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Abstract The spread of dengue and other arboviruses constitutes an expanding global

health threat. The daunting heterogeneity in population distribution and movement in

megacities of the developing world frustrates predictive modeling, even as its importance to

disease spread is clearer than ever. Using surveillance data at fine resolution from Rio de

Janeiro, we document a scale-invariant pattern in the size of successive epidemics following

DENV4 emergence. This pattern emerges from the combined effect of herd immunity and

seasonal transmission, and is strongly driven by variation in population density at

sub-kilometer scales. It is apparent only when the landscape is stratified by population

density and not by spatial proximity as has been common practice. Models that exploit this

emergent simplicity should afford improved predictions of epidemic waves.

Introduction

When a new pathogen emerges, how large will successive epidemic waves be? When the

infections confer temporary or long-term immunity, the answer to this central question will

depend on spatial scale in complex ways we do not yet sufficiently understand. In particular,

the size of successive outbreaks will result from the interplay of herd immunity and

transmission seasonality across a landscape determined by the distribution and behavior of

the human hosts, which has been called the “spatiotemporal geometry of herd immunity”

(1). Outbreaks of seasonal influenza, for example, can differ from city to city along multiple

axes: epidemic vs. endemic character, depth of inter-seasonal troughs, and duration and

shape of epidemic waves (2–4). City size can modulate the influence of climatic drivers of

transmission in seasonal influenza (1), and differential crowding within cities of different size

has been shown to affect the shape of COVID-19 outbreaks, with longer tails in larger

populations (5). Megacities spreading over vast tracts of ground enclose large and

finely-articulated heterogeneities in population density and movement, yet the expected

effects of this fine-scale structure on disease spread remain largely unexplored (6–8). What

patterns have been observed have been deduced from implicit treatments of average
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crowding and connectivity as functions of city size (1, 5). However, transmission is an

intrinsically local process and the local density and structure of the population has the

potential to be a critical determinant of infection spread. Therefore it is essential to examine

the role of fine-scale population structure on infectious-disease dynamics if we are to

improve predictive models of urban disease transmission and spread (9, 10).

Traditional mathematical models with ‘well-mixed’ transmission between individuals within a

population have formed a foundation for predictive epidemiological theory (11, 12). However,

explicit consideration of the spatial dimension is proving increasingly important (8, 9, 13, 14)

due to growing population connectivity at regional to planetary scales, novel sources of data

on fine-scale individual movement, and the pronounced heterogeneity of the distribution of

the human population across the landscape (15, 16). Whereas connectivity among cities and

regions has been addressed with metapopulation formulations that couple local dynamics

via movement fluxes (14, 17, 18), the treatment of space within cities remains a challenge

(19, 20). This is because it remains unclear at what scales aggregation of data is appropriate

and because computational expense and statistical power impose limits on the fineness of

the grids that can be used to parameterize movement, local environmental conditions, and

the resulting epidemiological dynamics.

The foregoing issues are prominent in the case of vector-borne arbovirus infections,

including dengue, Zika, and chikungunya. Dengue virus, in particular, has become a global

health threat affecting a large fraction of the world's population as it continues to expand its

geographical range (21, 22). Because of their domesticated lifestyle and close association

with human hosts, the mosquito vectors responsible for dengue transmission (and also Zika,

chikungunya, and yellow fever), Aedes aegypti and Aedes albopictus, are also expanding

their distribution under urbanization and climate change. The population dynamics of these

vector-borne diseases exhibit nonlinearity (a consequence of the immunity engendered by

infection) and climate-driven transmission seasonality (caused by seasonal cycles in
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mosquito abundance) over the small spatial scales at which both hosts and vectors vary in

density (23, 24). A recent modeling study of the emergence of DENV1 in the megacity of Rio

de Janeiro, Brazil, illustrates the challenge. A well-mixed model for the city as a whole

clearly failed to predict time to re-emergence (25), possibly due to its inability to accurately

track the build-up of herd immunity at this coarse resolution.

Results

The high spatial resolution of dengue surveillance data from Rio de Janeiro (250m x 250m)

provides an opportunity to address variation in human population density at a degree of

granularity unprecedented for a whole city (Methods). During the five years we analyze,

(2010--2014), Rio de Janeiro experienced three major dengue outbreaks, dominated first by

the DENV1 serotype, then followed for two consecutive years by the emergent DENV4

serotype, newly arrived in Brazil (Fig. 1A). The intermittent epidemic pattern seen here, with

two to three peaks dominated by an emergent single serotype, is typical of dengue dynamics

in many cities of South America (26, 27). We address one prominent feature of these

emergent epidemics, namely the ratio of consecutive peak sizes when a serotype first enters

the city (Methods). This ratio varies widely across the city (Fig. 1C); we demonstrate that it

does so as a function of highly localized population density. To understand this phenomenon,

we examine the interaction of local herd immunity with seasonal transmission. Specifically,

we show that sparsely populated areas experience short-lived outbreaks which reach herd

immunity sooner than those in densely-populated areas. Because seasonal declines in

mosquito abundance curtail the transmission season, dense areas are left with

disproportionately more susceptible hosts at the end of the first wave. Accordingly, the

relative size of successive waves is highly sensitive to the timing of the introduction of

infection into each local area. We investigate this “spark rate” of infection importation

empirically, and examine its dependence on population density. We go on to investigate

alternative representations of space in predictive models (Fig. 1B). We propose that spatial
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geometry based on human density at fine scales is more relevant to disease dynamics than

the traditional coupling of spatially proximal localities on Euclidean grids. This suggestion

carries implications for predictive metapopulation models, including those for COVID-19.

We analyze the peak ratio for the two consecutive years of DENV4 during which this

serotype, unlike DENV1, was new to the city (Fig. 1A). If we neglect heterotypic protection,

we can therefore assume that the whole population was initially susceptible to the virus. We

find that the ratio of the peak sizes of the second and first seasons of DENV4 varies across

the city with values below and above one, and exhibits a clear nonlinear relationship with

human density (Fig. 2). The peak ratio is larger at high and low densities than it is at

intermediate densities (Fig. 2A). This pattern arises when units are aggregated by population

density but disappears when aggregation is constrained by geographical contiguity as is

typically done for administrative subdivisions (Fig. 2B). We can expect differences, since the

two criteria of aggregation generate a very different organization of the city (Fig. 1B).

Notably, the pattern of peak ratio as a function of human density is invariant under the

number of groupings considered, as illustrated by the different colors in Fig. 2A. Thus, this

dependence becomes scale-independent when aggregation is governed by population

density itself.

To explain the peak ratio pattern, we initially investigated the role of population density with a

deterministic seasonal SIR model (Methods). Two opposite variables shape the ratio of

consecutive peaks by determining how much population immunity is accumulated during the

first season, namely the arrival time of infection to a spatial unit and its population density.

According to the model, given an arrival time t0, the peak ratio increases with population

size, with the second peak becoming larger than the first one (Fig. 3A). That is, smaller units

achieve the epidemic peak earlier, because their smaller susceptible pool is more rapidly

depleted. When transmission rates vary seasonally, most of the susceptible population is

depleted in the first year in a small unit, leaving few to be infected the next season. As the
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population grows, the number of susceptibles remaining at the beginning of the second

season is larger and the size of the second peak increases concomitantly. In addition to this

effect, the timing of the local start of transmission also strongly affects the size of the pool of

susceptibles remaining after the first season. In particular, if infection arrives late, the local

epidemic has less time to grow before the transmission season is curtailed. Thus, peak ratio

increases with later arrival (Fig. 3A). We find that time of local infection arrival is strongly

associated with human density, whereby the most dense units exhibit the first reported

DENV4 cases about three months earlier (Fig. 3B). Thus, population density affects peak

ratio in two opposite directions, and the seasonal SIR model recovers the documented

nonlinear empirical pattern (Fig. 3C) when population densities and t0 values comparable to

those observed in Rio de Janeiro are used (Fig. 3B).

To verify that our hypothesized effects are robust, we consider a more realistic model that

introduces demographic stochasticity. To this end, we introduce the empirical rate of infection

importation to a local unit , referred hereafter as the “spark” rate, which allows us toσ
𝑢

𝑒𝑚𝑝

sidestep the explicit coupling between the units. Without loss of generality, the spark rate

and its estimation do not explicitly consider the source units from which infections are

imported (Methods). A stochastic SIR model under well-mixed conditions applies within each

unit, which allows for local extinction of infection and for the spark rate to re-initiate

transmission. The initial conditions are self-contained in the model through the arrival of the

first infection to a given unit. Specifically, for each unit u the transmission rate is modelled as

, where is the local transmission rate, , and denote respectively theβ𝑆
𝑢
𝐼

𝑢
/𝑁

𝑢
+ σ

𝑢
β 𝐼

𝑢
𝑆

𝑢
𝑁

𝑢

number of infected, susceptible, and total individuals in u, and is the spark rate per unit.σ
𝑢

To take into account that we are working from observed cases, we consider a reporting rate

and compute the spark rate as .ρ ∈ [0, 1] σ
𝑢

= 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(σ
𝑢

𝑒𝑚𝑝/ρ)
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Armed with an estimated spark rate, we ask whether it can explain the observed time of

initiation of transmission at the unit level, as well as the pattern of peak ratio as a function of

population density. We recover the observed delay in arrival time with population density,

and find that this time is significantly affected by (Fig. 4A, see Fig S5 for the effects of otherρ

parameters). A small increases the spark rate, resulting in a tendency of earlier initiation ofρ

infection, but also decreases the detection of these early infections, which delays the

observation of the first local case. Since detection of a single case is sufficient to determine

arrival time, populated units are less affected by inefficient detection because they generate

more local infections. The trade-off between these two effects of becomes increasinglyρ

unbalanced for larger population densities. Most importantly, the stochastic model predicts

the empirical relationship of peak ratio with human density, and does so more accurately

when it also better captures arrival times (Fig. 4B).

The stochastic model relied on an estimated spark rate. We now examine what factors

determine this rate. We find a clear dependence on both a local and a global determinant,

unit population density and total city prevalence respectively. A positive relationship with the

total number of cases CTot is expected, since more infection importations should be

produced under higher levels of the virus circulating in the city. We find that the estimated

spark rate grows as a power law with CTot (Fig. 4C). This association is itself influenced by

the local population density of the units, as illustrated with the different colors in Fig. 4C.

More crowded areas would experience higher human movement fluxes than less dense

ones, resulting in a higher probability of their inhabitants commuting to infected areas or

receiving infected visitors. The spark rate increment with population size is nonlinear,

increasing faster when densities are small, and saturating for the most populated units (Fig

S4). To analyze these behaviors of the spark rate, we fit a linear relationship between the

logarithm of the spark rate and CTot as shown by the solid lines in Fig. 4C. The estimated

parameters for each population group, the slope m and intercept b, describe the clear

influence of human density (Fig. 4D). These determinants of spark rate reinforce the
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important role of population density in the behavior of peak ratio. They also provide a handle

to potentially reduce the complexity of  the infection importation process.

Discussion

Our results demonstrate that human density is a dominant driver of dengue dynamics at fine

spatial scales comparable in size to city block and census tract. This effect scales up to

explain the relative size of successive epidemic waves, a major epidemiological feature

reflecting the depletion of susceptible individuals and the build-up of herd immunity. In other

words, this fundamental aspect of the dynamics of an immunizing infection is affected by

variation in population density at fine spatial scales. Importantly, this does not mean that

spatial aggregation or coarse graining of the landscape is not plausible. We find that the

pattern of peak ratio with density is scale-invariant, as long as coarser spatial partitions

follow aggregation according to density itself, and not the traditional subdivision of

administrative units based on typical contiguous space.

Thus, efforts to model dengue and possibly other infectious diseases in urban landscapes

should consider the nature of aggregation space and not just its spatial resolution. On the

one hand, administrative regions may better reflect similar environmental conditions such as

temperature and socio-economic status influencing transmission intensity according to

standard geography. On the other hand, the new partition we propose should by definition

better capture human density and its effects on key aspects of dengue transmission such as

infection spread and availability of susceptible individuals. Consideration of these different

organizations of space can help identify and disentangle the effect of disease drivers, given

that variation in incidence within the city occurs along both aggregation axes but for different

sets of factors.
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The effect of human density on peak ratio has practical relevance for informing public health

efforts on the expected size of the next infection wave in different parts of a city. The

documented peak ratio pattern demonstrates that the fine-scale spatial structure of urban

populations strongly determines the temporal patterns of incidence at coarser resolutions.

The importance of population structure was recently suggested by large-scale analyses of

Covid-19 and influenza, in comparative studies of the temporal shape and endemicity of

outbreaks at the whole-city level (1, 5). Here, we have explicitly described this structure

through its effects for dengue.

The high resolution dataset also revealed a clear dependence on human density of the

seasonal timing of infection arrival locally. This timing is critical to how much herd immunity

will be acquired by the local population before the environmentally suitable transmission

season ends, in the case of dengue in Rio de Janeiro due to variation in temperature and

rainfall (28–30). Crowded spatial units experience an earlier arrival date of the dengue virus,

as previously reported for influenza (31). The dependence of this timing on human density

was successfully captured here by a stochastic model in which there is no explicit

description of the spatial coupling between local units. Instead, the link between units is

implicit in our model, via “sparks” arriving from unspecified locations from a global pool of

city-wide infections.

Although the spatial spread of infection involves the complex interplay of connectivity

patterns and local transmission (24, 32, 33), our modeling of the spark process reveals that

the effective result can be described in terms of two accessible quantities, namely the total

number of cases in the city and the local human density. This finding suggests a novel

formulation of metapopulation dynamics in urban environments that will be explored in future

work, where space is aggregated according to population density and the coupling occurs

through a global incidence pool. Whether the complexity of human movement and resulting

connectivity patterns can be captured in such a practical way in spatially explicit models of
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dengue and perhaps other infections remains an open question. This formulation combined

with the sufficiently coarse partitions suggested by the scale-invariant pattern we uncovered,

provides an alternative to the intractable high-dimensional systems needed to resolve

population density heterogeneity when modeling cities and geographical regions.

Methods

Data

Spatial grid

We created a grid whose units measure 250m x 250m based on the census tract layer for

the city of Rio de Janeiro from the Instituto Brasileiro de Geografia e Estatística [Brazilian

Institute of Geography and Statistics] (IBGE) website

<https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais>.

Uninhabited locations  were excluded.

Dengue cases on the grid

Dengue is a disease of compulsory notification in Brazil, and cases are notified at the

Sistema de Informação de Agravos de Notificação [Information System on Diseases of

Compulsory Declaration] (SINAN). Dengue cases notified in Rio de Janeiro between

January 2010 and March 2015 were geocoded according to address of residency, and then

counted for each grid unit by the Secretariat of Health of the city. We obtained the monthly

dengue cases data aggregated at the grid level.

Population on the grid

The population data is obtained from the Census 2010 (IBGE)

(https://www.ibge.gov.br/estatisticas/downloads-estatisticas.html) and it is available at the

census tract level. The census tract areas vary in size and can be bigger than the unit of the
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grid, primarily in the least densely populated zones of the city. To overcome this issue, we

cropped from the census tract layer the areas classified as non-urbanized (such as water

bodies, swamps, agricultural areas, green areas, beaches, rocky outcrops) in 2010 by the

City Hall of Rio de Janeiro (layer available at

<http://www.data.rio/datasets/uso-do-solo-2010>). The population of each census tract is

distributed randomly (uniformly) in the areas obtained after deleting the non-urban areas.

The population within the units is computed by adding the grid layer. To create the grid and

edit the census tract layer we used QGIS (version 3.6.3) (34), and to obtain the population

in the grid we used the R software (35) with the packages tidyverse (36) and sf (37).

Since the units are in fact small and most of them conserve their area of 250 m by 250 m

(Fig. S1A), we consider the population density as the population of each unit. Therefore, for

consistency, we do not consider units with small effective areas and/or populations sizes less

or equal than 10 in our analysis (we excluded 8954 units from 20212). Furthermore, very

small areas and population sizes are highly sensitive to the non-urban classification and the

random distribution of the census tract population. This consideration of population density

facilitates the model simulations and does not affect the pattern of the peak ratio (Fig. S1B).

Peak Ratio and Spatial Aggregation

Since units are small, we binned them into G groups and aggregated their times series of

reported cases. The groups were generated according to two aspects: 1) the geographical

location of the units as determined by the administrative divisions of the city (10 areas and

33 regions, and 160 neighborhoods); and 2) the population of the units based on quantiles in

order to obtain equal size groups. We considered specifically four different partition levels,

resulting in 12, 25, 50 and 100 groups with about 900, 450, 225, and 100 units respectively

(from a total number of 11247 units for the whole city).
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Given a unit u, we define its time series as , where is the𝑣
𝑢

→
= {𝑐

𝑢
(𝑡

1
),  𝑐

𝑢
(𝑡

2
),  ...,  𝑐

𝑢
(𝑡

𝑓
)} 𝑐

𝑢
(𝑡

𝑖
)

number of reported cases of dengue at time (i=1,2,, ...f). Thus, the aggregated time series𝑡
𝑖

is given by

, with𝑉
𝑔

→
=

𝑢 ∈𝑔
∑  𝑣

𝑢

→
 =  {𝐶

𝑔
(𝑡

1
) =

𝑢 ∈𝑔
∑  𝑐

𝑢
(𝑡

1
),  𝐶

𝑔
(𝑡

2
) =

𝑢 ∈𝑔
∑  𝑐

𝑢
(𝑡

2
),  ..., 𝐶

𝑔
(𝑡

𝑓
) =  

𝑢 ∈𝑔
∑  𝑐

𝑢
(𝑡

𝑓
)}

. Then, for each we computed the ratio between the sizes of the second𝑔 = 1, 2,  ...,  𝐺 𝑉
𝑔

→

and first DENV-4 peaks, that is

(Fig. S2).𝑝𝑒𝑎𝑘 𝑟𝑎𝑡𝑖𝑜
𝑔
 =  

𝑚𝑎𝑥
𝑡 ∈ 𝑠𝑒𝑎𝑠𝑜𝑛 2

{𝐶
𝑔
(𝑡

1
), 𝐶

𝑔
(𝑡

2
), ..., 𝐶

𝑔
(𝑡

𝑓
)}

𝑚𝑎𝑥
𝑡 ∈ 𝑠𝑒𝑎𝑠𝑜𝑛 1

{𝐶
𝑔
(𝑡

1
), 𝐶

𝑔
(𝑡

2
), ..., 𝐶

𝑔
(𝑡

𝑓
)}

The Deterministic SIR Model

Although dengue is a vector-borne disease, for simplicity we omitted the explicit

representation of the dynamics of the mosquito population, and treated vector transmission

via the seasonality of the transmission rate (25). Thus, for each unit u, the deterministic SIR

model is based on the following traditional differential equations:

𝑑𝑆
𝑢

𝑑𝑡 = µ𝑁
𝑢

− β𝑆
𝑢

𝐼
𝑢

𝑁
𝑢

− µ𝑆
𝑢

(1)
𝑑𝐼

𝑢

𝑑𝑡 = β𝑆
𝑢

𝐼
𝑢

𝑁
𝑢

− γ𝐼
𝑢

− µ𝐼
𝑢

𝑑𝑅
𝑢

𝑑𝑡 = µ γ𝐼
𝑢

− µ𝑅
𝑢

, where , are respectively the number of susceptibles, infected, and recovered𝑆
𝑢
,  𝐼

𝑢
,  𝑅

𝑢

individuals, and , the number of inhabitants, of the spatial unit u. Parameter is the𝑁
𝑢

µ

mortality rate (equal to the birth rate), and is the recovery rate. The seasonal transmissionγ

rate is specified as . The units are considered independent ofβ(𝑡) = β
0
(1 + δ 𝑠𝑖𝑛(ω𝑡 + ϕ))
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each other, and the initial conditions establish that the whole population of each unit is

susceptible to the virus ( and ). Transmission begins with𝑆
𝑢
(𝑡

0
) = 𝑁

𝑢
 𝐼

𝑢
(𝑡

0
) = 𝑅

𝑢
(𝑡

0
) = 0 ∀𝑢

one infected individual at a time where is obtained from the data.𝑡
𝑢

*≥𝑡
0

𝑡
𝑢

*

Since the goal of this model is to examine the representative dynamics of different

population densities, we binned the units according to their population into twelve groups,

and computed the mean value of their number of inhabitants and of their𝑁
𝑔

=< 𝑁
𝑢 ∈𝑔

>

arrival times of the infection (where g=1,…,12). We then simulated the𝑡*
𝑔

∼< 𝑡*
𝑢 ∈𝑔

>

system considering the twelve sets as given.{𝑁
𝑔
, 𝑡*

𝑔
}

The Stochastic Model

Since units will suffer local extinction of transmission, a major component of a stochastic

implementation is the description of the local reintroduction of the virus, namely the arrival of

a ‘spark’ or imported infection, in analogy to fire spread. Because space is described by a

highly-resolved lattice, we considered that within each unit well-mixed transmission applies.

Moreover, we specified no explicit spatial coupling between units. We considered instead the

importation of infection through the specification of a spark rate.

For this purpose, we constructed a binary representation of the time series of cases per

month by defining the spatial units either as positive or negative according to whether they

reported cases or not (Fig. S3). Then, to derive a spark rate we explored the dynamics of the

number of positive units as follows,

(2)𝑈+(𝑡 + 𝑑𝑡) =  𝑈+(𝑡) +  𝑈
𝑛𝑒𝑤

+(𝑡, 𝑡 + 𝑑𝑡) −  𝑈
𝑒𝑥𝑡𝑖𝑛𝑐𝑡

+(𝑡, 𝑡 + 𝑑𝑡)
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The number of positive units within a time t+dt is equal to the number of positive units at𝑈+

time t, plus the number of units that have been infected between t and t+dt,𝑈
𝑛𝑒𝑤

+(𝑡, 𝑡 + 𝑑𝑡)

minus the number of units that were infected at t but are no longer infected at t+dt (i.e. the

number of ‘extinctions’ between t and t+dt, ).𝑈
𝑒𝑥𝑡𝑖𝑐𝑡

+(𝑡, 𝑡 + 𝑑𝑡)

Since uninfected units (i.e. negative units) require the arrival of a spark to become positive,

the following equation specifies the mean of under the assumption that a𝑈
𝑛𝑒𝑤

+(𝑡, 𝑡 + 𝑑𝑡)

small unit is unlikely to receive more than a single spark in a period of time dt.

(3) < 𝑈
𝑛𝑒𝑤

+(𝑡, 𝑡 + 𝑑𝑡) >  ≃ 𝑁
𝑠𝑝𝑎𝑟𝑘𝑠

(𝑡, 𝑡 + 𝑑𝑡) 𝑈−

𝑈−+𝑈+

By combining Eqs.(2) and (3), we can now compute the spark rate per unit, we call sparks,

from the high-resolution incidence data as

(4)σ
𝑢

𝑒𝑚𝑝(𝑡, 𝑡 + 𝑑𝑡) =
𝑁

𝑠𝑝𝑎𝑟𝑘𝑠
(𝑡,𝑡+𝑑𝑡)

𝑈−+𝑈+ ≃
𝑈+(𝑡,𝑡+𝑑𝑡)−𝑈+(𝑡)+𝑈

𝑒𝑥𝑡𝑖𝑐𝑡
(𝑡,𝑡+𝑑𝑡)

𝑈−𝑈+(𝑡)
 

In order to address the effects of human density on the spark rate, we binned the spatial

units according to their population into G groups. To avoid statistical effects due to group

size, we considered population quantiles. Then, by applying Eq (3) to each of these groups,

we obtained an empirical spark rate per unit that depends on human density,

) (5)σ
𝑢 ∈ 𝑔

𝑒𝑚𝑝 (𝑡, 𝑡 + 𝑑𝑡) = σ
𝑢

𝑒𝑚𝑝(𝑡, 𝑡 + 𝑑𝑡; 𝑁
𝑔

, where with g=1,2, …, G.𝑁
𝑔

=< 𝑁
𝑢 ∈ 𝑔

>
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Simulations

The associated differential equations of the stochastic model are those shown on Eq. (1) but

the transmission component has now an additional term to describe the importation ofσ
𝑢

infections.

𝑑𝑆
𝑢

𝑑𝑡 = µ𝑁
𝑢

− (β𝑆
𝑢

𝐼
𝑢

𝑁
𝑢

+ σ
𝑢
) − µ𝑆

𝑢

(6)
𝑑𝐼

𝑢

𝑑𝑡 = (β𝑆
𝑢

𝐼
𝑢

𝑁
𝑢

+ σ
𝑢
) − γ𝐼

𝑢
− µ𝐼

𝑢

𝑑𝑅
𝑢

𝑑𝑡 = µ γ𝐼
𝑢

− µ𝑅
𝑢

Since the inferred spark rate from the data (Eq. (5)) is obtained from observed infections,

we computed the spark rate as:σ
𝑢

(7)σ
𝑢 ∈𝑔

 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(σ
𝑢 ∈ 𝑔

𝑒𝑚𝑝 /ρ)

where is the reporting rate.ρ

The model shown on Eq.(6) was formulated as stochastic by incorporating demographic

noise (with the different events represented as Poisson processes). It was implemented in R

with the package POMP (38). We also considered measurement error by assuming that the

observed number of cases during a period of time T is,𝐶
𝑢

𝑜𝑏𝑠

(8)𝐶
𝑢

𝑜𝑏𝑠(𝑇) = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(ρ, 𝐶
𝑢
(𝑇))

, where is the number of cases computed in the unit u. We simulated the 11247 units𝐶
𝑢
(𝑇)

that compose the city of Rio de Janeiro, and aggregated the resulting time series as for the

empirical data (see Peak Ratio section).
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The parameters of the model are given in Table S1. We relied on parameters estimated for

dengue transmission in Rio de Janeiro by (25). Those estimates were obtained for the

aggregated city and for the emergence of DENV1. They result in values and a seasonality of

the reproductive number of the disease, R0, consistent with those estimated independently

for dengue at a different time. We use them here as sufficiently realistic parameters for the

purpose of illustrating and exploring the behavior of the stochastic model with population

density.

Data Availability:
The data on population density and the code to analyze the data and to simulate the model

will be available at Pascual’s Github at a site to be specified. Requests concerning the

epidemiological data should be made to the Secretariat of Health of Rio de Janeiro city.
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Fig. 1. Dengue incidence patterns in Rio de Janeiro city. (A) Total monthly cases of dengue

reported in the city from January 2010 to December 2014. Red and blue dots correspond

respectively to outbreaks with two different dominant serotypes, DENV1 and DENV4, with the latter

making its first emergence in Rio de Janeiro. Black circles indicate seasons without outbreaks and

only a small number of cases. (B) The maps illustrate the geography of the city when 250m x 250m

units are aggregated into 10 strata by administrative regions (top) or population density (bottom).

(C) Examples of DENV4 incidence for three administrative regions. The colors indicate the

corresponding  regions  in the upper map in (B).
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Fig 2. Ratio between the size of the successive

peaks of DENV4. The ratio for the size of the first

epidemic over the second one was computed for each

spatial location given different resolutions and the two

different ways to aggregate space. In (A), the 250m

x250m units are aggregated according to their

population. In this case, the peak ratio exhibits a clear

but nonlinear relationship with human density. The

colors correspond to partitions of the city into different

numbers of groups. The pattern is invariant to the

number of groups (resolution). In (B), space is

subdivided according to the typical geographical
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partition into administrative units based on contiguous

space. In this case, no relationship is observed

between peak ratio and population density. This lack of

a pattern is illustrated for the three spatial scales of

established administrative regions in the city (from left to

right: 10, 33 and 160 regions). In (C) , the heterogeneity

in peak ratio across the city is illustrated at the finest

spatial resolution. The peak ratio spans a range of

values, from below to above one (from blue to red),

corresponding respectively to locations with a second

peak larger than the first one, and vice-versa. It varies

at this fine scale similarly to population density (Fig S6).
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Fig. 3. Deterministic SIR dynamics and successive epidemic size. (A) Temporal incidence of a

unit is shaped by human density directly, but also indirectly via the arrival time of the first imported

infection. The temporal dynamics are simulated with a deterministic SIR model with a seasonal

transmission rate. For a given arrival time, the size of the second peak increases the denser the

unit (from top to bottom). The earlier the first infection reaches the unit, the smaller the size of the

second peak (from left to right). (B) Importantly, denser units are infected earlier (data: black

circles). The blue triangles are used as input to the model to specify arrival time and therefore initial

conditions in a given unit. The earlier importation of infection in denser units implies two opposite

effects of population density on relative peak size (demonstrated in A). (C) For arrival times similar

to those observed in the data, the model simulations (blue triangles) can capture the observed

behavior (black circles) of the peak ratio with human density. The results correspond to a partition

of the city into 12 groups according to  population density.
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Fig. 4. Stochastic simulations and empirical “spark” rate (number of sparks per month per

unit). (A) Mean observed arrival time as a function of human density. The original units are binned

into 100 groups and arrival times are averaged for the units belonging to the same group. The

arrival times computed from the data (black circles) are compared to those obtained in model

simulations (with dots colored by reporting rate). (B) Peak ratio obtained in the simulations as a

function of population density for the different reporting rates where the colors correspond to those

in A. The boxplots are computed from 20 stochastic realizations. For comparison, the empirical

values of peak ratio are also shown (in black, for the 100 groups). (C) Spark rate as a function of

total incidence (CTot). The logarithm of the number of sparks (or number of imported infections) per

month per unit exhibits a linear relationship with the logarithm of the total number of cases in the

city. The more populated units receive a higher number of sparks as expected in a pattern that is

well approximated by a power law. (D) The parameters of the power relationship between spark

rate and total incidence vary as a function of population density. The different slopes (m) and

intercepts (b) from a linear regression to the log-log plot are shown in (C) as a function of the
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logarithm of population density. Thus, importation rate to a unit exhibits both a global and a local

determinant, namely the total number of cases in the city and the local population in a given unit.

These dependencies allow the specification of infection importation via a mean-field coupling and

local conditions, circumventing the need to explicitly describe spatial connectivity at fine scales.
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