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Abstract   

Deep   learning   (DL)   requires   labeled   data.   Labeling   medical   images   requires   medical   expertise,   

which   is   often   a   bottleneck.   It   is   therefore   useful   to   prioritize   labeling   those   images   that   are   most   

likely   to   improve   a   model's   performance,   a   practice   known   as   instance   selection.   Here   we   

introduce   ENRICH,   a   method   that   selects   images   for   labeling   based   on   how   much   novelty   each   

image   adds   to   the   growing   training   set.   In   our   implementation,   we   use   cosine   similarity   between   

autoencoder   embeddings   to   measure   that   novelty.   We   show   that   ENRICH   achieves   nearly   

maximal   performance   on   classification   and   segmentation   tasks   using   only   a   fraction   of   available   

images,   and   outperforms   the   default   practice   of   selecting   images   at   random.   We   also   present   

evidence   that   instance   selection   may   perform   categorically   better   on   medical   vs.   non-medical   

imaging   tasks.   In   conclusion,   ENRICH   is   a   simple,   computationally   efficient   method   for   

prioritizing   images   for   expert   labeling   for   DL.   
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Introduction   

Deep   learning   (DL)   has   been   applied   with   success   in   proofs   of   concept   across   biomedical   

imaging   modalities   and   medical   specialties    1–17 .   DL   models   can   classify   images   by   disease   or   

structure   and   can   segment,   track,   and   measure   structures   within   images.   DL   thus   has   great   

promise   for   helping   meet   the   overwhelming   need   for   accurate,   reliable,   and   scalable   image   

interpretation   that   currently   exists   due   to   a   near-universal   shortage   of   trained   experts    5,6,18–21 .   

However,   DL   requires   labeled   data,   and   labeling   and   annotation   require   those   same   experts.   

Labeling   and   annotation   may   even   require   agreement   from   multiple   experts   before   assigning   a   

gold-standard   label    3 .   Even   when   semi-supervised   or   unsupervised   methods   are   used   to   train   a   

DL   model,   or   when   weak   labels   are   used,   experts   can   still   be   needed   to   label   images   in   test   

datasets,   in   order   to   benchmark   performance   on   high-stakes   medical   tasks.   As   a   result,   labeling   

can   be   a   costly   and   time-consuming   bottleneck   for   DL   in   medical   imaging.   This   is   in   contrast   to   

labeling   for   DL   in   non-medical   fields,   which   usually   focuses   on   everyday   objects   and   therefore   

can   be   performed   more   quickly   and   inexpensively   by   laypeople   via   crowdsourcing    22 .   

  

It   has   long   been   recognized   that   prioritizing   training   data   that   most   benefits   model   performance,   

instance   selection ,   as   opposed   to   choosing   data   at   random,   should   reduce   the   labeling   burden   

for   DL    23,24 .   The   challenge   is   determining   which   training   data   to   prioritize.   Another   

well-established   form   of   data   selection   is    active   learning    25,26 .   In   active   learning,   a   model   (e.g.   an   

image   classifier)   is   trained   on   a   labeled   subset   of   data   from   a   larger   unlabeled   pool   (e.g.   

unlabeled   images).   The   remaining   unlabeled   data   are   evaluated   according   to   the   model,   and   

some   selection   criterion   is   applied.   The   best-performing   instance   is   then   added   to   the   training   

set,   a   new   model   is   trained   on   the   now-larger   training   set,   and   the   cycle   is   repeated.   In   image   

classification   many   selection   criteria   have   been   evaluated,   including   measures   of   the   

uncertainty   of   the   model’s   classification   of   a   candidate   image,   the   image’s   contribution   to   the   

training   set’s   entropy,   and   the   image’s   representativeness   of   the   pool    27,28 .   These   investigations   

have   been   fruitful   but   have   not   identified   a   universal   best   performer   across   datasets   and   

modeling   approaches.   Iterative   model   retraining   can   make   active   learning   computationally   

intensive   for   DL,   a   drawback   somewhat   alleviated   by   selecting   images   in   batches   instead   of   

individually   (at   the   cost   of   making   learning   less   “active”)    29 .     
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In   contrast,   instance   selection   involves   choosing   images   based   only   on   their   relationships   to   the   

rest   of   the   images   in   the   pool   and   growing   the   training   set,   avoiding   the   computational   cost   of   

iterative   retraining.   Image-selection   criteria   generally   balance   some   measure   of   the   

informativeness   of   a   candidate   image   with   some   measure   of   how   much   that   image   will   add   to   

the   diversity   of   the   resulting   training   set    23 .   Instance   selection   has   been   shown   to   reduce   

training-set   sizes   in   many   settings,   but   again   which   criteria   perform   best   seems   to   depend   on   

the   type   of   model   and   dataset.   Also,   the   majority   of   work   on   instance   selection   involves   

non-imaging   datasets   and   precedes   recent   developments   in   DL.   

Medical   images   differ   from   images   of   everyday   objects   in   ways   that   we   hypothesized   could   be   

leveraged   for   a   new   instance   selection   approach.   Unlike   images   of   everyday   objects,   which   

typically   exhibit   multiple   lighting   conditions   and   are   captured   at   a   range   of   distances,   angles,   

and   contexts,   medical   images   are   often   more   uniform   in   these   respects,   a   result   of   

standardization   of   imaging   protocols   for   patient   care   (more   true   for   images   of   macroscopic   

and/or   intact   structures   than   for   histology   images).   Images   from   a   particular   medical   domain   

often   have   similar   subject   matter   (e.g.,   the   heart   in   cardiology,   the   retina   in   ophthalmology),   

pose   (standard   views),   background   (black),   noise,   lighting,   and   color   (monochrome).   In   the   case   

of   computed   tomography   (CT),   magnetic   resonance   imaging   (MRI),   ultrasound   (US),   and   other   

common   modalities,   image   frames   may   be   captured   consecutively,   resulting   in   similarity   among   

consecutive   images.   We   hypothesized   that   standardization   in   medical   imaging   creates   greater   

redundancy   in   medical   training   data   than   in   commonly   used   non-medical   datasets,   and   propose   

that   simply   prioritizing   non-redundant   images   is   an   efficient   means   of   instance   selection   for   DL   

in   medical   imaging.   

Here,   we   present   a   method   called   ENRICH—Eliminating   Needless   Redundancy   for   Imaging   

Challenges—consisting   of   two   main   steps.   First,   a   similarity   metric   is   calculated   for   all   pairs   of   

images   in   a   given   dataset,   forming   a   matrix   of   pairwise-similarity   values.   Second,   an   algorithm   

operates   on   the   matrix   to   identify   those   unlabeled   images   that   are   least   similar   to   images   in   an   

existing   seed   training   set   and   thereby   hypothetically   most   informative.   The   result   is   a   meaningful   

decrease   in   the   redundancy,   size,   and   labeling   burden   of   the   resulting   dataset.   We   demonstrate   

proof   of   concept   on   classification   and   segmentation   tasks   on   two   large,   well   characterized/well   

benchmarked   medical   datasets:   ECHO-F    3 ,   which   consists   of   fetal   echocardiograms,   and   OCT   
30 ,   which   consists   of   adult   retinal   optical   coherence   tomography   images.   We   also   demonstrate   

the   special   nature   of   medical   image   datasets,   demonstrating   differences   in   their   pairwise   
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similarities   compared   to   STL10,   a   standard   non-medical   image   dataset   used   for   unsupervised,   

self-taught   learning    31 .   

  

   

5   

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.05.22.21257645doi: medRxiv preprint 

https://www.zotero.org/google-docs/?Cb6WUt
https://doi.org/10.1101/2021.05.22.21257645


Methods   

Datasets   and   benchmarks.    Training   and   test   sets   are   described   in    Table   1 .   

ECHO-F   consists   of   labeled   fetal   echocardiogram   images    3 .   The   classification   task   was   to   

predict   the   fetal   axial   4-chamber   (A4C)   view   vs.   the   non-target   (NT)   view.   In   ultrasound,   one   or   

more   video   clips   are   acquired   per   patient;   each   video   clip   consists   of   one   to   several   hundred   

consecutive   image   frames.   Training   and   test   sets   were   divided   by   patient   identifier   (ID)   and   

were   disjoint   from   each   other   (mutually   exclusive).   

ECHO-F-SEG   consists   of   a   subset   of   A4C   images   from   the   ECHO-F   dataset   above.   

ECHO-F-SEG   was   used   for   a   (multi-class)   segmentation   task,   with   5   class   labels   for   image   

pixels:   left   ventricle,   right   ventricle,   left   atrium,   right   atrium,   background.   Notably,   the   

segmentation   dataset   had   already   been   curated   informally,   in   that   only   certain   frames   from   each   

video   clip   were   labeled.     

OCT   consists   of   labeled   adult   retinal   optical   coherence   tomography   images    30 .   This   dataset   was   

used   to   classify   between   a   normal   retina   (NL)   vs.   choroidal   neovascularization   (CNV).   The   

train/test   split   of   the   dataset   was   adjusted   from   the   original   authors’   description:   instead   of   250   

images   per   lesion   in   the   test   set,   we   created   disjoint   train/test   sets,   similar   to   ECHO-F,   split   by   

patient   ID.   This   increased   the   total   size   of   the   test   set   from   500   images   to   17,638   images.   

STL10   consists   of   labeled   and   unlabeled   images   of   animals   and   vehicles   for   unsupervised   

learning   tasks   (self-taught   learning)    31 .   Our   classification   task   for   this   dataset   was   predicting   

images   of   airplanes   (AIR)   vs.   images   of   trucks   (TRUCK).   In   addition   to   the   initial   500   labeled   

training   images   per   class,   a   larger   set   of   labeled   training   data   was   curated   from   the   100K   

unlabeled   training   images   using   a   progression   of   classifiers   and   human   sorting.   The   train/test   

split   of   the   dataset   remained   unchanged,   with   800   images   per   class.   

   

Image   processing.    All   grayscale   conversion   was   done   using   Python3’s   OpenCV   package;   all   

image   resizing   was   done   using   Python3’s   Scikit-Image   package.   

  

ECHO-F   images   were   originally   300x400   and   converted   to   grayscale.   For   autoencoder   input,   

images   were   cropped   and   resized   to   64x64.   For   classification   model   training   and   testing,   the   
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original   images   were   cropped   and   resized   to   80x80.   For   segmentation   model   training   and   

testing,   original   images   were   cropped   to   272x272,   and   no   resizing   was   performed.     

OCT   images   were   originally   grayscale   and   varied   in   size.   This   dataset   was   put   through   an   

additional   preprocessing   step   to   correct   region-of-interest   misalignment   and   remove   white-edge   

artifacts.   First,   white   sections   at   image   edges   were   removed,   then   images   underwent   a   similar   

cropping   and   resizing   process   performed   on   the   ECHO-F   classification   dataset.   

STL10   images   were   originally   96x96   and   converted   to   grayscale.   For   autoencoder   input,   images   

were   resized   to   64x64.   For   model   training   and   testing,   the   original   images   were   resized   to   

80x80.   

Embeddings   from   autoencoders.    The   bottleneck   layer   of   a   disentangled   variational   autoencoder   

(β-VAE)   was   used   to   compress   each   image   into   a   128-element   vector   embedding.   The   β-VAE   

used   was   based   on   the   architecture   as   described   previously   with   the   exception   of   having   a   

128-element   embedding    32 .   The   β-VAE   was   trained   on   a   subset   of   5,000   images   from   the   entire   

ECHO-F   training   dataset   as   previously   described    3 ,   using   combined   loss   (reconstruction   loss   

and   Kullback-Leibler   divergence)   and   standard   stopping   conditions.   

Pairwise   image   similarities.    For   each   dataset   ( Table   1 ),   a   matrix   of   pairwise   image   similarities   

was   calculated.   The   similarity   between   two   image   embeddings   was   defined   as   the   complement   

of   the   cosine   distance   between   each   embedding   (resulting   in   pairwise   similarities   ranging   from   0   

for   highly   dissimilar   images   to   1   for   identical   images).   

Ranking   algorithm.    For   each   deep-learning   task   (classification   and   segmentation),   an   initial   

subset   of   images   was   chosen   uniformly   at   random.   Additional   images   from   the   remaining   

dataset,   determined   by   the   ranking   algorithm   to   have   the   lowest   similarity   to   the   initial   subset,   

were   added   iteratively   to   grow   the   subset.   For   statistical   confidence,   this   process   of   random   

subset   initialization   and   subset   growth   was   repeated   3   times   for   each   task   to   provide   replicates.   

We   then   trained   10   new   models   with   the   resulting   training   sets   grown   from   each   initialization,   at   

specific   subset   sizes   ( Table   2 ),   and   predicted   on   the   test   set.   For   classification,   the   ranking   

algorithm   was   blind   to   class   label   during   iterative   selection;   the   label   was   revealed/assigned   

only   after   an   image   was   chosen.   For   segmentation,   the   ranking   algorithm   was   blind   to   

segmentation   label.  
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ECHO-F   classification   experiments   started   with   1,000   images,   roughly   2   percent   of   the   full   

training   set   (45,460   images).   Approximately   5,000   images   at   a   time   were   added   with   each   

iteration   of   subset   growth.     

ECHO-F-SEG   segmentation   experiments   started   with   200   images,   16   percent   of   the   full   training   

set   (1,248   images).   Approximately   100   images   at   a   time   were   added   with   each   iteration   of   

subset   growth.   

OCT   experiments   started   with   400   images,   roughly   1   percent   of   the   full   training   set   (46,164   

images).   Approximately   500   images   at   a   time   were   added   with   each   iteration   of   subset   growth.   

STL10   experiments   started   with   500   images,   roughly   5   percent   of   the   full   training   set   (10,176   

images).   Approximately   1,000   images   at   a   time   were   added   with   each   iteration   of   subset   

growth.   

Model   training.    Resnet   and   U-net   architectures   were   used   to   train   classification   and   

segmentation   models,   respectively,   as   previously   described    3 .   Data   augmentation   was   used   for   

the   segmentation   task   as   previously   described    3    but   not   for   any   of   the   classification   tasks.   

Experiments   for   each   dataset   used   the   same   model   parameters   throughout.     

Human   labeling   time   estimates .   Human   labeling   time   was   estimated   at   3   seconds   per   image   for   

classification   tasks   and   5   minutes   per   image   for   segmentation   tasks,   based   on   the   average   time   

it   took   for   these   tasks   for   ECHO-F   and   ECHO-F-SEG   (n=4   labelers   across   several   different   

labeling   platforms)     

Evaluation   metrics.    For   each   dataset,   we   calculated   the   highest   pairwise   similarity   for   each   

image.   This   excluded   images   compared   with   themselves   (which   would   have   had   similarity=1.0).   

We   then   plotted   the   cumulative   distribution   of   these   maximum   similarity   values   for   each   dataset   

( Fig.   1 ).   

Model   performance   was   compared   using   the   area   under   the   receiver   operator   characteristic   

curve   (AUC)   for   the   classification   tasks   and   average   Jaccard   score   of   the   four   heart   segments   

(left   ventricle,   right   ventricle,   left   atrium,   right   atrium)   for   the   segmentation   task,   as   previously   

described    3 .     
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Statistical   Comparisons.    Model   performance   was   compared   using   a   2-tailed   Mann-Whitney   U   

test.   For   statistical   confidence,   at   each   training   subset   a   total   of   60   models   were   compared;   30   

models   trained   using   ENRICH   to   add   images   to   the   starting   seed   and   30   models   trained   using   

images   added   at   random.   Performance   was   also   compared   using   standardization   at   each   

subset   size   (by   subtracting   the   mean   performance   and   scaling   the   resulting   values   to   a   standard   

deviation   of   1),   pooling   the   resulting   standardized   values,   and   using   Mann-Whitney   U   to   

compare   the   results   for   ENRICH   to   those   for   random   selection   (to   compare   performance   across   

sample   sizes)   ( Fig.   5 ).   
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Results   

ENRICH   involves   two   steps:   (1)   computing   a   matrix   of   pairwise-similarity   values   for   all   pairs   of   

images   in   a   given   dataset   and   (2)   ranking   images   by   similarity   for   inclusion   in   the   curated   

dataset.   Here,   we   used   ENRICH   with   a   pairwise   similarity   measure   based   on   the   distance   

between   β-VAE   embeddings,   and   a   ranking   algorithm   designed   to   minimize   image   redundancy.   

Note   that   these   choices   do   not   require   image   labels   to   be   assigned   prior   to   training.   We   thereby   

demonstrated   significant   redundancy   in   the   medical   image   datasets   ECHO-F   and   OCT,   and   

higher   redundancy   in   these   medical   datasets   than   in   the   non-medical   STL10.   To   our   knowledge   

this   is   the   first   quantitative   demonstration   of   this   property   and   the   first   such   comparison.   We   also   

demonstrated   that   by   using   ENRICH   to   curate   these   training   datasets,   the   same   test   

performance   on   well   benchmarked   binary   classification   was   achieved   using   only   a   fraction   of   

the   available   training   images   (ECHO-F   55   percent   of   available   images,   OCT   32.5   percent   of   

available   images).   

Image   redundancy   in   medical   datasets.    Based   on   prior   experience   with   medical   data    3 ,   we   

hypothesized   that   medical   image   datasets   have   significant   redundancy   among   images,   and   that   

such   redundancy   is   not   confined   to   images   from   a   given   patient   or   video   clip   but   instead   is   

distributed   across   the   dataset.   To   test   this   hypothesis,   for   each   dataset   we   identified   the   

maximum   pairwise   similarity   for   each   image.   The   majority   of   ECHO-F   classification   images   had   

a   maximum   similarity   greater   than   0.9,   i.e.   the   majority   of   images   had   at   least   one   other   image   

in   the   dataset   that   they   are   at   least   90%   similar   to.   The   OCT   dataset   also   demonstrates   

considerable   redundancy,   with   roughly   half   of   the   images   having   a   maximum   pairwise   similarity   

greater   than   0.8.   In   stark   contrast,   close   to   60   percent   of   the   images   in   the   STL10   dataset   have   

a   maximum   similarity   less   than   0.4   ( Fig.   1 ).   

Using   ENRICH   to   find   smaller   training   datasets   that   can   achieve   benchmark   performance   on   

medical   imaging   tasks.    We   trained   binary   classification   and   multi-class   segmentation   models   

with   different   subsets   of   each   of   the   training   datasets.   Each   trained   model   was   tested   on   the   

same   set   of   test   images   ( Table   1 ).   As   in   the   Methods,   training   image   subsets   of   increasing   size   

were   curated   using   ENRICH   vs   random   selection   ( Fig.   3 ).   
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ECHO-F   Classification.    When   trained   on   the   full   training   dataset,   model   test   performance   

achieved   a   mean   AUC   of   0.99   (±   3.43x10 -4 ).   Even   with   the   smallest   training   subsets,   ENRICH   

selected   images   that   represented   almost   all   of   the   available   patients   and   video   clips   ( Table   2 ).   

With   just   11   percent   of   images   from   the   full   ECHO-F   training   dataset,   ENRICH   outperformed  

random   selection   of   training   images   (mean   AUC   0.96   vs   0.94,   MWU   p-value   3.88x10 -9 ;    Fig.   2b ).   

The   size   of   the   training   subset   required   to   achieve   statistically   similar   results   to   the   full   training   

dataset   was   also   investigated.   When   training   images   were   chosen   using   ENRICH,   only   55   

percent   of   the   training   dataset   (25,000/45,460   images)   was   needed   to   achieve   benchmark   

performance   (AUC   0.99   ±   4.53x10 -4 ).   We   were   not   able   to   achieve   the   same   benchmark   from   

random   sampling.   

OCT   Classification.    Model   test   performance   achieved   a   mean   AUC   of   0.99   (±   2.24x10 -5 )   when   

trained   on   the   full   training   dataset.   ENRICH   outperformed   random   selection   at   just   2   percent   of   

all   OCT   images   (mean   AUC   0.995   vs   0.993,   MWU   p-value   9.98x10 -6 ).   Only   32.5   percent   of   the   

training   dataset   (15,000/46,164   images)   was   needed   to   achieve   benchmark   performance   (AUC   

0.99   ±   2.84x10 -5 )   when   training   images   were   chosen   using   ENRICH.   When   chosen   at   random,   

41   percent   of   the   training   dataset   (19,000/46,164   images)   was   needed   to   achieve   the   same   

benchmark   (AUC   0.99   ±   2.70x10 -5 ).   

STL10   Classification.    Model   test   performance   achieved   a   mean   AUC   of   0.99   (±   2.04x10 -4 )   when   

trained   on   the   full   training   dataset.   Initially,   random   image   selection   outperformed   ENRICH   (20   

percent:   mean   AUC   0.969   vs   0.966,   MWU   p-value   5.87x10 -4 ).   At   50   percent   of   all   STL10   

images,   ENRICH   outperformed   random   selection   (mean   AUC   0.992   vs   0.990,   MWU   p-value   

5.45x10 -6 )   and   continued   to   outperform   random   sampling.   In   order   to   achieve   benchmark   

performance   90   percent   of   the   total   dataset   (9,000/10,176   images)   was   needed   (mean   AUC   

0.99   vs   0.99,   MWU   p-value   0.42).   We   were   not   able   to   achieve   the   same   benchmark   with   

random   sampling.   

ECHO-F-SEG   Segmentation.    We   also   compared   training   subsets   chosen   by   ENRICH   vs   

randomly   chosen   image   subsets   for   a   multi-class   segmentation   task.   Using   all   available   training   

data   ( Table   1 ),   average   Jaccard   index   was   0.68.   With   80   percent   of   the   training   data,   ENRICH   

achieved   an   average   Jaccard   of   0.66   on   80   percent   of   available   images   (1,000/1,248   images).   
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Potential   time   savings   in   labeling .   As   an   example,   we   estimated   the   time   required   to   label   all   the  

images   in   ECHO-F   for   classification   and   ECHO-F-SEG   for   segmentation   tasks.   We   compared   

this   to   the   time   that   would   have   been   required   for   the   smallest   ENRICHed   subsets   that   achieved   

desired   performance   (55   percent   for   classification   and   80   percent   for   segmentation).   This   

suggests   a   savings   of   38   hours   of   full-time   work   for   an   expert   labeler,   on   even   this   relatively   

small   dataset   ( Fig.   4 ).   
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Discussion   

In   DL   for   medical   imaging,   investigators   generally   rely   on   a   crude   metric   for   dataset   quality   and   

content:   the   number   of   images   in   a   dataset.   However,   “more   is   better”   is   untenable   as   the   field   

progresses   and   datasets   grow:   requiring   more   storage   and   compute,   overburdening   human   

labelers,   hamstringing   agile   development   of   DL   models,   and   excluding   smaller   research   groups   

from   the   field.   Therefore,   there   is   a   critical   and   urgent   need   for   better   metrics   for   image   dataset   

content.   

Instance   selection   provides   a   general   strategy   for   addressing   these   shortcomings.   

Standardization   in   medical   imaging   suggested   to   us   that   images   that   are   the   least   similar   to   

each   other,   when   preprocessed   appropriately,   would   be   among   the   most   valuable   to   label.   Our   

method,   ENRICH,   curates   medical   image   datasets   based   on   quantitative   measures   of   image   

similarity.   Our   results   show   that   ENRICH   can   be   used   to   identify   redundancy   in   image   training  

datasets.   We   further   demonstrate   that   medical   datasets   such   as   ECHO-F   and   OCT   contain   

significant   redundancy.   Using   ENRICH   demonstrated   that    (i)    redundant   images   do   not   aid   

significantly   in   DL   model   training,    (ii)    image   labels   are   not   needed   in   order   to   curate   image   

datasets   according   to   redundancy,   and    (iii)    for   some   medical   datasets,   state-of-the-art   

performance   can   be   achieved   using   only   a   fraction—sometimes   a   small   fraction—of   the   full  

training   dataset.   

ENRICH   eliminates   the   need   to   label   large   portions   of   available   medical   imaging   data   ( Fig.   3 )   

while   still   achieving   the   same   performance   as   when   all   images   are   used.   Furthermore,   with   only   

a   minor   hit   to   performance,   even   fewer   images   can   be   used.   For   example,   while   not   statistically   

the   same   as   full   dataset   performance,   the   performance   on   just   22   percent   of   the   ECHO-F   

classification   training   dataset   had   an   AUC   of   0.98,   and   a   dataset   of   only   2   percent   of   the   size   of   

the   full   OCT   training   dataset   still   had   an   AUC   of   0.99   ( Fig.   3 ).   It   is   reasonable   to   conclude   that   

some   medical   classification   problems   may   be   more   straightforward,   in   the   sense   of   being   less   

data-hungry,   than   they   have   traditionally   appeared,   given   the   appropriate   (i.e.   ENRICHed   or   

otherwise   low-redundancy)   dataset.   

Furthermore,   it   is   important   to   note   that   classification   model   trainings   demonstrated   here   did   not   

include   standard   data   augmentations   (such   as   rotating   or   flipping   images;   see   Methods).   This   

choice   was   made   in   order   to    (i)    remove   data   augmentation   as   a   potential   confounding   factor   in   

measuring   ENRICH   performance    (ii)    mimic   clinical   DL   model-training   situations   where   data   
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augmentation   may   not   be   desired.   However,   in   the   future,   data   augmentation   can   be   applied   to   

enrich   training   subsets,   hopefully   requiring   even   fewer   images   to   meet   optimum   test   

performance.   

The   implications   of   these   findings   for   economizing   on   expert   clinical   image   labeling   are   clear.   

Perhaps   future   studies   using   medical   imaging   datasets   might   benefit   from   choosing   a   small,   

diverse,   ENRICHed,   subset   of   images   to   human   label.   Focusing   resources   on   a   select   few   

images,   rather   than   relying   on   weak   labeling   large   batches   of   potentially   redundant   images,   

which   may   result   in   mislabeled,   noisy   data    33 .   Also,   ENRICH   may   be   used   either   in   conjunction   

with   or   instead   of   transfer   learning   from   models   trained   on   enormous,   unrelated   datasets.   

It   is   notable   that   ENRICH   was   less   helpful   for   the   segmentation   task   studied   here   than   for   the   

classification   tasks.   However,   for   this   task,   labeling   was   so   time-consuming   that   we   had    already   

chosen   not   to   label   every   frame   in   each   video   clip,   thus   ECHO-F-SEG   was   already   a   subset   of   

ECHO-F   (Methods).   Therefore,   the   finding   that   an   additional   20   percent   of   the   

already-intuitively-reduced   dataset   was   not   needed   to   reach   full   dataset   performance   is   still   an   

additional   gain   in   efficiency   over   informal   curation.   The   segmentation   task   therefore   

demonstrates   that   a   quantitative   approach   to   image   dataset   curation   has   advantages   over   

intuitive   approaches.   When   considering   that   labeling   each   image   for   segmentation   took   several   

minutes,   and   20   percent   of   the   training   dataset   for   segmentation   comprised   249   image   frames,   

the   potential   time   savings   in   labeling    even   on   an   already-manually-reduced   dataset    is   

significant.     

The   OCT   dataset   split   was   adjusted   due   to   the   test   set,   originally   500   images,   being   too   easy   to   

classify.   Experiments   resulted   in   perfect   test   set   separability   (AUC=1.0)   despite   very   small   

training   set   size   (<2   percent   total   images   available).   Even   with   this   adjustment,   the   OCT   test   

dataset   was   still   very   separable   ( Fig.   3 ).   In   theory,   the   same   methods   used   here   to   curate   

training   data   can   be   used   to   curate   testing   datasets,   in   order   to   provide   the   most   efficient   and   

most   representative   benchmarks   for   generalizability.   

Results   from   the   STL10   dataset   provided   an   intriguing   counterexample   to   the   medical   imaging   

datasets.   Although   ENRICH   experiments   resulted   in   a   subset   (90   percent)   achieving   benchmark   

performance   of   the   full   training   dataset,   STL10   is   simply   less   redundant—more   diverse—    than   

the   other   datasets   studied   here   ( Fig.   1 ).   We   suspect   this   will   prove   generally   true   for   
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non-medical   datasets,   because   of   the   variety   in   how   they   capture   real-world   objects.   If   so,   it   

would   point   to   the   value   of   designing   methods   and   model   architectures   explicitly   for   medical   

data,   as   opposed   to   porting   them   from   other   domains,   for   efficient   machine   learning   in   medicine.   

Our   main   goal   with   ENRICH   is   to   alleviate   the   human-labeling   burden   that   medical   imaging   

datasets   often   present   by   removing   redundant   images.   Smaller   datasets   can   also   help   data   

science   researchers   economize   on   storage   and   compute,   especially   as   they   iterate   in   model   

development.   We   have   shown   that   model   performance   does   not   suffer   by   removing   these   

images,   and   in   some   cases   a   significant   proportion   of   the   dataset   can   be   removed   without   

detriment   to   performance.   Data   reduction   methods   such   as   active   learning   are   model-guided:   

the   model   selects   the   “best”   images   for   learning    34–36 ,   while   ours   is   data-guided:   the   data   

determine   which   images   are   redundant   and   are   best   removed.   Potential   combinations   of   

ENRICH   with   active   learning   are   interesting   directions   for   future   exploration.   

ENRICH   can   accommodate   arbitrary   choices   of   similarity   measure   (step   1)   and   ranking   

algorithm   (step   2)   ( Fig.   2 ).   As   proof   of   concept,   here   we   used   embeddings   from   a   β-VAE   to   

provide   a   pairwise   image   similarity   measure   based   on   imaging   data   of   the   same   general   type   

used   in   our   experiments,   and   we   used   a   ranking   algorithm   that   did   not   require    a   priori    labeling   

even   of   the   starting   training   images.   In   the   future,   investigating   alternative   similarity   measures   

and   ranking   algorithms   offers   opportunities   to   test   and   potentially   optimize   ENRICH   for   specific   

image   datasets   or   imaging   tasks.   For   example,   other   pairwise   image-similarity   metrics   may   

prove   more   informative   or   simpler   to   compute;   other   ranking   algorithms   may   account   for   class   

balance,   which   is   important   in   classification   tasks.   In   addition,   different   algorithm   choices   as   well   

as   code   optimizations   can   be   explored   to   maximize   the   utility   of   ENRICH   while   minimizing   time   

and   computational   load.   Quantitative   measures   of   similarity   have   been   shown   to   add   useful   

insights   in   other   fields    37,38 .   ENRICHment,   in   various   forms,   is   expected   to   be   a   useful   new   

avenue   for   decreasing   labeling   burden   and   speeding   iterative   training   and   testing   of   DL   models   

in   development.   
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Figure   Legends   

Figure   1.   Cumulative   density   of   maximum   pairwise   similarities.    ECHO-F,   OCT,   STL10,   and   

ECHO-F-SEG   datasets   are   shown.   Also   included   are   the   total   images   available   for   the   ECHO-F   

segmentation   task,   ECHO-F-SEG-ALL.   

Figure   2.   Experimental   schematic.    From   all   available   images   in   a   dataset,   an   initial   subset   (a)   

is   chosen   at   random.   The   remaining   images   comprise   a   candidate   pool   of   images   (b)   from   

which   additional   images   can   be   selected.   A   matrix   of   pairwise   image   similarities   (Step   1   of   

ENRICH)   is   constructed   (c).   From   this   matrix,   (d)   an   algorithm   is   used   to   choose   additional   

images   to   add   to   the   initial   training   set;   this   is   Step   2   of   ENRICH.   A   redundancy-reducing   

ranking   algorithm   was   used   in   this   work,   compared   to   random   choice   of   images   as   a   negative   

control.   (e)   this   process   was   repeated,   iteratively   adding   images   to   an   initial   subset.   

Figure   3.   Performance   of   ENRICHed   training   datasets   compared   to   randomly   selected   

training   datasets   (a)   ECHO-F   classification,   (b)   ECHO-F-SEG   segmentation   (c)   OCT   

classification,   and   (d)   STL10   classification.    From   a   common   initial   random   starting   dataset   

(grey),   additional   images   were   added   to   grow   increasingly   larger   training   subsets   using   ENRICH   

(blue)   vs   random   addition   (yellow).   Dots   represent   mean   AUC   on   the   test   set   from   30   replicates   

for   each   datapoint;   error   bars   for   each   datapoint   show   1   standard   deviation   around   the   mean.   

Asterisks   for   each   training   data   subset   represent   statistical   differences   between   ENRICH   and   

random   according   to   the   standard   convention   ( n s   =    p >0.05;   *   =    p ≤0.05;   **   =    p ≤0.01;   ***   =   

p ≤0.001;   ****   =    p ≤0.0001).   Datapoints   circled   in   red   are   statistically   indistinguishable   from   model   

performance   using   the   full   training   set   (100   percent   of   training   images;   black   dot).   

Figure   4.   Labeling   time   savings   using   ENRICH.    Time   estimates   for   labeling   ECHO-F   and   

ECHO-F-SEG   datasets.   

Figure   5.   Standardized   combined   subsets   demonstrate   overall   differences   between   

ENRICH   and   random   selection   (a)   ECHO-F   classification,   (b)   ECHO-F-SEG   segmentation   

(c)   OCT   classification,   and   (d)   STL10   classification.    Comparison   of   ENRICH   to   random   

performance   on   grouped   subsets.   
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Tables   and   Figures   

Table   1.   Overall   training   and   test   datasets.   

A4C,   axial   4-chamber;   NT,   non-target;   NL,   normal;   CNV,   choroidal   neovascularization;   AIR,   

airplane   

   

22   

    ECHO-F:   A4C   ECHO-F:   NT   ECHO-F-SEG   OCT:   NL   OCT:   CNV   STL10:   AIR   STL10:   TRUCK  

  Training  Test   Training  Test   Training  Test   Training  Test   Training  Test   Training  Test   Training  Test   

No.   
images   20378   4365   25082   3618     1248     173   23468   3015   22696   14623  6059   800   4117   800   

No.   
patients   652     80   281     51     186     20   3193   433   653   267           

No.   video  
clips   1495     198   2849     764     299     48                   
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Table   2.   Average   training   subsets.   

A4C,   axial   4-chamber;   NT,   non-target   

  

  

  

  

23   

Dataset   ECHO-F:    NT   

%   of   full     

training   set  
2   7   11   22   33   44   55   66   77   88   100   

No.   

  images   
556   1981   3467   7412   10648   13469   15891   18167   19739   19739   25082   

No.     

patients   
104   222   270   281   281   281   281   281   281   281   281   

No.     

video   clips  
424   1346   2139   2741   2794   2817   2826   2,827   2833   2833   2849   

Dataset   ECHO-F:   A4C   

%   of   full     

training   set  
2   7   11   22   33   44   55   66   77   88   100   

No.     

images   
444   1018   1533   2588   4352   6531   9108   11833   15260   20260   20378   

No.     

patients   
266   502   629   652   652   652   652   652   652   652   652   

No.     

video   clips  
347   882   1319   1480   1492   1495   1495   1495   1495   1495   1495   

Dataset   ECHO-F-SEG   

%   of   full     

training   set  
16   24   32   48   64   80   88   96   100   

No.     

images   
200   300   400   600   800   1000   1100   1200   1248   

No.     

patients   
100   121   130   151   167   178   181   185   186   

No.     

video   clips  
121   156   180   224   260   281   289   298   299   
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NL,   normal;   CNV,   choroidal   neovascularization   
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Dataset   OCT:   NL   

%   of   full     

training   set  
1.3   3.2   5.4   15   26   32.5   34.6   41   54   65   100   

No.     

images   
209   301   410   1264   2888   4270   4766   6490   10601   14462   23468   

No.     

patients   
204   266   338   777   1403   1783   1898   2241   2776   3048   3193   

Dataset   OCT:   CNV   

%   of   full     

training   set  
1.3   3.2   5.4   15   26   32.5   34.6   41   54   65   100   

No.     

images   
384   1199   2090   4189   9112   10730   11234   12510   14399   15538   22696   

No.     

patients   
176   300   373   529   600   621   627   638   648   650   653   

Dataset   STL10:   AIRPLANE   

%   of   full     

training   set  
5   10   20   30   50   70   88   100   

No.     

images   
299   407   632   946   1886   3457   5361   6059   

Dataset   STL10:   TRUCK   

%   of   full     

training   set  
5   10   20   30   50   70   88   100   

No.     

images   
201   593   1368   2054   3113   3543   3638   4117   

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.05.22.21257645doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.22.21257645


Figure   1.   Cumulative   density   of   maximum   pairwise   similarities.   

  

  

  

Figure   2.   Experimental   schematic.   
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Figure   3.   Performance   of   ENRICHed   training   datasets   compared   to   randomly   selected   

training   datasets   (a)   ECHO-F   classification,   (b)   ECHO-F-SEG   segmentation   (c)   OCT   

classification,   and   (d)   STL10   classification.   
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Figure   4.   Labeling   time   savings   using   ENRICH.     
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Figure   5.   Standardized   combined   subsets   demonstrate   overall   differences   between   

ENRICH   and   random   selection   (a)   ECHO-F   classification,   (b)   ECHO-F-SEG   segmentation   

(c)   OCT   classification,   and   (d)   STL10   classification. 
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