
 1 

Abstract (Words): 350 1 
Manuscript (Words):  4500 2 
Main Text, Figures: 4 3 
Main Text, Tables: 0 4 
Supplementary Materials, Figures:  21 5 
Supplementary Materials, Tables:  6 6 
References: 52 7 

  8 

Type 2 diabetes mellitus accelerates brain aging and cognitive decline: 9 

complementary findings from UK Biobank and meta-analyses. 10 

 11 
Botond Antal, M.S.1,2, Liam P. McMahon, B.A.1,2, Syed Fahad Sultan, M.S.3, Andrew Lithen, B.S.1,2, 12 

Deborah J. Wexler, M.D.4, Bradford Dickerson, M.D.2,5, Eva-Maria Ratai, Ph.D.2,  13 
Lilianne R. Mujica-Parodi, Ph.D.1,2,6 14 

 15 

  16 
 17 
1. Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA 18 
2. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard 19 

Medical School, Charlestown, Massachusetts, USA 20 
3. Department of Computer Science, Stony Brook University, Stony Brook, New York, USA 21 
4. Diabetes Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 22 

USA 23 
5. Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, 24 

Massachusetts, USA 25 
6. Department of Neurology, Stony Brook University School of Medicine, Stony Brook, New York, USA 26 
 27 
  28 
For correspondence, please contact: 29 
  30 
Lilianne R. Mujica-Parodi, Ph.D. 31 
Director, Laboratory for Computational Neurodiagnostics 32 
Professor, Department of Biomedical Engineering 33 
Stony Brook University School of Medicine 34 
Stony Brook, NY 11794-5281 35 
Email: Lilianne.Strey@stonybrook.edu 36 
  37 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2022. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Declaration of Interests and Sources of Funding 38 
The research described in this paper was funded by the W. M. Keck Foundation (to LRMP), the White 39 
House Brain Research Through Advancing Innovative Technologies (BRAIN) Initiative (NSFNCS-FR 40 
1926781 to LRMP), and the Baszucki Brain Research Fund (to LRMP). None of the funding sources played 41 
any role in the design of the experiments, data collection, analysis, interpretation of the results, the decision 42 
to publish, or any aspect relevant to the study. DJW reports serving on data monitoring committees for 43 
Novo Nordisk. None of the authors received funding or in-kind support from pharmaceutical and/or other 44 
companies to write this manuscript.   45 

 46 

  47 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2022. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Abstract  48 

Background:  Type 2 diabetes mellitus is known to be associated with neurobiological and cognitive 49 
deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in 50 
the context of the brain are currently unknown. 51 
 52 
Methods:   We characterized neurocognitive effects independently associated with T2DM and age in a 53 
large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. 54 
We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by 55 
applying correlation measures to the separately characterized neurocognitive changes. Our findings were 56 
complemented by meta-analyses of published reports with cognitive or neuroimaging measures for T2DM 57 
and healthy controls (HC). We also evaluated in a cohort of T2DM diagnosed individuals using UK 58 
Biobank how disease chronicity and metformin treatment interact with the identified neurocognitive effects.   59 
 60 
Findings: The UK Biobank dataset included cognitive and neuroimaging data (N=20,314) including 1,012 61 
T2DM and 19,302 HC, aged between 50 and 80 years.  Duration of T2DM ranged from 0–31 years (mean 62 
8.5±6.1 years); 498 were treated with metformin alone, while 352 were unmedicated. Our meta-analysis 63 
evaluated 34 cognitive studies (N=22,231) and 60 neuroimaging studies: 30 of T2DM (N=866) and 30 of 64 
aging (N=1,088). As compared to age, sex, education, and hypertension-matched HC, T2DM was 65 
associated with marked cognitive deficits, particularly in executive functioning and processing speed.   66 
Likewise, we found that the diagnosis of T2DM was significantly associated with gray matter atrophy, 67 
primarily within the ventral striatum, cerebellum, and putamen, with reorganization of brain activity 68 
(decreased in the caudate and premotor cortex and increased in the subgenual area, orbitofrontal cortex, 69 
brainstem and posterior cingulate cortex). The structural and functional changes associated with T2DM 70 
show marked overlap with the effects correlating with age but appear earlier, with disease duration linked 71 
to more severe neurodegeneration. Metformin treatment status was not associated with improved 72 
neurocognitive outcomes. 73 
 74 
Interpretation: The neurocognitive impact of T2DM suggests marked acceleration of normal brain aging, 75 
by approximately 26% ± 14%; T2DM chronicity was associated with increased atrophy.  As such, 76 
neuroimaging-based biomarkers may provide a valuable adjunctive measure of T2DM progression and 77 
treatment efficacy based on neurological effects.  78 
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Introduction 80 

Approximately 6.6% of the global population carries a diagnosis of Type 2 diabetes mellitus (T2DM) 1. 81 
Patients with T2DM are at greater risk for developing dementia and Alzheimer’s disease (AD) and have 82 
been reported to exhibit inferior cognitive performance when compared to age-matched healthy controls 83 
(HC) 2. Several human neuroimaging studies have linked T2DM with brain atrophy and cognition 2-6; recent 84 
research suggested that T2DM resulted in a more rapid rate of cognitive decline than typically associated 85 
with natural aging 7-9.  86 
 87 
Despite strong preliminary evidence linking T2DM to neurological and cognitive decline, few patients with 88 
T2DM undergo a comprehensive neurocognitive evaluation as part of their clinical care 8, 10, 11.  This may 89 
reflect the fact that T2DM diagnosis often occurs in middle age, hindering dissociation of patients’ 90 
cognitive changes from normal aging.  Several studies published to date focused on the neurocognitive 91 
effects of T2DM include age-matched participants.  However, because none has compared lifespan 92 
neurological changes to those experienced by equivalently aged patients with T2DM, it is currently 93 
unknown whether neurocognitive effects represent a T2DM-specific neurodegenerative pathway or the 94 
exacerbation of typical brain aging. Moreover, there remain limited data12 evaluating the impact of 95 
chronicity or role of effective treatment in the progression of cognitive and neurological decline.  96 
 97 
Routine clinical protocols typically focus on peripheral biomarkers (e.g., blood glucose and insulin levels, 98 
body fat percentage) as diagnostic modalities for T2DM. However, the neurological effects of T2DM may 99 
reveal themselves many years before they can be detected by peripheral markers 3, 8. As such, by the time 100 
T2DM is diagnosed and treated by standard measures, patients may have already sustained irreversible 101 
brain damage. Thus, there are direct clinical implications with respect to defining the neurocognitive impact 102 
of T2DM and to determine how these negative sequelae might be prevented or treated 1.  103 
 104 
Given these unknowns and their clinical importance, here we focus on addressing three questions. First, we 105 
establish T2DM neurocognitive effects, as compared to age, sex, education and hypertension-matched 106 
healthy controls (HC).  To do so, we leverage the robust statistical power made possible by UK Biobank 13, 107 
the largest (N=20,314, ages 50-80y) neurocognitive lifespan dataset to date. The UK Biobank results are 108 
then compared to a meta-analysis of the published literature (34 cognitive studies, 60 neuroimaging studies) 109 
to assess convergence.  Second, we ask whether changes in the brain observed in T2DM represent 110 
accelerated aging or a non-aging-related degenerative pathway specific to T2DM.  Third, we test whether 111 
T2DM chronicity exacerbates, and medication status ameliorates, the progression of neurocognitive effects.   112 

 113 

Methods 114 

Analysis of UK Biobank Dataset (N=20,314) 115 
 116 
General Overview: UK Biobank data were analyzed for both cognitive and neuroimaging data. Datafield 117 
identifiers for all utilized features are shown in SI Table 1. The primary factor of interest was T2DM, which 118 
we dissociated from age-related effects by age matching T2DM and HC. To permit comparison of T2DM-119 
specific effects to age-specific effects, we also assessed the same neurocognitive variables with age as a 120 
factor of interest from samples that excluded patients diagnosed with T2DM. To control for potential 121 
neurocognitive confounds, T2DM and HC were exact pairwise matched for not only age, but also sex, 122 
education, and hypertension status. T2DM status was assessed based on self-reported diagnosis by doctor. 123 
We considered education as a binary variable based on possession of a college degree. Hypertension was 124 
quantified using measured blood pressure values: all individuals with systolic blood pressure >140 mmHg 125 
or diastolic blood pressure >90 mmHg were labeled with hypertension 14. To exclude potential confounding 126 
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effects due to menopausal transition, particularly relevant to the youngest age group in our sample (age 127 
cutoff >50y), we excluded all female subjects who did not report menopause or if they reported ongoing 128 
hormone therapy 15. To minimize the number of individuals with Type 1 diabetes in our sample, rather than 129 
Type 2 diabetes, we only included diabetic individuals with a self-reported age of onset >=40 years 16. 130 
 131 
We fitted linear regression models to neurocognitive variables and quantified associated effects as the 132 
maximum likelihood point estimates and confidence intervals (95% CIs) of the corresponding regression 133 
coefficients. T2DM was accounted for as a binary factor with two states corresponding to healthy controls 134 
and individuals diagnosed with T2DM, whereas age was considered as a linear continuous factor with 135 
increments in years. The latter was justified given the linear trends we observed across age in all modalities 136 
(SI Figs. 3, 4, and 5). Regression models were fit using the Statsmodels Python library17. To account for 137 
multiple comparisons, we applied Bonferroni correction to cognitive and structural results, and adjusted for 138 
false discovery rate in our brain activation results; we report adjusted p values exclusively.  139 
 140 
To determine whether T2DM neurocognitive effects suggested an acceleration of typical aging trajectories, 141 
versus non-aging-related degenerative pathways specific to T2DM, we compared the progression of 142 
neurodegeneration seen in T2DM to that seen in relation to age across brain regions and cognitive domains 143 
using bivariate Pearson correlations.  144 
 145 
Cognition: Data on five cognitive domains for 18,829 participants (T2DM: N=914, HC: N=17,915) were 146 
extracted from the UK Biobank dataset, including abstract reasoning, executive function, processing speed, 147 
reaction time, and numeric memory (~2-3 seconds). Exact sample sizes varied across cognitive domains 148 
based on data availability, and therefore are noted separately for each result (SI Figs. 1C and 2C). We 149 
employed linear regression and considered the maximum likelihood estimates of coefficients belonging to 150 
age and T2DM to estimate their associations with performance in each of the five domains. Effect sizes in 151 
cognition were quantified as percentages by dividing the estimated beta coefficient and 95% CIs of the 152 
factor of interest with the average performance of HC.  153 
 154 
Brain Structure:  Using structural MRI data from the UK Biobank dataset, we assessed the effects 155 
associated with T2DM (T2DM: N=821, HC: N=821, SI Fig. 1A) as compared to non-T2DM-specific age-156 
related effects (N=4,775, SI Fig. 2A) on atrophy of gray matter volume; these findings were available in 157 
units of mm3 for the whole brain as well as for 139 anatomical regions. For region-specific analyses, we 158 
coarse-grained the default unilateral parcellation provided by UK Biobank into 45 bilateral regions and 159 
normalized gray matter volumes for head size. We applied linear regression and quantified atrophy in each 160 
anatomical region as a relative percentage change in average gray matter volume by dividing the estimated 161 
regression coefficients and 95% CIs of the factor of interest with the average gray matter volume of HC. 162 
 163 
Brain Function:  Using functional MRI data from the UK Biobank dataset, we assessed the effects occurring 164 
with T2DM (T2DM: N=646; HC: N=646, SI Fig. 1B) as compared to non-T2DM-specific age-related 165 
effects (N=2,250, SI Fig. 2B) on resting-state brain activity.  Data were accessed already preprocessed by 166 
UK Biobank according to their standard pipelines18.  After transforming functional images to Montreal 167 
Neurological Institute (MNI) space, we performed spatial smoothing with a full width at half maximum 168 
(FWHM) of 5 mm, then quantified brain activation by calculating the amplitude of low-frequency 169 
fluctuation19 (ALFF). We used the program 3dRSFC, which is a component of Analysis 170 
of Functional NeuroImages20, 21 (AFNI), to compute ALFF in voxel space. ALFF was computed from the 171 
0.01–0.08 Hz frequency band, within a gray matter only brain mask. Computed voxel space ALFF values 172 
were normalized to the global mean of each individual subject. Statistical analyses were performed in voxel 173 
space using the Nistats Python library. We used a significance threshold of p < 0.05 and a minimum cluster 174 
size of 12 voxels (~100 mm3) and controlled for multiple comparisons using false discovery rate (FDR). 175 
 176 
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Implications of T2DM Duration:  To evaluate the implications of T2DM chronicity, we analyzed whole 177 
brain gray matter volume with time since T2DM diagnosis as a regressor. Time since diagnosis was derived 178 
from self-reported age at T2DM diagnosis. To improve the accuracy of self-reported values, we averaged 179 
the reported age of onset values from three visits, separated by multiple years. To estimate the degree to 180 
which T2DM progression was associated with gray matter loss relative to age, we calculated the ratio of 181 
regression coefficients corresponding to T2DM duration and age, and expressed it as a percentage, using 182 
Fieller’s theorem 22 to quantify the confidence interval (95%) for this ratio. 183 
 184 
Implications of Metformin Treatment: For patients with T2DM, we evaluated whether metformin, a first-185 
line medication for the treatment of T2DM, was associated with improved outcomes in terms of cognition, 186 
atrophy, and/or brain activation. To isolate medication effects specific to metformin, we compared subjects 187 
who reported not taking any medications to treat T2DM, to subjects who reported taking metformin but no 188 
other medications. For these comparisons, we exact matched for sex, education, and hypertension, and 189 
coarse matched for age (bin size of five years) and disease duration (bin size of three years). Since UK 190 
Biobank did not measure HbA1c levels, we also included BMI as a regressor since it was the only available 191 
proxy measure for disease severity 23, 24. 192 
 193 
Implications of sex: To determine whether results detected in the sample might be driven by sex-specific 194 
factors, we additionally performed analyses separately in females and males.  For these, we evaluated our 195 
cognitive and neurobiological measures in association with age and T2DM and quantified the overlap 196 
separately for the two subsamples. 197 
 198 
 199 
Meta-Analysis of Published Literature (N=24,185) 200 
 201 
Search strategy and selection criteria (cognition):  We conducted a literature search for peer-reviewed 202 
articles published up to August 28, 2020 from PubMed/Medline using the following search terms: “type-2-203 
diabetes,” “diabetes mellitus, type 2,” “insulin-resistance,” <AND> “cognition,” “cognitive-function,” 204 
“cognitive-dysfunction,” “cognitive-performance,” and “neuropsychological tests.” Search results were 205 
filtered to include manuscripts that had undergone peer-review, were published in English with full-text 206 
availability, and reported relevant results. Our cognitive meta-analysis adhered to PRISMA guidelines 25. 207 
 208 
We included studies that compared cognitive performance between people diagnosed with T2DM and 209 
healthy controls. We excluded studies that: (a) included participants with neurological or psychiatric 210 
diagnoses, (b) utilized treatment interventions without first obtaining baseline cognitive measurements, (c) 211 
included only diagnostic threshold instruments for dementia (e.g., the Mini-Mental State Examination, or 212 
MMSE), (d) included a novel cognitive test without adequate explanation of the scoring procedures, (e) did 213 
not perform age and education-matching of the participants diagnosed with T2DM to their HC, or (f) failed 214 
to provide summary statistics needed to calculate effect sizes. In the latter case, the authors were contacted 215 
to obtain relevant data.   216 
 217 
Our literature search yielded 219 articles; relevant reviews were also screened for eligible studies. Seventy-218 
five articles were identified for full-text evaluation; 34 studies were eligible for inclusion. Among the 219 
studies that were excluded, eight featured inadequate testing or scoring procedures, 14 included secondary 220 
analyses of the same patient sample that was used in previous publications, and five failed to perform 221 
appropriate education-matching of the study groups. Furthermore, one longitudinal study did not report 222 
baseline scores and another reported inconsistent sample sizes. Fifteen authors were contacted to obtain 223 
data not provided in the text; three authors provided the data requested, and the remaining 12 studies were 224 
excluded. Eligible studies included a total of 4,735 subjects diagnosed with T2DM and 17,496 HC.  225 
 226 
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Data analysis (cognition): We extracted data including publication year, authors, sample demographics, 227 
and cognition from all included studies. We extracted baseline data only from longitudinal studies to avoid 228 
practice effects. We sorted individual cognitive tests into several domains, including abstract reasoning, 229 
executive function, processing speed, numeric memory, visual memory, verbal memory, verbal fluency, 230 
visuospatial reasoning, and working memory (SI Table 2). 231 
 232 
Statistical analyses were performed using R version 3.6.1 26 and the Metafor package version 2.4-0 27. 233 
Cognitive differences between participants diagnosed with T2DM and HC were determined by calculating 234 
standardized mean difference (SMD) effect sizes and 95% CIs for all cognitive domains. Effect size 235 
analyses were chosen to account for within-domain variability in the type and sensitivity of cognitive tests 236 
across different reports. We calculated effect sizes as Cohen’s d by dividing the mean difference in group 237 
scores by the pooled standard deviation of individual domains 28; an SMD (Cohen’s d) of –1.0 was 238 
interpreted as a difference of one standard deviation in the negative direction. We used random-effects 239 
models to account for variability between samples not due to sampling error with significance at p < 0.05 240 
and effect-size heterogeneity was evaluated using values for Cochran’s Q and I2 29. Publication bias was 241 
evaluated with funnel plots. We applied Bonferroni correction to account for multiple comparisons across 242 
cognitive domains. 243 
 244 
Search strategy and selection criteria (brain):  We used NeuroQuery30 to conduct a meta-analysis of 245 
published neurobiological results associated with T2DM and age. NeuroQuery is an automated Coordinate-246 
Based Meta-Analysis (CBMA)31-33 tool based on a database of z-scores collected by crawling through texts 247 
and tables of published research articles by an automated algorithm34.  We utilized NeuroQuery to address 248 
limitations of standard approaches to meta-analyses of neuroimaging results, which rely on summary 249 
statistics and thus risk overfitting to what typically comprise a relatively small number of in-sample studies 250 
(i.e., they fail to generalize to out-of-sample studies).  NeuroQuery optimizes for rigor and reproducibility 251 
by utilizing predictive modeling, a higher threshold for results than statistical significance.  In a quantitative 252 
evaluation of its generalization performance with 16-fold cross validation and 10:90 test-train splits, 253 
NeuroQuery was found to accurately produce brain maps for out-of-sample neuroimaging studies34.  We 254 
note that because of NeuroQuery’s criteria for neuroimaging data quality and completeness in reporting, 255 
the algorithm draws only from journals that focus on functional neuroimaging results, and thus can exclude 256 
some general interest and non-neurological medical journals. This exclusion criterion is important to reduce 257 
false positives and ensure the quality and relevance of the compiled results. The database in total contains 258 
149,000 neuroimaging papers and represents the single largest database of neuroimaging foci to date.  By 259 
the law of large numbers NeuroQuery therefore provides the most unbiased approach to choosing 260 
representative papers, even at the risk of excluding relevant and well-cited articles specific to any one field.   261 
 262 
Using the collected database of articles, NeuroQuery applies a multivariate model to predict the spatial 263 
distribution of voxel activations corresponding to a search term. The search terms we used to obtain the 264 
meta-analytic maps were: “diabetic” and “age”. These terms identified the 30 most relevant neuroimaging 265 
studies for T2DM and 30 most relevant neuroimaging studies for age (SI Table 3). To account for any 266 
errors in the automated search results, the identified set of studies were cross-validated by an independent 267 
manual search using the same search terms for Google Scholar and PubMed to verify their relevance, as 268 
well as to confirm that they included T2DM age-matched HC and T2DM (not Type 1 diabetes).  In the 269 
T2DM datasets, 23 were fMRI (ALFF), two were structural (T1), three were FDG positron emission 270 
tomography (PET), and two were tractography (diffusion tensor imaging, DTI).  In the age datasets, 22 271 
were fMRI (ALFF), three were structural (T1), and five were tractography (diffusion tensor imaging, 272 
diffusion weighted imaging).  273 
 274 
Data analysis (brain):  For region and voxel level comparisons of the meta-analytic T2DM and Age maps 275 
from Neuroquery with their structural and functional counterparts from UK Biobank, the meta-analytic 276 
statistical maps were transformed onto comparable coordinate space and spatial resolution. At the voxel 277 
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level, the meta-analytic maps were resampled to the standard MNI affine (the transformation matrix that 278 
maps from voxel indices of the data array to actual real-world locations of the brain; no registration was 279 
required as images were already aligned). For region level comparisons, the transformed voxel maps were 280 
coarse-grained to the 45 regions of interest from UK Biobank by masking with each individual region and 281 
computing the mean activation of the masked voxels as the representative region value. 282 

Results 283 

Cognitive Correlates with Age and T2DM 284 
 285 
Individuals without T2DM showed age-based cognitive effects across all domains in the UK Biobank (Fig. 286 
1A). The strongest effects were observed in executive function, which showed 1.9% ± 0.1% decrease in 287 
performance per year (N=2,450, T= –17.2, p<1e–10) and processing speed, which showed 1.5% ± 0.2% 288 
decrease in performance per year (N=2,525, T= –22.8, p<1e–10;).  Our analyses identified further cognitive 289 
deficits associated with T2DM that were consistent with accelerated age-related cognitive decline (Fig. 290 
1B).  As with aging, the strongest T2DM effects were also observed in executive function, which showed a 291 
further 13.1% ± 6.9% decrease in performance, beyond age-related effects (T2DM: N=446; HC: N=446; 292 
T= –3.7, p=0.001), and processing speed, which showed a further 6.7% ± 3.2% decrease in performance, 293 
beyond age-related effects. (T2DM: N=454; HC: N=454; T= –4.1, p=0.0002). A more modest decline 294 
(3.7% ± 2.3%) was observed in numeric memory (~2-3 seconds) (T2DM: N=483; HC: N=483; T= –3.2, 295 
p=0.007), whereas abstract reasoning (T2DM: N=886; HC: N=886; T= –2.4, p=0.08) and reaction time 296 
(T2DM: N=914; HC: N=914; T= –1.0, p=0.32) were not statistically significant. Our meta-analysis 297 
confirmed that individuals with T2DM exhibited markedly lower performance when compared to age and 298 
education-matched controls, over an even broader set of domains (Fig. 1C). These again included executive 299 
function (K=18, d= –0.40, p=0.009), processing speed (K=31, d= –0.34, p=5e–8), and numeric memory 300 
(~2-3 seconds) (K=16, d= –0.21, p=0.05), as well as abstract reasoning (K=8, d= –0.36, p=1e–7),  301 
immediate (~30 seconds) verbal memory (K=23, d= –0.39, p=0.001), delayed (~20 minute) verbal memory 302 
(K=21, d= –0.21, p=0.005), verbal fluency (K=25, d= –0.37, p=2e–8), visuospatial reasoning (K=13, d= –303 
0.32, p=4e–7), and working memory (K=12, d= –0.36, p=0.002 (SI Table 4).  304 
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 305 
 306 

 307 
 308 
 309 
 310 

Figure 1:  Cognitive deficits are apparent with respect to both age and T2DM diagnosis. A: Using the UK Biobank dataset, we performed a 
quantitative analysis of the effects related to age on cognitive performance across five cognitive domains. Associated changes were derived from 

estimated regression coefficients as percentages and are shown on the y axis. Age was associated with significant deficits in all five domains, with 

the strongest effects observed in executive function and processing speed. B: Using the same dataset, we also analyzed cognitive performance in 

T2DM, with negative values on the y-axis represent performance below that of age, sex, and education-matched HC. As per age effects, executive 

function and processing speed showed the highest magnitude changes.  C: Cognitive deficits identified in UK Biobank data were confirmed by our 
meta-analysis, which included 11 domains from 34 studies. Average effect sizes (Cohen’s d) corresponding to T2DM are shown on the y axis. Values 

below the cut-off line (y=0) indicate cases in which subjects with T2DM performed less well than age and education-matched HC. Numbers next to 

labels identify domains common across panels. Marker sizes represent sample sizes scaled (per area) as indicated in the bottom right corner of each 

panel. On Panel C, sample size indicates the number of individual studies. Underlying sample size distributions can be found in SI Figures 1C and 

2C. Error bars are 95% CI. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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Neurobiological Correlates with Age and T2DM 311 
 312 
Brain Atrophy:  HC (N =4,775) showed a linear decrease in brain gray matter with age.  This was most 313 
pronounced in the ventral striatum, which showed a 1.0% ± 0.06% decrease per year (T= –30.4, p<1e–10) 314 
and Heschl’s gyrus, which also showed a 0.9% ± 0.06% decrease per year (T= –30.4, p<1e–10) (Fig. 2A).  315 
As compared to their age-matched HC, T2DM patients showed further decreases in gray matter beyond 316 
typical age-related effects (T2DM: N=821; HC: N=821).  These included both cortical and subcortical 317 
regions, with the most severe atrophy observed in the ventral striatum, which showed on average a 6.2% ± 318 
1.6% further decrease in volume, beyond age-related effects (T= –7.5, p<1e-10), in the cerebellum with an 319 
additional 4.9% ± 1.1% decrease in volume, beyond age-related effects (T= –8.8, p<1e-10), and in the 320 
putamen, which showed a 4.7% ± 2.3% further decrease, beyond age-related effects (T= –4.1, p=0.002) 321 
(Fig. 2B).  322 
 323 
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 324 
 325 
 326 
 327 
 328 

Figure 2:  Widespread gray matter atrophy can be observed with respect to both age and T2DM diagnosis status.  Using the UK Biobank 

dataset, we measured gray matter atrophy across 45 anatomical regions. Associated changes were derived from estimated regression coefficients 

as percentages and are shown on the x axes. A: We observed significantly decreased gray matter volume in both cortical and subcortical brain 

regions with respect to age in HC. Age was associated with an average of ~0.5% brain-wide decrease in gray matter volume per year, most 
prominently for the ventral striatum and Heschl’s gyrus B: Gray matter atrophy was also seen in patients diagnosed with T2DM compared to 

age matched HC, most prominently for the ventral striatum, cerebellum, and putamen. The distribution of T2DM-related effects overlapped 

with those associated with age, with degeneration of the ventral striatum and preservation of the thalamus and caudate. Underlying sample size 

distributions can be found in SI Figures 1A and 2A. Error bars are 95% CI. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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Brain Activity:  Age was associated with functional reorganization of brain activation (ALFF), rather than 329 
global decrease or increase. Brain activation in T2DM showed similar reorganization. Normalized to whole 330 
brain activation, both age (HC: N=2,250) and T2DM (T2DM: N=646, HC: N=646) were associated with 331 
decreased activation in the caudate and premotor cortex, and with increased brain activity in the subgenual 332 
area, orbitofrontal cortex, posterior cingulate cortex and brainstem (Fig. 3A).  333 
 334 
Neuroquery: Our meta-analysis of 60 multimodal neuroimaging studies (30 age-specific, 30 T2DM-335 
specific) independently identified the same regions as UK Biobank (premotor cortex, caudate, posterior 336 
cingulate gyrus), but additionally identified clusters of decreased activity in Broca area and the frontal eye 337 
fields and increased activity in the thalamus, and inferior temporal gyrus (Fig. 3B).   338 
 339 
 340 

 341 
 342 
 343 
 344 
 345 
 346 
 347 
 348 
 349 
 350 

Figure 3:  Age and T2DM associated reorganization patterns in brain activity are significant and overlap. A: For functional MRI data 

obtained from the UK Biobank dataset, we used the amplitude of low-frequency fluctuation (ALFF) to quantify brain activation. Effects linked to 

age are shown in the form of an unthresholded z-map represented by the pink-green color gradient, with pink indicating increased activation and 

green showing decreased. T2DM related effects were thresholded (minimum cluster size ~100mm3, FDR p<0.05) to result in significant clusters. 

The outlines of these significant clusters are overlaid on the age-related z-map to demonstrate overlapping effects. The largest significant clusters 
with respect to T2DM were in the subgenual area (increased) orbitofrontal cortex (increased), the premotor cortex (decreased) and the caudate 

(decreased). The highlighted regions were similarly impacted across age, indicating substantial overlap between the two contrasts. Underlying 

sample size distributions can be found in SI Figures 1B and 2B. B: Using multimodal neuroimaging data, we performed a meta-analysis for the 

same contrasts using NeuroQuery. We extracted contrast maps for age and T2DM with NeuroQuery and overlaid the outlines of thresholded 

(minimum cluster size ~100mm3, FDR p<0.05) z-maps from T2DM on unthresholded z-maps belonging to age. The overlapping effects were 
present in several regions, most importantly in the posterior cingulate gyrus, thalamus, caudate, and premotor cortex. These results support the 

hypothesis that neurodegeneration in both T2DM and aging may be associated with common mechanistic pathways.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2022. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Neurocognitive Changes Associated with T2DM and Age Overlap, Consistent with Common 351 
Pathways 352 
 353 
Together, these analyses confirm that T2DM patients show evidence of neurocognitive deficits, with the 354 
most consistent and profound effects observed in structural atrophy. Even after controlling for education, 355 
cognitive deficits remained statistically significant. Both age and T2DM implicated the same areas of 356 
greatest vulnerability: for brain atrophy, these were the ventral striatum, Heschl’s gyrus and cerebellum; 357 
for cognition, these were executive function and processing speed.  When assessed across all brain regions, 358 
T2DM-related patterns in brain atrophy exhibited strong overlap with those associated with age (r=0.60, 359 
p=0.0002) (SI Figs. 7 and 8A). Similarly, T2DM-related changes in brain activation (ALFF) also exhibited 360 
significant overlap with those associated with age (r=0.64, p=0.00004) (SI Figs. 7 and 8B).  The meta-361 
analysis, which included multimodal neuroimaging measures (not only atrophy and brain activity, but also 362 
glucose uptake via FDG-PET) also yielded equivalent results in terms of the overlap between 363 
neurobiological effects of T2DM and age (r=0.58, p=0.0005) (SI Figs. 7 and 8C).  364 

 365 
 366 
T2DM Chronicity Exacerbates Neurocognitive Symptoms 367 
 368 
Neurocognitive effects were more severe with increased disease duration, particularly for structural changes 369 
(T= –3.8, p=0.0002) (Fig. 4).  T2DM progression was associated with 26% ± 14% acceleration of typical 370 
neurogenerative age-related effects, as per the linear shift along the horizontal time axis shown in Fig 4.  371 
 372 

 373 
 374 
 375 
 376 
 377 
 378 
 379 

Figure 4:  Progression of T2DM disease is significantly associated with gray matter atrophy, accelerating 

neurodegenerative effects seen in brain aging. For a quantitative evaluation of the impact of T2DM progression on gray matter 

volume, we considered time since T2DM diagnosis as the main factor of interest from the UK Biobank dataset. The T2DM+ 

cohort was divided into two groups based on disease duration (separated at 10 years) with a HC cohort also included for 

visualization purposes. We matched age, sex, education, and hypertension across these three groups and performed linear 

regression within T2DM+ subjects focusing on disease duration. Evaluation of our sample suggested that time since diagnosis 

was a significant factor, with each year after diagnosis of T2DM associated with an additional ~0.26 ± 0.14 years of brain aging 

beyond that of age-matched T2DM–. Underlying sample size distributions can be found in SI Figure 3. Error bars are standard 

error of the mean. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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T2DM Patients Treated with Metformin Do Not Demonstrate Improved Neurocognitive Symptoms   380 
 381 
Even after matching groups for disease duration and controlling for BMI, T2DM patients who were treated 382 
with metformin alone (N=498) did not differ with respect to cognition or brain atrophy compared to T2DM 383 
patients who were unmedicated (N=352) (SI Fig. 21). Likewise, treatment status showed no significant 384 
impact on resting-state brain activity.  385 
 386 
Age and T2DM Associated Effects were Consistent in Females and Males 387 
 388 
For the UK Biobank dataset, we identified marked sex-related differences both in neurobiological and 389 
cognitive measures, consistent with the literature (SI Figs. 9, 11, and 16) 35, 36.  All reported age and T2DM 390 
effects were seen for both males and females, and strongly correlated between them (SI Figs. 14, 18).  391 
However, age and T2DM effects were stronger in males (SI Figs. 10, 13, and 17), and neurodegeneration 392 
(brain atrophy, in particular) was more similar across sex for age (rage=0.93, Bonferroni corrected p≤ 0.001) 393 
than for T2DM (rT2DM=0.51, Bonferroni corrected p≤0.01).  Consistent with the latter, the overlap between 394 
effects associated with age and T2DM was statistically significant in males (gray matter volume: r=0.77, 395 
p=4e–9; brain activation (ALFF): r=0.51, p=0.002) but not in the female-only subsample (SI Figs. 14, 15, 396 
18, and 19). All females in our UK Biobank sample were menopausal and not on hormone replacement 397 
therapy.  For our meta-analyses, we were unable to perform a sex-based comparison, as the underlying 398 
articles from which our data were derived from did not always perform sex-matching across their subject 399 
pools and did not provide access to the individual subject-level data that would be required to control for 400 
sex in our analyses. 401 
 402 
 403 

Discussion 404 

The UK Biobank dataset confirms that T2DM patients show deficits in cognitive performance compared to 405 
HC, even after controlling for age, sex, education, and hypertension. These findings were supported by 406 
meta-analysis of the published literature. Deficits in cognitive performance were accompanied by marked 407 
brain atrophy in the T2DM sample as compared to age-matched HC.  The atrophy was most severe (6.4% 408 
grey matter loss compared to HC) in the ventral striatum, a region critical to learning, decision making, 409 
goal-directed behavior, and cognitive control.  These cognitive functions, collectively known as executive 410 
functioning, were (with processing speed) also those most affected by T2DM.  Neurodegeneration severity 411 
for all regions increased with longer disease duration. We detected qualitatively consistent results in females 412 
and males; however, males exhibited stronger effects in relation to T2DM (SI Fig. 12).  This result is 413 
consistent with the well-established neuroprotective effects of female hormones such as estrogen37. This 414 
result also suggests that the T2DM neurological effects observed result from chronic degenerative processes 415 
which, for our female participants, may have been at least partially ameliorated prior to menopause. 416 
 417 
Our findings indicate that structural brain imaging, in particular, can provide a clinically valuable metric 418 
for identifying and monitoring neurocognitive effects associated with T2DM.  Normalizing across sample 419 
sizes to compare the measures of neurocognitive effects: structural MRI, functional MRI, and cognitive 420 
testing, structural atrophy showed global effects that were far more statistically robust (p<2e–10) than either 421 
global cognitive measures (p=0.0001) or global brain activation (p=0.002).  One additional advantage of 422 
structural MRI over cognitive testing is that the former avoids confounding associated with education and 423 
practice effects, and therefore may be more interpretable in real-world clinical settings in which matching 424 
for education and practice effects is not feasible.  Structural MRI also showed advantages as a biomarker 425 
over a functional MRI-derived measure of brain activation (ALFF).  The reorganization of brain activity 426 
seen with T2DM may reflect the brain’s switch to less metabolically expensive networks to conserve energy 427 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2022. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

in the face of diminishing access to glucose, a pattern previously documented in aging38-41.  Yet activation 428 
patterns that are spatially reorganized, rather than globally increased or decreased, are less straightforward 429 
to quantify. Moreover, functional MRI is an inherently more complex measure than structural MRI, 430 
reflecting both neuronal and hemodynamic influences.  Each of these of these influences may be 431 
differentially affected by T2DM, further complicating its interpretation in a clinical setting. 432 
 433 
The localization of brain atrophy in T2DM to the ventral striatum, followed by the cerebellum, may reflect 434 
the fact that these two brain regions contain the densest concentrations of insulin-dependent GLUT-442-45, 435 
as compared to non-insulin-dependent isoforms GLUT-1 and GLUT-3.  The ventral striatum functions as 436 
a critical hub within the reward circuit, integrating inputs (including external stimuli) from both cortical 437 
and subcortical regions, and therefore is a key structure required for all learning.  Rat studies have shown 438 
modulation of nitric oxide within the ventral striatum to control release of acetylcholine46, a 439 
neurotransmitter severely reduced in dementia47 and a target for its pharmaceutical treatment48, 49.  Release 440 
of nitric oxide is insulin dependent and reduced in T2DM50. Together, these suggest a potential mechanistic 441 
pathway between insulin resistance, atrophy of the ventral striatum, and widespread deficits with respect 442 
to learning.  In this context, memory deficits may be primarily driven by failure to encode rather than failure 443 
to retrieve, which would be consistent with our results which did not identify the hippocampus as be one 444 
of the regions most affected.  Importantly, the structural and functional changes associated with T2DM 445 
show marked overlap with age-related effects but appear earlier.   This on one hand suggests that 446 
neurocognitive changes seen in T2DM may progress via a common mechanistic trajectory as normal brain 447 
aging, but which is accelerated. From another perspective, the overlap implies that brain aging itself is 448 
largely a metabolic syndrome driven by impaired insulin signaling and glucose metabolism, the same 449 
processes that are well-established with respect to T2DM. 450 
 451 
Our analyses had two limitations, inherent in the datasets analyzed, which represent important directions 452 
for future research.  First, our use of a lifespan dataset permitted tracking how variables change with age, 453 
but not for the same subjects. A more rigorous assessment of phase shift between trajectories of 454 
neurodegeneration for patients with T2DM and HC would be made possible only with a longitudinal study.  455 
Second, while we had access to disease duration and BMI, we did not have HbA1c measures, which would 456 
have provided a more direct measure of disease severity.  While metformin was not found to be associated 457 
with better neurocognitive measures, even when matched to unmedicated patients with equivalent disease 458 
duration and after controlling for BMI (a proxy measure for disease severity23, 24), it was not possible to 459 
determine other diabetes-related characteristics.  As such, our medication findings should be considered 460 
suggestive but not conclusive. 461 
 462 
Consistent with findings from earlier studies that focused on the brain and energy metabolism 51, 52, we 463 
suggest that the T2DM and its progression may be associated with accelerated brain aging. As T2DM results 464 
in compromised energy availability, brain structure and function undergo accelerated deterioration. We 465 
consider the possibility that, by the time T2DM is formally diagnosed, neuronal insulin resistance may have 466 
already resulted in significant brain damage. As such, our findings underscore the need for additional 467 
research into brain-based biomarkers for T2DM and treatment strategies that specifically target its neuro-468 
cognitive effects 1.  469 
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Supplementary Figures470 

471 

Supplementary Figure 1: Sample size distributions in T2DM vs HC analyses. The values shown represent T2DM+ only, T2DM+ were matched 

with an equivalent number of HCs, resulting in twice the number of samples in every analysis. The bars are stacked. A: Gray matter volume analyses 

B: Brain activation (ALFF) analyses C: Cognition analyses (5 domains). 
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472 

Supplementary Figure 2: Sample size distributions of the analyses which investigated Age as the factor of interest. Samples included HC only 
and were matched for sex, education, and hypertension across age. The matching method resulted in “sample chains” across age: within each 

chain, samples were equivalent in terms of sex, education, and hypertension. The bars are stacked. A: Gray matter volume analyses B: Brain 

activation (ALFF) analyses C: Cognition analyses (5 domains). 
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473 

Supplementary Figure 3: Sample size distribution in the analysis which investigated T2DM duration as the main factor. The values shown 
represent one out of the three duration groups (HC, T2DM+ for 0-9y, and T2DM+ for 10+y). Samples across the three duration groups were 

matched for age, sex, education, and hypertension. Given the three groups, the total sample size was three times what is shown here. The statistical 

analysis included T2DM+ samples only (for which duration was defined), HC were included for visual representation only. The bars are stacked. 
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474 

Supplementary Figure 4: Lineplots representing trends across Age and T2DM for each of the five investigated cognitive domains. For executive 
function and reaction time, lower scores represented better performance. The linear trends across age were robust and justified modeling age as a 

linear factor. The apparent deviation from linear trends in the youngest and oldest age groups are explained by drastically lower sample sizes in 

these age groups (see underlying sample sizes in SI Figure 1C). 
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475 

Supplementary Figure 5: Lineplots representing trends across Age and T2DM for five regions which exhibited the strongest trends in gray 

matter volume changes. The linear trends across age were robust and justified modeling age as a linear factor. The apparent deviation from linear 

trends in the youngest and oldest age groups are explained by markedly lower sample sizes in these age groups (see underlying sample sizes in 

SI Figure 1A). 
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 476 
 477 

 478 Supplementary Figure 6: Lineplots representing trends across Age and T2DM for five regions which exhibited the strongest trends in brain 
activation (ALFF). The linear trends across age were robust and justified modeling age as a linear factor. The apparent deviation from linear 

trends in the youngest and oldest age groups are explained by drastically lower sample sizes in these age groups (see underlying sample sizes in 

SI Figure 1B). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2022. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 479 
 480 

Supplementary Figure 7:  Effects of age and 

T2DM exhibited strong correlations within 

datasets and modalities. We considered six sets of 

changes we previously characterized in association 

with the following: 1. Age contrast, gray matter 

volume in UK Biobank; 2. T2DM contrast, gray 

matter volume in UK Biobank; 3. Age contrast, brain 
activation in UK Biobank; 4. T2DM contrast, brain 

activation in UK Biobank; 5. Age contrast, brain 

structure/activation (aggregate) from NeuroQuery; 6. 

T2DM contrast, brain structure/activation 

(aggregate) from NeuroQuery. Corresponding effects 
from region/domain specific analyses were 

considered as inputs for correlation measures, which 

were then determined for all combinations of the six 

sets of effects. Age and T2DM were significantly 

correlated (Pearson’s r) within all modalities, 
suggesting common trajectories between age and 

T2DM related effects. No other significant 

correlations were observed, however, between 

datasets or modalities. Given that structural and 

functional effects appeared to be unrelated within UK 
Biobank, and that the NeuroQuery results were a 

combination of both structural and functional results, 

we did not expect significant associations between 

modality-specific UK Biobank results and 

multimodal (structural and functional) NeuroQuery 
results. However, it is important to note that very 

different ways of acquiring and analyzing brain data 

independently replicate the correlations between age 

and T2DM related effects, suggesting that the 

association is highly robust. See relevant scatterplots 
in SI Figure 8. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, 

Bonferroni corrected. 
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 481 

Supplementary Figure 8: Scatterplots corresponding to 

the statistically significant cells in SI Figure 7. Statistics 

shown are Pearson’s correlations. Regions on the 

extremes are labeled. A: Gray matter volume results, B: 
Brain activation (ALFF) results, C: Neuroquery-based 

meta-analysis results. 
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 482 
Supplementary Figure 9: Cognitive differences associated with sex in the UK Biobank dataset across the five cognitive domains. Samples were HC only and 
were matched for age, education, and hypertension. Values on the y axis represent % difference in performance compared to the combined average (from both 

F and M). A positive % represents better performance in males. Marker sizes represent sample sizes scaled (per area) as indicated in the bottom right corner. 

Error bars are 95% CI. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2022. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

483 

Supplementary Figure 10: Cognitive differences associated with Age (A) and T2DM (B) in the UK Biobank dataset across the five cognitive 

domains, analyzed separately within Males and Females. Samples were matched for age, education, and hypertension. The associated effects were 

consistent across males vs females, but with respect to T2DM, effects were generally stronger in males. Note that sample sizes were significantly 

larger for males compared to females. Marker sizes represent sample sizes scaled (per area) as indicated in the bottom right corner of each panel. 
Error bars are 95% CI. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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484 

Supplementary Figure 11: Gray matter volume (normalized for headsize) differences associated with sex in the UK Biobank dataset across the 

45 anatomical regions. Samples were HC only and were matched for age, education, and hypertension. Values on the x axis represent % difference 

in volume compared to the combined average (from both F and M). A negative % represents larger volume in females. Error bars are 95% CI. 

*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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485 

Supplementary Figure 12: Lineplots representing trends in total gray matter volume (normalized for headsize) across Age, Sex and T2DM. 

Samples were matched for age, education, and hypertension. The age-related decline appeared equivalent in the two sexes but T2DM associated 

deficits were stronger in males. With respect to disease duration (not shown), equivalent effects were observed magnitude-wise in males (24% ± 
17%) and females (27% ± 32%), but these results were only significant in the male-only group (p=0.002), for which sample sizes were 

considerably larger (NM=366, NF=104). 
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486 

Supplementary Figure 13: Region-specific gray matter volume deficits associated with Age (A) and T2DM (B) in the UK Biobank dataset, analyzed 

separately within females and males. Samples were matched for age, education, and hypertension. The associated effects were correlated across males vs 

females (see SI Figures 14, 15A, and 15B), With respect to T2DM, effects were generally stronger in males. Age and T2DM effects significantly correlated 

in males but not in females (see SI Figures 14, 15C, and 15D). Note that sample sizes were significantly larger for males compared to females. Error bars are 
95% CI. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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Supplementary Figure 14: We quantified correlations (Pearson’s r) among the region-specific gray matter volume deficits associated with Age 
and T2DM, which we quantified in the UK Biobank dataset separately for females and males. See relevant scatterplots in SI Figure 15.  *P ≤ 

0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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Supplementary Figure 15: Scatterplots corresponding to the most relevant cells in SI Figure 14. Statistics shown are Pearson’s correlations. 

Regions on the extremes are labeled. All panels contain gray matter volume related effects only. A: Age-related effects in males vs females, B:  

T2DM-related effects in males vs females, C: Age vs T2DM effects in females only, D: Age vs T2DM effects in males only. 
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Supplementary Figure 16: Resting-state brain activation (ALFF) differences associated with sex in the UK Biobank dataset. Samples were HC 

only and were matched for age, education, and hypertension. Only significantly different voxels are shown following false discovery rate correction. 

Positive (labeled with blue) voxels represent stronger activation in males compared to females. 
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Supplementary Figure 17: Age and T2DM associated reorganization patterns in brain activation (ALFF) were overlaid separately for females 

(A) and males (B). Samples were matched for age, education, and hypertension. Effects linked to age are shown in the form of an unthresholded 

z-map represented by the pink-green color gradient, with pink indicating increased activation and green showing decreased. T2DM related effects 

were thresholded (minimum cluster size ~100mm3, FDR p<0.05) to result in significant clusters. The outlines of these significant clusters are 
overlaid on the age-related z-map to demonstrate overlapping effects. As also seen with gray matter volume, the associated effects were correlated 

across males vs females (see SI Figures 18, 19A, and 19B), With respect to T2DM, effects were generally stronger in males. Age and T2DM 

effects significantly correlated in males but not in females (see SI Figures 18, 19C, and 19D). Note that sample sizes were significantly larger 

for males compared to females. 
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Supplementary Figure 18: We quantified correlations (Pearson’s r) among the region-specific changes in brain activation (ALFF) patterns 

associated with Age and T2DM, which we quantified in the UK Biobank dataset separately for females and males. See relevant scatter plots in 

SI Figure 19.  *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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 494 

Supplementary Figure 19: Scatterplots corresponding to the primary cells in SI Figure 18. Statistics shown are Pearson’s correlations. Regions 

on the extremes are labeled. All panels contain brain activation (ALFF) effects only. A: Age-related effects in males vs females, B:  T2DM-

related effects in males vs females, C: Age vs T2DM effects in females only, D: Age vs T2DM effects in males only. 
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Supplementary Figure 20: Sample size distributions in metformin medication status related analyses. The values shown represent metformin 

medicated T2DM+ only, these samples were matched with an equivalent number of unmedicated T2DM+ samples, resulting in twice the amount 

of samples in every analysis. Samples were matched for age, sex, education, and hypertension. The bars are stacked. A: Gray matter volume 

analyses B: Brain activation analyses C: Cognition analyses (5 domains). 
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Supplementary Figure 21:  Treatment of T2DM patients with metformin had no impact on cognitive deficits or gray matter atrophy. We evaluated 
the UK Biobank dataset to determine whether treatment with metformin would prevent gray matter atrophy or the development of cognitive deficits 

associated with T2DM. Among T2DM diagnosed subjects only, we compared those subjects who reported using metformin but no other medications to 

those who reported not taking any medications to treat T2DM. We matched subjects for age, sex, education and T2DM disease duration, and controlled 

for BMI. The direction of theoretical improvement by metformin is indicated on both panels by arrows. A: No statistically significant (α=0.05) differences 

in cognitive performance were detected when comparing subjects on metformin to unmedicated subjects B: Neither our analysis of gray matter atrophy 
detected any significant (α=0.05) improvements associated with metformin treatment. Underlying sample size distributions can be found in SI Figure 20. 

Error bars are 95% CI. 
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Supplementary Table 1. Summary of All Relevant UK Biobank data-fields. 

Variable Designation Instance Number 

Diagnosis (T2DM) 2443 0, 2 

Age 21003 0, 2 

Sex 31 2 
Education 6138 2 

Age of onset (T2DM) 2976 0-2 

Blood Pressure 93, 94, 4079, 4080 2 

Had Menopause 2724 0-2 

Had hormone replacement therapy 3546 2 
Body Mass Index (BMI) 21001 2 

Medication Status (Metformin) 20003 2 

Gray-Matter Volume 25005-25006, 25782-25920 2 

Resting-State MRI Images 20227 2 

Matrix-Pattern Completion (Abstract Reasoning) 20016 2 
Alphanumeric Trail-Making Test (Executive 

Function) 

6350 2 

Symbol-Digit Substitution (Processing Speed) 23324 2 

Snap Game (Reaction Time) 20023 0, 2 

Numeric Memory Test (Numeric Memory) 4282 2 

 500 
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Supplementary Table 2.  Summary of Cognitive Functions Assessed, with Corresponding Instruments. 

Domains Common Tests Description 

Abstract Reasoning 

Raven’s Progressive Matrices, Matrix 

Pattern Completion, Weschler 

Similarities, Standard Progressive 
Matrices 

Manipulation of presented information to solve a problem without prior 
knowledge. Interrelated with fluid intelligence. Often presented as shape or 

logic puzzles. 

Executive Function 

Trail Making (B), Stroop (III), Brixton 

Spatial Anticipation, Wisconsin Card 
Sort, Color Trails (2), Weschler Letter 

Number Sequencing 

Top-down coordination of other cognitive domains (e.g., memory, motor 

function) to solve problems and manage cognitive resources. Often exhibited 

in tasks that require a degree of planning. 

Processing Speed 
Trail Making (A), Digit Symbol 

Substitution, Stroop (I-II), Choice 

Reaction Time, Color Trails (1) 

Speedy encoding and use of information. Often measured by time-to-

completion in tasks that require the manipulation of presented information. 

Numeric Memory 
(Forwards) Digit Span, Digit Vigilance 

Test 
Short-term (~2-3 s) recall of numeric information. 

Visual Memory 

Location Learning, Weschler Visual 

Memory Subtest, Rey-Osterreith Delayed 
Recall,  

Face Recognition Test 

Short and long-term recall of visually encoded information. 

Verbal Memory 

Rey & California Auditory Verbal 

Learning Tests, Hopkins Verbal Learning 
Test, Delayed Word Recall, Weschler 

Text Recall Sub, Word List Recall,  

Weschler Story Recall 

Short and long-term recall of verbal information. Includes both auditory and 

visual encoding. 

Verbal Fluency 

Word & Semantic Fluency Tests, 

Controlled Oral word Association Test, 

Letter & Category Fluency Tests, Boston 

Naming Test 

Language skills. Commonly measured by enumeration (e.g., name as many 

words as you can that begin with the letter “B”). 

Visuospatial 

Reasoning 

Rey-Osterreith Figure Copy, Taylor 

Complex Figure,  
Weschler Object Assembly 

Manipulation or reconstruction of spatial information. 

Working Memory 
(Backwards) Digit Span, Corsi Block 

Tapping, N-back 

Holding information for a short time for use on a current task. Characterized 
by both maintaining and manipulating stored information. Commonly 

measured by having subjects re-order learned information. 

Harvey, (2019). Domains of Cognition and their Assessment. Dialogues of Clinical Neuroscience, 21(3), 227-237. doi:10.31887/DCNS.2019.21.3 
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Supplementary Table 3. Studies Identified as Most Relevant for Each Key Word by NeuroQuery Algorithm. 507 
 T2DM studies Age studies 

1. Chun-Xia Wang et al. 2014 György A Homola et al. 2012 

2. Xiangzhe Qiu et al. 2016 Peiying Liu et al. 2013 

3. Natalia García-Casares et al. 2016 G Juckel et al. 2012 

4. Z-L Wang et al. 2017 Natalie C Ebner et al. 2013 

5. Thomas J Marder et al. 2014 Michelle Hampson et al. 2012 
6. Franco Cauda et al. 2009 Sien Hu et al. 2012 

7. Ying Cui et al. 2015 Yu-Chien Wu et al. 2011 

8. Dae-Jin Kim et al. 2016 Rafat S Mohtasib et al. 2012 

9. Jung-Lung Hsu et al. 2012 Vonetta M Dotson et al. 2016 

10. Zhiye Chen et al. 2012 Estela Càmara et al. 2007 
11. Christopher M Marano et al. 2014 Harri Littow et al. 2010 

12. Olivia M Farr et al. 2016 Andrew P Merluzzi et al. 2016 

13. Dan-Miao Sun et al. 2017 Emily S Nichols et al. 2016 

14. Dewang Mao et al. 2015 Maria Morozova et al. 2016 

15. Rongfeng Qi et al. 2012 Kristen M Kennedy et al. 2009 
16. Dewang Mao et al. 2015 Chiara Chiapponi et al. 2013 

17. Xin Huang et al. 2016 Kathrin Cohen Kadosh et al. 2013 

18. Wenqing Xia et al. 2013 Quinton Deeley et al. 2008 

19. Po Lai Yau et al. 2009 Kristen M Kennedy et al. 2015 

20. Reza Tadayonnejad et al. 2019 Tatia M C Lee et al. 2006 
21. Chen Liu et al. 2014 Joshua Carp et al. 2011 

22. Yue Cheng et al. 2017 Esther H H Keulers et al. 2010 

23. Chuanming Li et al. 2014 Kristin Nordin et al. 2017 

24. Zhilian Zhao et al. 2014 Joshua Carp et al. 2010 

25. Xiaofen Ma et al. 2015 Mark B Schapiro et al. 2004 
26. Jessica A Turner et al. 2013 Nick S Ward et al. 2008 

27. Jiaxing Zhang et al. 2016 Nancy E Adleman et al. 2016 

28. Yingying Yue et al. 2015 Kaitlin L Bergfield et al. 2010 

29. Nicola Pannacciulli et al. 2006 Jenny R Rieck et al. 2017 

30. Xin Di et al. 2013 Marco Hirnstein et al. 2011 

 508 
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Supplementary Table 4. Study Estimates of Cognitive Meta-Analysis 

Executive Function d = -0.40, K = 18, p < 0.001, Q = 186.9, I2=88.4% 

Studies Effect size (d) Confidence Interval (95%) 

Bangen et al., 2015 -0.21 -0.33, -0.09 

Biessels at al., 2001 -0.66 -1.41, 0.09 

Brands et al., 2007 -0.54 -0.86, -0.21 

Cui et al., 2014 -0.54 -1.07, -0.01 

Garcia-Casares et al., 2014 -0.87 -1.45, -0.29 
Kanaya et al., 2004 1.03 0.83, 1.24 

Lindeman et al., 2001 -0.09 -0.26, 0.08 

Liu et al., 2018 -0.54 -1.04, -0.04 

Mehrebian et al., 2012 -1.35 -1.93, -0.76 

Mogi et al., 2004 -0.36 -0.81, 0.08 
Reijmer et al., 2016 -0.33 -0.80, 0.15 

Ryan & Geckle. 2008 -0.31 -0.71, 0.08 

Takeuchi et al., 2012 -0.62 -1.09, -0.15 

Van den Berg et al., 2010 -0.65 -1.05, -0.24 

Xia et al., 2010 -0.61 -1.07, -0.16 
Yau et al., 2010 -0.14 -0.80, 0.51 

Yeung et al., 2009 -0.50 -0.83, -0.18 

Zhou et al., 2010 -0.48 -1.10, 0.15 

Immediate Verbal Memory d= –0.39, K=23, p<0.001, Q=143.6, I2= 91.1% 

Studies Effect size (d) Confidence Interval (95%) 

Aberle et al., 2008 0.02 -0.31, 0.36 

Arvanitakis et al., 2006 -0.05 -0.25, 0.14 

Bangen et al., 2015 -0.13 -0.25, -0.02 

Brands et al., 2007 -0.32 -0.64, 0.00 

Cholerton et al., 2019 0.06 -0.13, 0.25 

Cosway et al., 2001 -0.32 -0.81, 0.17 

Cui et al., 2014 -0.07 -0.59, 0.46 

Dai et al., 2017 -1.7 -2.24, -1.16 

Garcia-Casares et al., 2014 -1.62 -2.26, -0.98 

Liu et al., 2018 -0.49 -0.99, 0.01 

Lowe et al., 1994 -0.06 -0.36, 0.25 

Mattei et al., 2019 -0.3 -0.42, -0.19 

Mehrebian et al., 2012 -1.71 -2.33, -1.10 

Mogi et al., 2004 -0.29 -0.74, 0.16 

Moran et al., 2013 0.31 0.16, 0.46 

Reijmer et al., 2016 -0.23 -0.70, 0.24 

Ryan & Geckle, 2008 -0.41 -0.81, -0.01 

Takeuchi et al., 2012 -0.56 -1.03, -0.09 

van den Berg et al., 2010 -0.39 -0.79, 0.01 

van Harten et al., 2007 -0.35 -0.71, 0.01 

Xia et al, 2015 -0.32 -0.77, 0.13 

Yau et al., 2010 -0.70 -1.37, -0.03 

Yeung et al., 2009 -0.37 -0.69, -0.04 

Verbal Fluency d= –0.37, K=25, p<0.001, Q=101.3, I2=83.3% 

Studies Effect Size (d) Confidence Interval (95%) 

Aberle et al., 2008 0.06 -0.27, 0.39 

Arvanitakis et al., 2006 -0.12 -0.31, 0.08 

Atiea et al., 1995 -0.32 -0.86, 0.22 

Bangen et al., 2015 -0.33 -0.44, -0.21 

Brands et al., 2007 -0.50 -0.82, -0.17 
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Cholerton et al., 2019 -0.37 -0.56, -0.18 

Cosway et al., 2001 -0.30 -0.79, 0.19 

Dai et al., 2017 -0.83 -1.31, -0.35 

Garcia-Casares et al., 2014 -0.92 -1.5, -0.34 

Kanaya et al., 2004 -1.10 -1.31, -0.9 

Liu et al., 2018 -0.44 -0.94, 0.05 

Lowe et al., 1994 -0.46 -0.77, -0.15 

Mankovsky et al., 2018 -0.32 -0.83, 0.19 

Mattei et al., 2019 -0.33 -0.44, -0.21 

Mehrebian et al., 2012 -0.18 -0.71, 0.34 

Moran et al., 2013 -0.03 -0.18, 0.12 

Rawlings et al., 2015 -0.36 -0.41, -0.31 

Reijmer et al., 2016 -0.15 -0.62, 0.32 

Solanki et al., 2009 -0.47 -0.93, -0.01 

Takeuchi et al., 2012 -0.59 -1.06, -0.12 

van Harten et al., 2007 -0.64 -1.01, -0.27 

Yau et al., 2010 -0.07 -0.72, 0.59 

Yeung et al., 2009 -0.15 -0.47, 0.17 

Zhou et al., 2010 -0.58 -1.21, 0.06 

Zihl et al., 2010 0.26 -0.46, 0.99 

Working Memory d= –0.36, K=12, p<0.001, Q=30.2, I2=72.2% 

Studies 
Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.04 -0.24, 0.15 

Atiea et al., 1995 -0.48 -1.02, 0.07 

Biessels et al., 2001 -0.63 -1.38, 0.12 

Brands et al., 2007 -0.36 -0.69, -0.04 

Lowe et al., 1994 -0.04 -0.35, 0.26 

Mankovsky et al., 2018 -0.07 -0.57, 0.44 

Mattei et al., 2019 -0.27 -0.38, -0.15 

Ryan & Geckle, 2008 -0.34 -0.73, 0.06 

Solanki et al., 2009 -1.33 -1.83, -0.84 

Takeuchi et al, 2012 -0.56 -1.03, -0.10 

van den Berg et al., 2010 -0.50 -0.90, -0.10 

Yau et al., 2010 -0.17 -0.82, 0.49 

Abstract Reasoning d= –0.36, K=8, p<0.001, Q=10.57, I2=29.2% 

Studies 
Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.24 -0.43, -0.04 

Bangen et al., 2015 -0.48 -0.59, -0.36 

Brands et al., 2007 -0.19 -0.51, 0.13 

Cosway et al., 2001 -0.10 -0.59, 0.38 

Lowe et al., 1994 -0.41 -0.73, -0.10 

Ryan & Geckle, 2008 -0.27 -0.67, 0.12 

van den Berg et al., 2010 -0.38 -0.78, 0.02 

Zihl et al., 2010 -1.06 -1.82, -0.29 

Processing Speed d= –0.34, K=31, p<0.001, Q=227.3, I2=82.3 % 

Studies 
Effect Size (d) Confidence Interval (95%) 
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Aberle et al., 2008 0.00 -0.33, 0.33 

Arvanitakis et al., 2006 -0.14 -0.34, 0.05 

Atiea et al., 1995 0.05 -0.49, 0.59 

Bangen et al., 2015 -0.22 -0.34, -0.11 

Biessels et al., 2001 0.19 -0.54, 0.92 

Brands et al., 2007 -0.26 -0.58, 0.06 

Cholerton et al., 2019 -0.43 -0.62, -0.24 

Cosway et al., 2001 -0.30 -0.79, 0.19 

Cui et al., 2014 -0.68 -1.22, -0.14 

Dai et al., 2017 0.25 -0.21, 0.72 

Garcia-Casares et al., 2014 -0.66 -1.23, -0.09 

Lindeman et al., 2001 -0.02 -0.19, 0.15 

Liu et al., 2018 -0.36 -0.86, 0.13 

Mattei et al., 2019 -0.37 -0.49, -0.25 

Mehrebian et al., 2012 -1.23 -1.8, -0.65 

Mogi et al., 2004 -0.59 -1.04, -0.14 

Moran et al., 2013 0.16 0.02, 0.31 

Naseer et al., 2014 -0.61 -1.25, 0.02 

Rawlings et al., 2015 -0.65 -0.70, -0.60 

Redondo et al., 2016 -0.54 -1.15, 0.07 

Reijmer et al., 2016 -0.06 -0.53, 0.41 

Ryan & Geckle, 2008 -0.43 -0.83, -0.03 

Solanki et al., 2009 -0.93 -1.41, -0.46 

Takeuchi et al., 2012 -0.61 -1.08, -0.14 

van den Berg et al., 2010 -0.11 -0.51, 0.29 

van Harten et al., 2007 -0.48 -0.84, -0.11 

Xia et al, 2015 -0.27 -0.71, 0.18 

Yau et al., 2010 -0.69 -1.37, -0.02 

Yeung et al., 2009 -0.38 -0.70, -0.06 

Zhou et al., 2010 -0.27 -0.89, 0.35 

Zihl et al., 2010 -1.28 -2.07, -0.49 

Visuospatial Reasoning d= –0.32, K=13, p<0.001, Q=27.3, I2=56.6% 

Studies 
Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.11 -0.31, 0.09 

Bangen et al., 2015 -0.18 -0.30, -0.07 

Biessels et al., 2001 -0.25 -0.98, 0.49 

Brands et al., 2007 -0.21 -0.53, 0.11 

Garcia-Casares et al., 2014 -0.79 -1.36, -0.21 

Lowe et al., 1994 -0.16 -0.47, 0.15 

Mattei et al., 2019 -0.33 -0.45, -0.21 

Moran et al., 2013 -0.56 -0.71, -0.41 

Ryan & Geckle, 2008 -0.38 -0.78, 0.01 

Takeuchi et al., 2012 -0.41 -0.87, 0.06 

van den Berg et al., 2010 -0.16 -0.56, 0.24 

Xia et al, 2015 -0.71 -1.17, -0.25 

Zhou et al., 2010 -0.47 -1.10, 0.16 
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Delayed Verbal Memory d= –0.21, p<0.001, K=21, Q=114.3, I2=77.5% 

Studies 
Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.01 -0.21, 0.18 

Bangen et al., 2015 -0.07 -0.19, 0.05 

Brands et al., 2007 -0.28 -0.60, 0.04 

Cholerton et al., 2019 0.04 -0.15, 0.23 

Cosway et al., 2001 -0.24 -0.73, 0.24 

Cui et al., 2014 -0.08 -0.60, 0.45 

Dai et al., 2017 -0.75 -1.22, -0.27 

Liu et al., 2018 -0.62 -1.13, -0.12 

Lowe et al., 1994 -0.10 -0.41, 0.21 

Mehrebian et al., 2012 -0.76 -1.31, -0.22 

Mogi et al., 2004 0.18 -0.26, 0.63 

Moran et al., 2013 0.20 0.05, 0.35 

Rawlings et al., 2015 -0.40 -0.45, -0.35 

Reijmer et al., 2016 -0.13 -0.60, 0.34 

Ryan & Geckle, 2008 -0.22 -0.61, 0.17 

Takeuchi et al., 2012 -0.36 -0.82, 0.10 

van den Berg et al., 2010 -0.40 -0.80, 0.00 

van Harten et al., 2007 -0.42 -0.78, -0.05 

Xia et al, 2015 -0.15 -0.59, 0.30 

Yeung et al., 2009 -0.07 -0.39, 0.25 

Zhou et al., 2010 -0.96 -1.62, -0.31 

Numeric Memory d= –0.21, p=0.005, K=16, Q=38.1, I2=70.2% 

Studies 
Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.13 -0.33, 0.06 

Atiea et al., 1995 -0.47 -1.01, 0.08 

Biessels et al., 2001 -1.05 -1.83, -0.27 

Brands et al., 2007 -0.08 -0.40, 0.24 

Dai et al., 2017 -0.66 -1.14, -0.19 

Lindeman et al., 2001 -0.17 -0.33, 0.00 

Liu et al., 2018 -0.53 -1.03, -0.03 

Lowe et al., 1994 0.14 -0.17, 0.45 

Mankovsky et al., 2018 0.17 -0.34, 0.67 

Mattei et al., 2019 -0.11 -0.22, 0.01 

Moran et al., 2013 0.08 -0.07, 0.22 

Naseer et al., 2014 0.04 -0.57, 0.66 

Solanki et al., 2009 -0.92 -1.39, -0.44 

Takeuchi et al., 2012 -0.33 -0.80, 0.13 

van den Berg et al., 2010 -0.12 -0.52, 0.27 

Yau et al., 2010 -0.30 -0.96, 0.36 

Recognition Verbal Memory d= –0.21, p=0.01, K=12, Q=37.4, I2=78.8% 

Studies 
Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 0.00 -0.20, 0.20 

Bangen et al., 2015 -0.06 -0.17, 0.06 

Brands et al., 2007 -0.38 -0.70, -0.06 
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Dai et al., 2017 -0.61 -1.08, -0.14 

Liu et al., 2018 -0.53 -1.02, -0.03 

Lowe et al., 1994 -0.07 -0.38, 0.24 

Mattei et al., 2019 -0.17 -0.28, -0.05 

Mehrebian et al., 2012 -0.46 -1.00, 0.07 

Moran et al., 2013 0.16 0.01, 0.31 

Takeuchi et al., 2012 0.12 -0.34, 0.58 

van den Berg et al., 2010 -0.51 -0.92, -0.11 

Zhou et al., 2010 -0.89 -1.55, -0.24 

Visual Memory d= –0.13, p=0.32, K=8, Q=19.9, I2=66.6% 

Studies 
Effect Size (d) Confidence Interval (95%) 

Aberle et al., 2008 -0.16 -0.49, 0.18 

Brands et al., 2007 0.19 -0.13, 0.51 

Cosway et al., 2001 -0.10 -0.59, 0.39 

Lowe et al., 1994 0.20 -0.11, 0.51 

Solanki et al., 2009 -0.96 -1.43, -0.48 

Takeuchi et al., 2012 -0.27 -0.73, 0.19 

van den Berg et al., 2010 0.00 -0.39, 0.40 

Yau et al., 2010 -0.13 -0.79, 0.52 
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 511 
 512 
 513 
 514 
 515 
 516 
  517 

Supplementary Table 5. Characteristics of patients who underwent cognitive testing in studies included in our meta-analysis. 

 

 

Studies 

 

 

N 

 

 

Age (Mean) 

 

 

Education (Years) 

 

 

Female 

(%) 

Author Year T2DM HC T2DM HC T2DM HC  

Aberle et al. 2008 38 421 62.9 62.97 9.94 9.93 48.5 

Arvanitakis et al. 2006 116 766 78 80.9 13.7 14.5 78 

Atiea et al. 1995 40 20 69.05 68.1 - - 31 

Bangen et al. 2015 378 1115 75.4 76.3 9.9 11.2 67 

Biessels et al. 2001 13 16 57.7 57.9 
11.2 11.4 

41.3 

Brands et al. 2007 119 55 65.9 65.2 4* 4 49.4 

Cholerton et al. 2019 185 261 53 51.3 12 12.5 70.4 

Cosway et al. 2001 33 32 57.7 55.9 11.2 11.8 59.2 

Cui et al. 2014 29 27 58.3 57.8 10.4 10.2 55.4 

Dai et al. 2017 41 32 65.51 67.28 15.35 16.05 52 

Garcia-Casares et al. 2014 25 25 60 57.8 18.3 18.9 38 

Kanaya et al. 2004 118 632 73.55 69.2 - - 57.2 

Lindeman et al. 2001 188 476 73.4 73.8 10.9 12.3 - 

Liu et al. 2018 32 32 58.09 56.88 9 12 42.2 

Lowe et al. 1994 80 81 59.3 55.1 - - 63.9 

Mankovsky et al. 2018 93 18 62.3 59.5 14.7 14.3 70.2 

Mattei et al. 2019 465 711 58.9 56 - - 73.1 

Mehrebian et al. 2012 37 22 56 56 14 14 56.5 

Mogi et al. 2004 69 27 71.6 73.4 10.4 11.4 64.5 

Moran et al. 2013 350 363 67.8 72.1 11.3 10.9 43.2 

Naseer et al. 2014 20 20 53.3 - - - - 

Rawlings et al. 2015 1779 11572 58.2 56.8 - - 55.6 

Redondo et al. 2016 20 23 70.82 70.92 6.79 7.36 46 

Reijmer et al. 2016 35 35 71.1 71 4* 4 41.4 

Ryan & Geckle 2008 50 50 50.8 50.5 14.4 14 73 

Solanki et al. 2009 50 30 - - - - - 

Takeuchi et al. 2012 42 32 62.4 63.8 13.7 14.5 40 

van den Berg et al. 2010 68 38 65.6 64.8 4* 4 48.1 

van Harten et al. 2007 92 44 73.2 72.9 4* 4.4 55.8 

Xia et al. 2015 38 40 56 57.1 9.6 10.3 51.3 

Yau et al. 2010 18 18 16.46 17.16 10.75 11.15 - 

Yeung et al. 2009 41 424 68.59 67.84 15.12 15.33 68 

Zhou et al. 2010 21 19 68 69.16 12.48 13.84 50 

Zihl et al 2010 12 19 42.45 36.8 10.5 10.9 - 

T2DM, type-2 diabetes mellitus; HC, healthy control 
*median education 
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Supplementary Table 6. List and justification for studies excluded from our cognitive meta-analysis.  

Studies Justification for Exclusion 

Asimakopoulou et al., 2002 Did not match for education 

Brands et al., 2007 Identical sample of study already included 
Bruehl et al., 2009 Authors did not provide requested data 

Callisaya et al., 2018 Identical sample of study already included 

Chen et al., 2014 Inadequate cognitive testing 

Chen et al., 2017 Inadequate cognitive testing 

Christman et al., 2010 Did not match for education 
Cooray et al., 2011 Authors did not provide requested data 

Cui et al., 2015 Identical sample of study already included 

Cui et al., 2017 Identical sample of study already included 

Cui et al., 2017 Identical sample of study already included 

Degen et al., 2016 Authors did not provide requested data 
Dey et al., 1997 Inadequate cognitive testing 

Dore et al., 2009 Authors did not provide requested data 

Elias et al., 1997 No baseline data in longitudinal design 

Grodstein et al., 2001 Inadequate cognitive testing 

Hassing et al., 2004 Unclear sizes of sample sub-groups 
Helkala et al., 1995 Did not match for education 

Kinga & Anett, 2016 Authors unable to be reached 

Kumari et al., 2005 Did not match for education 

Liu et al., 2016 Identical sample of study already included 

Liu et al., 2018 Identical sample of study already included 
Liu et al., 2020 Identical sample of study already included 

Manschot et al., 2006 Identical sample of study already included 

Mooradian et al., 1988 Inadequate cognitive testing 

Nazaribadie et al., 2013 Authors did not provide requested data 

Nealon et al., 2017 Did not match for education 
Nooyens et al., 2010 Authors did not provide requested data 

Perlmuter et al., 1984 Inadequate cognitive testing 

Ravona-Springer et al., 2018 Authors did not provide requested data 

Reijmer et al., 2011 Identical sample of study already included 
Robertson-Tchabo et al., 1986 Inadequate cognitive testing 

Ruis et al., 2009 Authors did not provide requested data 

Scott et al., 1998 Identical sample of study already included 

Sinclair et al., 2000 Inadequate cognitive testing 

Smith et al., 2009 Identical sample of study already included 
Spauwen et al., 2015 Authors did not provide requested data 

van Gemert et al., 2018 Authors did not provide requested data 

Watari et al., 2006 Authors did not provide requested data 

Xia et al., 2013 Identical sample of study already included 

Xia et al., 2015 Identical sample of study already included 

 521 
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