 infection and preventing the spread of COVID-19 [3]. 114 

Rapid identification of SARS-CoV-2 infection is important for a prompt treatment and 115 

implementation of isolation procedures, particularly in high-flow and high-risk settings, such as 116 

emergency departments (EDs).  117 

The standard reference test is represented by the search for the SARS-CoV-2 genome by reverse 118 

transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swab material, but although 119 

the technologies and execution times have been made more efficient, RT-PCR testing is time-120 

consuming and its execution time (up to 4 hours) is often not compatible with urgent/emergency 121 

situations, consequently shorter decision times for the allocation of patients are still needed [4]. 122 

In order to reduce the identification time of SARS-CoV-2 cases, numerous models have been 123 

developed for the diagnosis of infection and disease, but with numerous concerns in terms of risk 124 

of bias. Consequently, the search for an improved predictive diagnostic tool is still open [5]. 125 

The aim of this work is to develop and validate a predictive model for the evaluation of SARS-CoV-126 

2 infection risk, with the rationale of using this tool to promptly manage patients who are afferent to 127 

the ED, allocating them accordingly to the risk of infection while awaiting swab result. 128 

 129 

PATIENTS AND METHODS 130 

Study design and participants 131 
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A retrospective study was performed by cross-sectionally reviewing the electronical case records 132 

of patients who were admitted to Niguarda Hospital or referred to its ED after the first Italian 133 

COVID-19 case, between 15 March and 24 April 2020. 134 

A non-random sample of inpatients from low-intensity general and specialist medical units who 135 

were hospitalized on 24 April 2020 and admitted before 22 April 2020, was used to develop the 136 

prediction model (derivation sample) and a sample of consecutive patients who visited the ED 137 

between 15 and 25 March 2020 was used to perform the historical external validation (validation 138 

sample).  139 

Adult patients (≥18 years old) were eligible if at least one nasopharyngeal swab to search for the 140 

SARS-CoV-2 genome was performed, independently of the presence of the respiratory disease.  141 

The exclusion criteria were the following: current pregnancy, admission to pediatrics, obstetrics, 142 

surgery, psychiatric departments, or the high-intensity units, including critical care, at the time of 143 

inclusion.  144 

All inpatients were tested for SARS-CoV-2 infection before the admission, while patients visiting 145 

ED were tested in the judgment of the attending physician. All the swab tests were processed at 146 

Niguarda Hospital. 147 

The study is conformed to Helsinki’s Declaration and was approved by the ethics committee Milano 148 

Area 3 (register number 249-13052020). An informed consent was provided by the enrolled 149 

participants. 150 

Outcome and predictor measurements 151 

The SARS-CoV-2 infection as the outcome was defined if at least one out of three SARS-Cov-2 152 

genes tested on at least one nasopharyngeal swab was detected by RT-PCR.  153 

For the derivation sample, the inpatients’ medical records were completed by interviews using ad-154 

hoc case report forms to collect data about age, gender, communal living situations, cohousing 155 

and/or residence in care facilities, known contact with COVID-19 case; the presence (ever) of 156 

fever, cough, dyspnea, pharyngodynia, hypo-/anosmia and/or hypo-/ageusia, nausea and/or vomit, 157 

diarrhea; current history of syncope, seizure (if unprecedented), and/or conjunctivitis; systolic and 158 

diastolic blood pressures, heart and respiratory rates per minute, body temperature (°C), peripheral 159 
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oxygen saturation while breathing ambient air; the total leukocyte, neutrophil, lymphocyte, and 160 

monocyte counts, and C-reactive protein levels (mg/dL, normal reference <0.5). The patient’s 161 

current medical history, symptoms and signs, vital signs, and laboratory exams at the time of the 162 

ED admission were considered as predictors.  163 

The data needed for the validation sample were extracted by three physicians who reviewed the 164 

electronical medical records of the ED visits.  165 

Data collection was unblinded to the outcome in both samples. 166 

Model development and validation methods   167 

The association between the dichotomic outcome and each predictor was explored by univariate 168 

analysis with logistic regression models. The distribution of non-continuous predictors was checked 169 

and when the absolute frequency was less than 5 per table, they were not included in the model 170 

development due to potential separation and overfitting issues. Only main fixed effects were 171 

considered for inclusion in the model while interactions terms as well as higher order polynomials 172 

were not explored. A backwards stepwise algorithm based on the Akaike's information criterion 173 

was used with bootstrap resampling (B = 1000) and the covariates whose statistical significance 174 

was detected in more than 80% of the bootstrap samples were chosen. The candidate models 175 

were compared in terms of performance by C-statistic, explained variation (McFadden's R2; scaled) 176 

Brier score, Hosmer-Lemeshow test (grouping the observed outcomes by decile of predictions), 177 

and sensitivity and specificity (the Youden's J statistic was used to identify the cutpoint for their 178 

maximization). The net reclassification improvement [6] was considered to further assess the effect 179 

of adding new predictors and the Decision Curve Analysis [7] was performed to evaluate the 180 

thresholds, as well as the quality of the predictions. Then, these models were internally validated 181 

by bootstrapping (B = 1000) [8] for estimation of the optimism-corrected C-statistic and calibration 182 

(slope and intercept). The original β coefficients of the candidate logistic models were used to 183 

calculate the predicted probabilities in an historical sample to assess their external validation and 184 

the above-mentioned performance measures were used. To explore the impact of overfitting due to 185 
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small samples, a sensitivity analyses was performed by using shrunk [9] and penalized [10] 186 

estimations of the β coefficients and these predicted probabilities were compared. 187 

Missing data were firstly managed by exploring the absence of remarkable differences between the 188 

complete cases and the group with missing data. Then, after checking the arbitrary-pattern of 189 

missing data and testing for the assumption of missing completely at random (Little's chi-squared 190 

test) a complete case analysis was chosen both for the derivation and the validation samples.  191 

The power to detect a statistically significant difference in the performance of the model at a 192 

particular sample size was calculated with standard formulas based on the normal distribution. The 193 

estimated size of the validation sample for a one-sample two-sided mean test was 351 to achieve 194 

80% power if the mean difference between C-statistics 0.03 with standard deviation 0.20, and the 195 

type I error 0.05 were assumed. 196 

All the analyses were performed using Stata Statistical Software Release 15 (StataCorp. 2017, 197 

College Station, TX: StataCorp LLC) and R (R Core Team 2018, R Foundation for Statistical 198 

Computing, Vienna, Austria). 199 

The TRIPOD checklist for transparent reporting of a multivariable prediction model for individual 200 

prognosis or diagnosis was used as guidance for reporting the final version of this article [11]. The 201 

PROBAST tool was considered to discuss the potential risk of bias and concerns regarding model 202 

development and applicability [12]. 203 

 204 

RESULTS  205 

Study population 206 

A total of 576 patients were included in this study: 141 in the derivation sample and 435 in the 207 

validation sample. Of them, 28 patients in the derivation sample and 16 patients in the validation 208 

sample were excluded because of missing data, consequently 113 and 419 patients were 209 

analyzed, respectively (Figure 1).  210 

The baseline characteristics of included patients are reported in Table 1.  211 
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Regarding the case-mix, a significant higher proportion of positive outcome (71 out of 141, 50% vs 212 

260 out of 435, 60%; p=0.047), male patients (73 out of 141, 52% vs 267 out of 435, 61%, 213 

p=0.044) with fever (67 out of 139, 48% vs 300 out of 435, 69%, p≤0.01) were observed in the 214 

validation sample compared to the derivation sample, while in the same sample age and neutrophil 215 

counts were lower (respectively, mean [SD] age equal to 72 [14] vs 61 [16] years, p <0.01, and 216 

neutrophil mean [SD] count equal to 7.3 [5.3] vs 6.4 [4.4] 109 cells/L) (Table 1).  217 

The differences in terms of outcome and predictors between the patients analysed and those 218 

excluded were not statistically significant with the exception of a higher prevalence of cough in the 219 

complete cases (39 out of 113, 34% vs 3 out of 26, 11%, p=0.03) of the derivation sample and a 220 

lower frequency of hospitalization (363 out of 419, 87% vs 10 out of 16, 62%, p≤0.01) in the 221 

validation set (Supplementary Table 1).  222 

The average time between the patient’s assessment and the test result of swab was less than 24 223 

hours.   224 

 225 

Prediction models  226 

In the derivation sample, age, oxygen saturation at room air, fever, cough, and both total white 227 

blood cell and neutrophil counts were significantly associated in the univariate analyses (Table 2). 228 

In the selection of the predictors, only age, oxygen saturation at room air, fever, and the neutrophil 229 

count (total white blood cell was excluded due to high correlation with the individual cell count) 230 

showed a statistical significance in more than 80% of the 1000 bootstrap samples and they were 231 

considered for model building.  232 

Three multivariable models were consequently developed: an oversimplified one with fever and 233 

oxygen saturation only (M1), and two models with the clinical predictors in absence (M2) and 234 

presence (M3) of the results of the laboratory test, and their apparent performance was tested as 235 

reported in Table 3.  236 

The discrimination was >0.80 in M2 and M3, but the net reclassification improvement due to the 237 

addition of the neutrophil count as predictor was not statistically significant. In the view of Decision 238 
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Curve Analysis, M2 was steadily superior to M1, and inferior to M3, but not for all the threshold 239 

points. When these models were internally validated, the correction of the calibration slope for 240 

optimism was <10% in M1 and M2 only. 241 

 242 

Validation results  243 

The external validation of the models and the sensitivity analyses of the regression coefficients by 244 

uniform shrinking and penalization are detailed in Table 4 and Supplementary Table 2.  245 

The C-statistic was significantly higher for M3 (0.819, 95%CI 0.775-0.862) compared to M2 (0.793, 246 

95% 0.747-0.840, p=0.014), yet the difference was limited (2.6%) and statistically not significant in 247 

comparison with M1 (0.817, 95% CI 0.774-0.861, p=0.933). However, only M2 showed to be 248 

sufficiently well calibrated if shrunk or penalized coefficients were applied instead of the original 249 

values. The calibration plots based on the original coefficients are shown in Figure 2. The 250 

sensitivity was consistently >85% for all the models, but the specificity was >70% in M3 only when 251 

the cut-off was statistically calculated to maximize both the performance measures (Supplementary 252 

Table 2). In Figure 3, the curves show that each model is clinically useful for thresholds in the 253 

range of 20-80% for the probability of the outcome. Moreover, each model showed to be superior 254 

to the use of age alone as well as the oxygen saturation at room air, while the history of fever as 255 

the only predictor seemed to be comparable.  256 

 257 

DISCUSSION 258 

Niguarda is one of the largest General Hospital in the North of Milan within a Metropolitan Area of 259 

3,279,944 inhabitants (January 2020), and hosts all the medical and surgical disciplines for adults 260 

and children, including a 24-hour ED with 96,588 visits and 32,612 in hospital admissions covering 261 

every intensity of care in 2019. 262 

In this hospital context, a prediction model for the prompt diagnosis of COVID-19 high risk was 263 

developed in hospitalized patients and externally validated in the setting of the ER.  264 
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The history of fever, elder age and low oxygen saturation showed to be significant predictors of the 265 

presence of SARS-CoV-2 infection in the derivation sample. The use of laboratory findings, such 266 

as neutrophil count showed to improve the discriminative ability of the model, even if its calibration 267 

and usefulness in terms of diagnosis is unclear. 268 

Since the beginning of the pandemic, a remarkable number of prediction models have been 269 

developed and critically appraised in a systematic review updated to July 2020 [5]. Out of 232 270 

models, 118 were diagnostic models for detecting COVID-19. Of them, 75 were based on medical 271 

imaging and 10 were used to diagnose disease severity. Only few diagnostic models were 272 

externally validated, and all the appraised models were judged to be flawed by a high risk of bias 273 

[5]. 274 

Age was included in most of the final models, while the inclusion of fever or varying laboratory 275 

findings, including neutrophil count, were inconsistent and the oxygen saturation was considered 276 

only in prognostic models (107 out of 232), despite its clinical importance in the early management 277 

of disease [5].  278 

Among the prediction models appraised, the diagnostic model by Jehi et al. was identified as 279 

promising, even if requires external validation. It defines male, African–American, older patients, 280 

and those with known COVID-19 exposure at higher risk of being positive for COVID-19 [13]. A 281 

reduced risk was reported for patients who had influenza or pneumococcal polysaccharide vaccine 282 

or who were on melatonin, paroxetine or carvedilol. Nevertheless, the inclusion of race as predictor 283 

is subjected to a possible bias due to American healthcare inequality, and the COVID-19 exposure 284 

is a data reported by patients [13].  285 

The role of social variables within a COVID-19 predictive model was explored by Chew and 286 

collaborators, who derived two models which include, among different risk factors, dormitory 287 

residence in the first and contact with infective patients in the second model [14]. 288 

Considering the dormitory residence, as the institutions dedicated to migrants, authors conclude 289 

that this represents an important predictor for COVID-19 infection, but this result is not confirmed if 290 

we consider other types of institutions, such as retirement homes. This result is therefore not 291 

generalizable to realities other than Singapore. 292 
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Considering contact with COVID-19 infective patients, authors highlight the role of traceability as 293 

prognostic factor in the development of the disease. On the other hand, contact tracing is not easy 294 

to execute, both in traditional and alternative ways, because of privacy and socio-cultural aspects 295 

[15]. 296 

Both considerations could explain the lack of predictability of residency data in some specific 297 

contexts and exposure data in the present study [14].  298 

Of note, Italian studies are increasing accordingly to the last update of the systematic review which 299 

counts a total of 23 (10%) Italian models, 21 more than the first version of April 2020. 300 

The discriminative ability of our models is consistent with those whose performance was assessed 301 

by external validation with C-statistics ranging from 0.73 to 0.91. Moreover, their calibration was 302 

superior to that of the only study where the calibration slope was reported (0.77 to 0.95 vs 0.56, 303 

respectively) [16]. 304 

With regards to the setting, the only study based on patients from ED reported a C-statistic 305 

calculated by training test split (0.85) comparable to those of our models in the derivation sample, 306 

but the number of predictors was higher (15 versus 2 to 4 variables) and its external validation was 307 

not provided, and this may raise concerns about overfitting issues [17]. Moreover, another 308 

prediction model for diagnosis in Italy was developed to assess the probability of community-309 

acquired pneumonia due to COVID-19 from multiple centres and its discriminative ability was 310 

similar (C-statistic 0.84) [18]. However, this comparison may be flawed by the differences between 311 

the purposes of the models as well as their settings (hospitalized patients vs ED admissions). 312 

The implementation of our models is based on a limited number of predictors which are easy to be 313 

measured as well as promptly available in everyday practice. Moreover, its temporal external 314 

validation showed to be robust to the differences in the case-mix and particularly when the 315 

prevalence of the outcome and the proportion of hospitalization were variable in real-life 316 

consecutive sample of patients from the ED setting.  317 

This study has several limitations. First, it was developed by using a case-control design and case 318 

analysis and data collection were retrospective and unblinded. However, since hard outcome and 319 

predictors like the detection of SARS-CoV-2 genome in the nasopharyngeal swab and age were 320 
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used, a limited impact of bias on predictions may be assumed. Secondly, predictors like communal 321 

living and history of contact with a person diagnosed of SARS-CoV-2 infection were unmeasured, 322 

even though their relevance for diagnostic predictions has been still to be determined. Finally, the 323 

discriminatory ability of the models makes the overall performance still suboptimal and its 324 

implementation to calculate the individual risk of infection should not be used without additional 325 

investigations.  326 

However, it could be considered to evaluate the spatial allocation of the patients while awaiting the 327 

result of the nasopharyngeal swab, which is still the current reference standard for the diagnosis of 328 

SARS-Cov-2 infection. 329 

In conclusion, the development and validation of these models showed that prediction tools based 330 

on clinical findings like history of fever, age, and oxygen saturation at presentation may be 331 

accurate and robust to identify patients at high risk for a diagnosis of SARS-CoV-2 infection.  332 

Future external validation studies should be considered to evaluate if such models will be also 333 

robust to variable outcome prevalence, particularly in low proportions of infection, and to search for 334 

additional predictors which could increase the model performance for individual risk prediction. 335 

  336 
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Table 1. Baseline characteristics of included patients and case-mix features 

Features at presentation 

Development sample 

(n=141) 

Validation sample 

(n=435) 

p-value 

Age (years), mean (SD) [range] 72 (14) [27–96] 61 (16) [19–93] <0.01 

Male 73 (51.8) 267 (61.4) 0.044 

Nasopharyngeal swab SARS-Cov-

2 positivity 

71 (50.3) 260 (59.8) 0.047 

Report of contact with a person 

diagnosed of SARS-Cov-2 infection 
17/127 (13.4) 

– – 

Communal living 9/135 (6.7) – – 

Hospitalization 141 (100) 373 (85.7) <0.01 

Fever 67/139 (48.2) 300 (69.0) <0.01 

Dyspnea 42/139 (30.2) – – 

Cough 42/139 (30.2) – – 

Pharyngodynia 1/139 (0.7) – – 

Hypo/anosmia 1/139 (0.7) – – 

Dysgeusia 4/139 (2.9) – – 

Conjunctivitis 0/139 (0) – – 

Nausea and/or vomit 18/139 (12.9) – – 

Diarrhea 11/139 (7.9) – – 
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Seizure 4/139 (2.9) – – 

Syncope 14/139 (10.1) – – 

Body temperature (°C) 36.6 (1.0) [35–39.8]^ – – 

Oxygen saturation (room air), % 94.4 (4.2) [78–100]* 93.6 (6.1) [40–100]† 0.148 

Systolic blood pressure (mmHg) 140 (31) [70–230]* – – 

Diastolic blood pressure (mmHg) 73 (14) [40–123]* – – 

Heart rate per minute 91 (20) [45–70]§ – – 

Respiratory rate per minute 21 (6) [12–40]# – – 

White blood cell count (109/L) 9.8 (6.7) [1.4–51.2] – – 

Neutrophil count (109/L) 7.3 (5.3) [1.1–42.5]° 6.4 (4.4) [0.7–46.2]‡ 0.046 

Lymphocyte count (109/L) 1.6 (2.1) [0.1–16.8]° – – 

Monocyte count (109/L) 0.8 (1.5) [0.04–16.5]° – – 

C-reactive protein (mg/dL) 6.8 (7.9) [0-43.4] – – 

Data presented as n (%) and mean (SD) [range]. 

^4/141 (2.8%) missing; *2/141 (1.4%) missing; §1/141 (0.7%) missing; #24/141 (8.3%) missing; 

°3/141 (2.1%) missing; †2/435 (0.5%) missing; ‡15/435 (3.4%) missing. 

SD, standard deviation 
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Table 2. Predictors included in the selection process and results of their 

univariate analyses in the two study samples. 

 OR (95% CI) 

Derivation sample 

(n=113) 

Validation sample 

(n=419) 

Age, 1-year increase 0.95 (0.93-0.99)  0.99 (0.97-1.00)  

Male, female as reference 1.19 (0.57-2.50) 1.21 (0.81-1.81) 

Fever, absence as reference 5.88 (2.61-13.23)  18.64 (10.87-31.98)  

Dyspnoea, absence as reference 1.59 (0.72-3.55)  – 

Cough, absence as reference 3.3 (1.45-7.52)  – 

Nausea and/or vomit, absence as 

reference 

0.71 (0.23-2.18) – 

Syncope, absence as reference 0.63 (0.17-2.36) – 

Body temperature (°C) 1.44 (0.95-2.13) – 

Oxygen saturation (room air), 1% 

increase 

0.86 (0.78-0.96)  0.86 (0.81-0.90)  

Systolic blood pressure, 10-

mmHg increase 

1.02 (0.91-1.14) – 

Diastolic blood pressure, 10-

mmHg increase 

1.07 (0.84-1.37) – 

Heart rate, 10-beat-per-minute 

increase 

1.07 (0.89-1.30) – 

Respiratory rate, 1-breath-per-

minute increase 

1.01 (0.95-1.07) – 

White blood cell count, 1×109/L 

increase 

0.86 (0.79-0.95) – 
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Neutrophil count, 1×109/L 

increase 

0.87 (0.78-0.96)  0.88 (0.83-0.93)  

Lymphocyte count, 1×109/L 

increase 

0.61 (0.37-1.02) – 

Monocyte count, 1×109/L 

increase 

0.70 (0.39-1.26) – 

C-reactive protein, 1-mg/dL 

increase 

0.96 (0.92-1.01) – 

OR, odds ratio; CI, confidence interval. 
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Table 3. Performance of the three multivariable models in the development sample (n=113) 

 OR (95% CI) 

 M1 M2 M3 

Age, 1-year increase – 0.95 (0.92-0.98) 0.95 (0.92-0.99) 

Fever, presence 5.63 (2.44-13.0) 4.89 (2.03-

11.75) 

4.80 (1.86-12.39) 

Oxygen saturation (room air), 1% 

increase 

0.87 (0.78-0.98) 0.83 (0.73-0.94) 0.78 (0.69-0.89) 

Neutrophil count, 1×109 cell/L 

increase 

– – 0.81  

(0.71-0.92) 

Intercept 1.65 E(05) 8.86 E(08) 8.13 E(11) 

Performance measures 

C-statistic (95% CI) 

• Optimism-corrected 

• Optimism 

0.7730 (0.6856-

0.8604) 

0.7696 

-0.0034 

0.8076 (0.7279-

0.8874) 

0.7959 

-0.0117 

0.8537 (0.7857-

0.9217) 

0.8353 

-0.0184 

Hosmer-Lemeshow test*, p-value 0.77 0.29 0.60 

Calibration-in-the-large corrected 

for optimism 

-0.0010 -0.0025 +0.0027 

Slope corrected for optimism 0.9810 0.9431 0.8922 

Brier score  

  Scaled 

0.1949 

0.2204 

0.1781 

0.2876 

0.1571 

0.3714 

Akaike information criterion 136.001 128.292 117.077 

Bayesian information criterion 144.183 139.2014 130.714 

McFadden's R2 0.1701 0.2321 0.3164 

Cutpoints    
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• Youden empirical 

• Sensitivity 

• Specificity 

0.3818 

0.82 

0.63 

0.4576 

0.79 

0.70 

0.6398 

0.70 

0.88 

Net Reclassification Improvement - -0.019§ +0.053§ 

Decision Curve Analysis, net 

reduction in intervention (%) 

Threshold point  

    0.1 

    0.2  

    0.4  

    0.6 

    0.8 

 

 

 

0 

1.8 

25.4 

25.4 

37.2 

 

 

 

1.8 

18.1 

28.0 

28.0 

39.6 

 

 

 

3.5 

18.1 

31.6 

31.6 

40.7 

M, model; OR, odds ratio; CI, confidence interval; § p-value >0.05; *the observed outcomes were 

grouped by decile of predictions. 
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Table 4. Intercept and coefficients of the three diagnostic models (original and values modified by 

uniform shrinking and penalization) and their discrimination performance in the validation sample 

(n=419). 

M
O

D
E

L
 

  Age, 1-

year 

increase 

Fever, 

presenc

e 

Oxygen 

saturatio

n (room 

air), 1% 

increase 

Neutrophi

l count, 

1*109 

cell/L 

increase 

Intercept 

D
IS

C
R

IM
IN

A
T

IO
N

 

C-

statistic 

(95% CI) 

 

 

 

 

M1 

βoriginal - 1.727861 -0.136564 - 12.013340 0.817 

(0.774-

0.861) 

βshrunk 

(s=0.9249) 

- 1.598142 -0.126312 - 11.111438 0.817 

(0.774-

0.861) 

βpenalized - 1.688091 -0.128422 - 11.266010 0.819 

(0.776-

0.862) 

 

 

 

 

M2 

βoriginal -0.050820 1.586681 -0.187662 - 20.602260 0.793 

(0.747-

0.840) 

βshrunk  

(s=0.9175) 

-0.046625 1.455731 -0.172174 - 18.901936 0.793 

(0.747-

0.840) 

βpenalized -0.048163 1.531269 -0.175829 - 19.286960 0.794 

(0.747-

0.841) 

 

 

βoriginal -0.050992 1.569582 -0.244274 -0.207961 27.423690 0.819 

(0.775-

0.862) 
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M3 

βshrunk  

(s=0.9193) 

-0.046877 1.442926 -0.224563 -0.191180 25.210763 0.819 

(0.775-

0.862) 

βpenalized -0.047870 1.496003 -0.225975 -0.193822 25.403820 0.819 

(0.776-

0.863) 

β, coefficient of the logistic regression from the development sample; CI, confidence interval. 

 346 

  347 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257834doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257834


23 

 

Supplementary Material: 348 

Supplementary Table 1. 349 

Supplementary Table 2. 350 

 351 

REFERENCES 352 

1. https://covid19.who.int access 11 March 2021 353 

2. Ministry of Health/Civil Protection data, accessed 11 March 2021 354 

https://opendatadpc.maps.arcgis.com/ 355 

3. Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das 356 

S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy 357 

CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE (2021) Diagnostics for SARS-CoV-2 358 

infections. Nat Mater. doi: 10.1038/s41563-020-00906-z.  359 

4. Kurstjens S, van der Horst A, Herpers R, Geerits MWL, Kluiters-de Hingh YCM, Göttgens 360 

EL, Blaauw MJT, Thelen MHM, Elisen MGLM, Kusters R (2020) Rapid identification of SARS-CoV-361 

2-infected patients at the emergency department using routine testing. Clin Chem Lab Med. 362 

58(9):1587-1593. doi: 10.1515/cclm-2020-0593. PMID: 32598302. 363 

5. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Dahly 364 

DL, Damen JAA, Debray TPA, de Jong VMT, De Vos M, Dhiman P, Haller MC, Harhay MO, 365 

Henckaerts L, Heus P, Kammer M, Kreuzberger N, Lohmann A, Luijken K, Ma J, Martin GP, 366 

McLernon DJ, Andaur CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, 367 

Sperrin M, Spijker R, Steyerberg EW, Takada T, Tzoulaki I, van Kuijk SMJ, van Bussel B, van 368 

Royen FS, Verbakel JY, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons KGM, van Smeden M 369 

(2020) Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and 370 

critical appraisal. BMJ. 369:m1328. doi: 10.1136/bmj.m1328 [update 3]. 371 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257834doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257834


24 

 

6. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS (2008) Evaluating the added 372 

predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. 373 

Stat Med. 27(2):157-72; discussion 207-12. doi: 10.1002/sim.2929.  374 

7. Vickers AJ, Elkin EB (2006) Decision curve analysis: a novel method for evaluating 375 

prediction models. Med Decis Making. 26(6):565-74. doi: 10.1177/0272989X06295361.  376 

8. Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD 377 

(2001) Internal validation of predictive models: efficiency of some procedures for logistic regression 378 

analysis. J Clin Epidemiol. 54(8):774-81. doi: 10.1016/s0895-4356(01)00341-9.  379 

9. Copas JB (1983) Regression, prediction and shrinkage. J R Stat Soc Ser B 45(3):311–354 380 

10. Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80:27-38. 381 

11. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable 382 

prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 383 

2015 Jan 7;350:g7594. doi: 10.1136/bmj.g7594. PMID: 25569120. 384 

12. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, 385 

Kleijnen J, Mallett S; PROBAST Group (2019) PROBAST: a tool to assess the risk of bias and 386 

applicability of prediction model studies. Ann Intern Med. 170(1):51-58. doi: 10.7326/M18-1376. 387 

13. Jehi L, Ji X, Milinovich A, Erzurum S, Rubin BP, Gordon S, Young JB, Kattan MW (2020) 388 

Individualizing risk prediction for positive coronavirus disease 2019 testing: results from 11,672 389 

patients. Chest. 158(4):1364-1375. doi: 10.1016/j.chest.2020.05.580.  390 

14. Chew WM, Loh CH, Jalali A, Fong GSE, Senthil Kumar L, Sim RHZ, Tan RP, Gill SR, Liang 391 

TR, Koh JMK, Tay TR (2021) A risk prediction score to identify patients at low risk for COVID-19 392 

infection. Singapore Med J. doi: 10.11622/smedj.2021019. 393 

15. Montanari Vergallo G, Zaami S, Marinelli E (2021) The COVID-19 pandemic and contact 394 

tracing technologies, between upholding the right to health and personal data protection. Eur Rev 395 

Med Pharmacol Sci. 25(5):2449-2456. doi: 10.26355/eurrev_202103_25286. 396 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257834doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257834


25 

 

16. Wang F, Hou H, Wang T, Luo Y, Tang G, Wu S, Zhou H, Sun Z (2020) Establishing a 397 

model for predicting the outcome of COVID-19 based on combination of laboratory tests. Travel 398 

Med Infect Dis. 36:101782. doi: 10.1016/j.tmaid.2020.101782.  399 

17. de Moraes Batista AF, Miraglia JL, Rizzi Donato TH, Porto Chiavegatto Filho AD (2020) 400 

COVID-19 diagnosis prediction in emergency care patients: a machine learning approach 401 

(preprint). Epidemiology. https://doi.org/10.1101/2020.04.04.20052092 402 

18. Sambataro G, Giuffrè M, Sambataro D, Palermo A, Vignigni G, Cesareo R, Crimi N, Torrisi 403 

SE, Vancheri C, Malatino L, Colaci M, Del Papa N, Pignataro F, Roman-Pognuz E, Fabbiani M, 404 

Montagnani F, Cassol C, Cavagna L, Zuccaro V, Zerbato V, Maurel C, Luzzati R, Di Bella S (2020) 405 

The Model for Early COvid-19 Recognition (MECOR) Score: A Proof-of-Concept for a Simple and 406 

Low-Cost Tool to Recognize a Possible Viral Etiology in Community-Acquired Pneumonia Patients 407 

during COVID-19 Outbreak. Diagnostics (Basel). 10(9):619. doi: 10.3390/diagnostics10090619. 408 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257834doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257834


Figures 

1 

 

Development and external validation of a diagnostic multivariable prediction model 
for a prompt identification of cases at high risk for SARS-COV-2 infection among 
patients admitted to the emergency department. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Calibration plots of the three models with the original coefficients in the external 
validation. CI: Confidence Interval. 
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Figure 2. The Decision Curve Analysis of the three models applied into the validation sample in 
comparison with the use of the individual predictors across different probability thresholds for 
clinical decision. SpO2: oxygen saturation. 
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