Machine Learning Prediction of Food Processing

Giulia Menichetti¹,², Babak Ravandi¹, Dariush Mozaffarian⁴, Albert-László Barabási¹,²,³†

¹Network Science Institute and Department of Physics, Northeastern University, Boston, USA
²Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
³Department of Network and Data Science, Central European University, Budapest, Hungary
⁴Tufts Friedman School of Nutrition Science & Policy, Boston, USA

Abstract

Despite the accumulating evidence that increased consumption of ultra-processed food has adverse health implications, it remains difficult to decide what constitutes processed food. Indeed, the current processing-based classification of food has limited coverage and does not differentiate between degrees of processing, hindering consumer choices and slowing research on the health implications of processed food. Here we introduce a machine learning algorithm that accurately predicts the degree of processing for any food, indicating that over 73% of the U.S. food supply is ultra-processed. We show that the increased reliance of an individual’s diet on ultra-processed food correlates with higher risk of metabolic syndrome, diabetes, angina, elevated blood pressure and biological age, and reduces the bio-availability of vitamins. Finally, we find that replacing foods with less processed alternatives can significantly reduce the health implications of ultra-processed food, suggesting that access to information on the degree of processing, currently unavailable to consumers, could improve population health.

†Corresponding author. e-mail: a.barabasi@northeastern.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Unhealthy diet is a major risk factor for multiple non-communicable diseases, from obesity and type 2 diabetes to coronary heart disease (CHD) and cancer, together accounting for 70% of mortality and 58% of morbidity worldwide [1,2]. Traditionally, consumers rely on food category-based dietary recommendations like the Food Pyramid (1992 [3]) or MyPlate (2011 [4]), which define the mix of fruits, vegetables, grains, dairy and protein-based foods that constitute a healthy diet. In recent years, however, an increasing number of research studies and dietary guidelines have identified the important role and separate health effects of food processing [5–9]. Observational studies, meta-analysis, and controlled metabolic studies suggest that dietary patterns relying on unprocessed foods are more protective than the processing-heavy Western diet against disease risk [10].

A landmark, widely used classification system for food processing is the NOVA system [11], which categorizes individual foods into four broad categories: unprocessed or minimally processed (NOVA 1), like fresh, dry or frozen fruits or vegetables, grains, legumes, meat, fish and milk; processed culinary ingredients (NOVA 2), like table sugars, oils, fats and salt; processed foods (NOVA 3), like canned food, simple bread and cheese; and ultra-processed products (NOVA 4), everything else including packaged breads, cookies, sweetened breakfast cereals, margarines, sauces and spreads, carbonated drinks, hot dogs, hamburgers and pizzas. Epidemiological studies have documented significant associations between greater consumption of the highest NOVA category of processing (NOVA 4, ultra-processed food) and diseases onset [12–18], including links to obesity [19], CHD [17, 20], diabetes mellitus [21, 22], cancer [16], and depression [15]. Finally, a randomized controlled metabolic trial has confirmed the short-term adverse effects on caloric intake and weight gain of ultra-processed foods [18].

Despite its successes, NOVA classification of food items is laborious and incomplete, limiting research into the impact of processed food. First, as the current categorization relies on expertise-based manual evaluation of each food, it covers only 35% of the foods catalogued by U.S. Department of Agriculture (USDA) (SI Section 1). Second, the classification of composite recipes, products, and mixed meals including different types of processed items – a large proportion of the food supply – is not straightforward. Whilst an accurate ingredient list of all complex foods would allow for an ingredient-based classification, a full and quantified ingredient list is seldom, if ever, available to the consumer, and when available, it shows considerable variability from database to database. Given these data limitations, current approaches have classified all foods with at least one ultra-processed ingredient as ultra-processed [16, 23], reducing the discrimination of such foods in relation to health outcomes [24, 25]. Third, all the observed
risk for the NOVA classification is in the NOVA 4 class, representing a large and heterogeneous category of ultra-processed food that does not allow investigation of the health implications of different gradations of processing. Indeed, according to NOVA, many nations derive up to 60% or more of their average caloric intake from ultra-processed foods [25–27], and within this class each food item is considered identical. These challenges limit both scientific research and practical consumer guidance on the health effects of differing degrees of processing and consumer choices, and also reduce industry incentives to reformulate foods to be less processed, potentially shifting investments from the ultra-processed NOVA 4 foods to the less processed NOVA 1 and NOVA 3 categories.

To overcome these limitations, here we introduce FoodProX, a machine learning classifier trained to predict the degree of processing of any food. Importantly, FoodProX allows us to define a continuous index that captures the degree of processing of any food, and can help quantify the overall diet quality of individuals, unveiling statistical correlations between the degree of processing characterizing individual diets and multiple disease phenotypes.

Results

The manual procedure behind NOVA, relying on the ingredients of food, has allowed a straightforward labeling to 2,484 foods reported in the National Health and Nutrition Examination Survey (NHANES) 2009-2010, representing 34.25% of items consumed by a representative sample of the U.S. population [13] (SI Section 1). The remaining foods are either not classified, or require further decomposition into their differing food ingredients, often not reported by the manufacturers. In contrast, the basic nutrient profile of foods and beverages is always disclosed, mandated by law in most countries. For example, the USDA Standard Reference database (USDA SR Legacy), catalogues the nutrient profile of 7,793 foods with resolutions ranging from 8 to 138 nutrients (Figure S1) [28], and USDA FNDDS reports between 65 to 102 nutrients for all foods consumed by NHANES participants [29,30].

Our work relies on the hypothesis that the nutrient profiles of unprocessed or minimally processed foods are generally constrained within common physiologic ranges [31]. The nutrient profile can be widely altered by the physical, biological and chemical processes involved in food preparation and conservation, thus correlating with the degree of processing undertaken. Indeed, among the nutrients reported in raw onion, 3/4 change their concentration in excess of 10% in the fried and battered version of the product, and more than half by 10-fold (Figure 1B). We lack however, a single nutrient “biomarker” that accurately tracks the degree of process-
ing; instead we observe changes in the concentration of multiple nutrients, whose combinations jointly correlate with processing. This complexity advocates for the use of machine learning, designed to capture the combinatorial explosion of nutrient alterations.

FoodProX Algorithm

We leveraged the nutrient concentrations provided in FNDDS 2009-2010 for the foods hand-classified by NOVA [13] to train FoodProX, a multi-class random forest classifier (Figure 1D). FoodProX takes as input the list of nutrients in any food and offers as output a vector of four probabilities \(\{p_i\} \), representing the likelihood that the respective food is classified as unprocessed (\(p_1 \), NOVA 1), processed culinary ingredients (\(p_2 \), NOVA 2), processed (\(p_3 \), NOVA 3), and ultra-processed (\(p_4 \), NOVA 4). The highest of the four probabilities determines the final classification label for each food (Figure 1C-D).

As 90% of foods in USDA Branded Food Products Database report less than 17 nutrients, we also tested the algorithm’s predictive power with the 12 gram-based nutrients mandated by FDA [32] (SI Section 1). We identified consistently high AUC values in all cases: 0.9804±0.0012 for NOVA 1, 0.9632±0.0024 for NOVA 2, 0.9696±0.0018 for NOVA 3, 0.9789±0.0015 for NOVA 4 (Figure S4 and Table S6). These results confirm that changes in nutrient content have significant predictive power to assess the extent of food processing. Furthermore, we find that no single nutrient drives the predictions, but the predictive signal is rooted in combinations of changes spanning multiple nutrients (see SI Section 2.2 for permutation feature importance).

We visualize the decision space of the classifier by performing a principal component analysis over the probabilities \(\{p_i\} \), observing that the list of foods manually classified by NOVA is limited to the three corners of the phase space, to which the classifier assigns dominating probabilities (Figure 2A). We used FoodProX to classify all foods and beverages that lacked prior manual NOVA classification in FNDDS (65.75% of total). We found that 7.39% of FNDDS consists of NOVA 1; 0.90%, NOVA 2; 18.36%, NOVA 3; and 73.35%, NOVA 4 foods (Figure 2B). Yet, many previously unclassified foods are often inside the phase space, indicating that they lack a dominating probability, hence the assignment of a single NOVA class is somewhat arbitrary (Figure 2B). The detection of this ambiguity is a strength of FoodProX, reflecting the observation that a four-class classification does not accurately capture the nutrient variability characterized by different food processing methods and intensities [33].
the classifier confidently assigns “Raw Onion” to NOVA 1 \((p_1 = 0.9651) \), and “Onion rings prepared from frozen” \((p_4 = 0.9921) \) to NOVA 4, it accurately offers an intermediate confidence for “Onion, Sauteed,” placing it with probability \(p_4 = 0.6521 \) in NOVA 4, and with probability \(p_3 = 0.2488 \) in NOVA 3.

Food Processing Score (FPro)

The observation that enforcing discrete classes causes inherent challenges in food classification prompted us to introduce the Food Processing Score (FPro), a continuous variable with \(FPro = 0 \) for raw ingredients, and \(FPro \rightarrow 1 \) for ultra-processed foods. We define the FPro of a food \(k \) as

\[
FPro_k = \frac{1 - p_{1k} + p_{4k}}{2},
\]

capturing the progressive changes in nutrient content induced by processing. In other words, the FPro score measures the trade-off between the confidence that the FProX algorithm has in classifying the food item \(k \) as NOVA 1 \((p_{1k}) \) or NOVA 4 \((p_{4k}) \). For example, \(FPro \) incrementally increases from raw onion \((FPro = 0.0203) \) to boiled onion \((FPro = 0.3126) \), fried onion \((FPro = 0.7779) \), and onion rings from frozen ingredients \((FPro = 0.9955, \text{Figure 2C}) \). FPro allows us to unveil the degree of processing characterizing different food preparation techniques, assigning lower values to foods made from fresh ingredients than those made from frozen ingredients (Figure 2C). FPro also permits classification of complex recipes and mixed dishes, identifying the overall average processing of the item or meal.

As noted above, nearly 20% of the U.S. diet comprises foods in NOVA 3, and over 70%, in NOVA 4. The observed variability of FPro for foods that belong in the same NOVA class prompted us to analyze the variations in degree of processing within subgroups of foods and beverages, as captured by What We Eat in America (WWEIA) categorization [34]. We find that different food products within the same NOVA classification and WWEIA categories show remarkable variability in FPro, confirming the presence of different processing fingerprints within each category (Figure 2D). For example, if we select four products from the same brand (Post) of breakfast cereals that are all manually classified as NOVA 4 (i.e., considered identically processed), we observe that FPro differentiate them and captures progressive alterations in fiber content, fortification with vitamins and minerals, and addition of sugar and fats (Figure 2D, insert, and Section S2.6).
Stability and Robustness of FPro

Real world foods vary in nutritional content, affected by recipe variations, production methods, soil quality, storage time, and changing government regulations [35]. This degree of variability, coupled by measurement and reporting uncertainties, raises a fundamental question: is FPro robust against the expected variability and uncertainty in nutrient content? To address this, we first explored how nutritional values for the same food change through different FNDDS cycles, focusing on the 5,632 foods whose nutrient profile is reported both in FNDDS 2009-2010 and 2015-2016 (SI Section 7). For example, in the less processed category, for “Milk, calcium fortified, cow’s, fluid, whole” we find that 14 nutrients have changed between 2009 and 2015, including a 3.65 fold decrease in Calcium content. In a similar fashion, the highly ultra-processed “Cookie, vanilla with caramel, coconut, and chocolate coating” shows variation in 46 nutrients, with 6 fold decrease in monounsaturated fatty acid 20:1. Despite such significant changes in the content of some nutrients, FPro shows remarkable stability: milk’s FPro goes from 0.0010 to 0.0011, consistently classifying it as unprocessed, and for the cookie FPro goes from 0.9943 to 0.9965, staying firmly in the ultra-processed category. Overall, for foods whose nutrients maximally change between 10% and 50% of their original value, we observe an absolute shift in FPro of 0.001556 (quartiles $Q_1(25%)=0.000222$, $Q_3(75%)=0.004764$). Allowing up to 1000% of nutrient variability does not significantly alter our findings, since the expected change of FPro per food reaches 0.003312 (quartiles $Q_1(25%)=0.000722$, $Q_3(75%)=0.011310$). The observed FPro stability is rooted in the fact that FPro’s value is driven by the nutrient panel as a whole, and not by the concentration of any single nutrient (see SI Section S7, for further details on data sampling and variability).

Currently, the chemical information available to train FPro does not track the concentration of additives as they are rarely available for most foods. Yet, additives like tertiary butylhydroquinone, acetylated monoglycerides, polysorbates, sodium stearoyl lactylate and sodium aluminum phosphate, represent obvious signatures of food processing [36], raising the question on how much improvement in predictive power we could obtain if information on additives would be available. We therefore relied on the Open Food Facts, that compiles an extensive list of food additives, including artificial colors, artificial flavors, and emulsifiers [37], to test the FPro’s ability to absorb information on additives. From the Open Food Facts website we collected 233,831 nutritional records, annotated with NOVA labels according to a heuristic described in [38]. We then trained and validated two models: (1) FProX leveraging only nutrition facts as introduced before, (2) a modified FProX, using nutrition facts and the available information on
the number of additives (SI Section 6). While model (2) displays slightly better performance, with AUC 0.9926±0.0003 for NOVA 1, 0.9878±0.0047 for NOVA 2, 0.9653±0.0010 for NOVA 3, 0.9782±0.0007 for NOVA 4, we find that the performance of model (1) is largely indistinguishable, reaching AUC 0.9880±0.0006 for NOVA 1, 0.9860±0.0045 for NOVA 2, 0.9320±0.0015 for NOVA 3, 0.9508±0.0009 for NOVA 4. In other words, while information on additives can improve FProX’s performance, changes in the nutrient profile already carry the bulk of the predictive power.

Finally, we investigate how FPro, a measure of the nutritional quality of food, changes depending on where the food was prepared, exploring if it can distinguish between home-cooked food, food prepared in stores, canteens, restaurants, fast foods, and products available in vending machines. Leveraging data from NHANES, we ranked the 10 most popular food sources in increasing value of FPro. The lowest FPro is observed for “Grown or caught by you and someone you know” (median FPro=0.4423) and “Residential dining facility” (median FPro=0.6238), confirming the less processed nature of home prepared foods. We obtain a much higher FPro for “Restaurant fast food/pizza” (median FPro=0.9060) and “Vending machine” (median FPro=0.9800), confirming its reliance on ultra-processed ingredients. This result indicates that FPro can differentiate food sources, styles and quality of food preparation (see Section S2.6 for the statistical analysis).

Individual Processing Score

The significant contribution of ultra-processed food to American dietary intake, and FPro’s ability to demonstrate heterogeneity in the extent of food processing within the broad category of ultra-processed food, prompts us to assess the contribution of processed food to the diet of each individual, jointly weighted by both the extent of processing and the contribution to caloric intake. This is provided by the individual Food Processing Score ($iFPro$),

\[
iFPro^j_{WC} = \sum_k D_j C^j_k FPro_k,
\]

which varies between 0 and 1, where D_j is the number of dishes consumed by individual j, C^j is the daily total amount of consumed calories, and c^j_k is the amount of calories contributed by each food item. A gram-based $iFPro_{WG}$, captures the fraction of grams in a diet supplied by processed food (Eq. S4).
We calculated $iFPro$ for 20,047 individuals with dietary records in a representative U.S. national sample from NHANES 1999-2006. NHANES relies on 24-hour recalls to capture dietary intake, a widely used methodology in epidemiology, with well-explored statistical characteristics [39]. Indeed, studies collecting multiple days of intake data per individual indicate that it is statistically more efficient to increase the number of individuals in the sample than increase the number of days beyond two per individual [40]. As Figure 3C shows, the median $iFPro_{WC}$ for the American population is 0.7872, confirming a high reliance on intake on ultra-processed food [25–27]. More importantly, $iFPro$ allows us to identify differential reliance on processed food. Consider individuals A and B, men of similar age (47 vs. 48 years old, Figure 3A-C), with similar number of reported daily unique dishes (12.5 vs. 13 dishes) and comparable caloric intake (2,016 vs. 1,894 kcal). Yet, the diet of individual A has $iFPro_{WC} = 0.3981$, as it relies on unprocessed ingredients and home cooking. In contrast, B has $iFPro_{WC} = 0.9572$, given his consumption of hot dogs, hamburgers, French fries, pizza, and Kit Kat. As we show next, these differences correlate with different health outcomes.

Health Implications

To quantify the degree to which the consumption of ultra-processed foods, graded across their entire range, correlate with health outcomes, we investigated exposures and phenotypes provided in NHANES 1999-2006 [41]. Inspired by [42], we performed an Environment-Wide Association Study (EWAS), an alternative to single-exposure epidemiological studies, to identify the most significant environmental factors associated with different health phenotypes in a non hypothesis-driven fashion. We measured for each variable the association with the diet processing score $iFPro$, adjusting for age, sex, ethnicity, socio-economic status, BMI and caloric intake (Figure SI 3). After False Discovery Rate (FDR) correction for multiple testing, 209 variables survive (SI Section 4), documenting how the consumption of ultra-processed foods relates to health.

Metabolic and Cardiovascular Risk: We find that individuals with a high food processing score show positive associations with risk of metabolic syndrome (MetS), diabetes (fasting glucose), and also (consistent with poor diets clustering in families) a family history of heart attack or angina, in line with earlier findings (SI Section 4) [42–44]. The increased risk of cardiovascular disease is further confirmed by the significant positive association of $iFPro$ with both Framingham and ACC/AHA Risk Scores (Figure 3D) [45,46].
Overall, individuals with a higher food processing score exhibit higher blood pressure, trunk fat and subscapular skinfold, measures of obesity, and blood insulin and triglyceride levels; and lower “good” HDL cholesterol. Further novel findings indicate a higher prevalence of type 2 diabetes (C-peptide), inflammation (C-Reactive Protein), vitamin deficiency (homocysteine, methylmalonic acid), and inflammatory arthritis [47–52]. We also find an inverse association between \(iFPro \) and telomere length, which can be affected by diet through inflammation and oxidation [53], suggesting a higher biological age for individuals with higher reliance on more ultra-processed foods (SI Section 4).

Vitamins and Phytoestrogens: A greater consumption of more extensively processed foods correlates with lower levels of vitamins in our bloodstream, like Vitamin \(B_{12} \) and Vitamin C, despite the fact that ultra-processed breakfast cereals and refined flours are frequently fortified with these vitamins and minerals.

In addition, \(iFPro \) allows us to discriminate plant-based diets relying on legumes, whole grains, fruits and vegetables, from diets that include ultra-processed plant-based meat, dairy substitutes, and plant-based drinks [54]. For example, we observe a positive correlation between \(iFPro_{WC} \) and the urine levels of daidzein, genistein, and their bacterial metabolite o-desmethylandangolensin – all bio-markers of soy, abundant in diets that rely on highly processed soy protein foods. On the other hand, enterolactone and enterodiol, gut metabolites of plant lignans (fiber-associated compounds found in many plant families and common foods, including grains, nuts, seeds, vegetables, and drinks such as tea, coffee or wine) are inversely associated with \(iFPro_{WC} \) [55].

Chemical Exposures: Diet rich in highly processed food shows association with increased carcinogenic, diabetic, and obesity-inducing food additives and neoformed contaminants, several of which represent previously unknown relationships. For instance, we find positive associations with acrylamide and polycyclic aromatic hydrocarbons, present in heat treated processed food products as a result of Maillard reaction, benzenes (abundant in soft drinks), furans (common in canned and jarred foods), PCBs (processed meat products), perfluorooctanoic acids and phthalates (found in the wrappers of some fast foods, microwavable popcorn, and candy), and environmental phenols like the endocrine disruptor bisphenol A (linked to plastics and resins for food packaging) [56–61]. Importantly, all these represent compounds not reported in food composition databases, but recovered in blood and urine (Figure SI 5).

Taken together, our ability to distinguish the degree of processing of foods in individual diets...
allowed us to unveil multiple correlations between diets with greater reliance on ultra-processing and health outcomes. This approach leads to results that cannot be captured with the existing NOVA classification (SI Section 4). Specifically, if we rely on the manual NOVA 4 and the panel of exposures in NHANES, we recover only 92 significant associations. Among the missing associations are the inverse correlation of a more ultra-processed diet with vitamin D and folate blood levels, and the positive correlation with c-peptide, homocysteine, and blood pressure (SI Section 4).

Food Substitution

The high reliance of ultra-processed food among the U.S. population (Figure 3C) prompts us to ask: what kind of interventions could help us reduce the observed health implications? Given the challenges of large behavioral shifts [62, 63], here we assume that an individual does not need to overhaul her entire diet, but replace the most processed items she consumes with less processed versions of the same item. To minimize the dietary shifts required, we identify within each individual’s diet the item with high caloric contribution and for which there are significantly less processed alternatives (Eq. S5), preserving the broad food class (WWEIA) of the initial choice (SI Section 5). For example, we replace Kix cereals ($FPro = 0.9998$) with shredded wheat and bran cereals ($FPro = 0.5091$), and spread cheese from a pressurized can ($FPro = 0.9648$) with provolone cheese ($FPro = 0.5001$).

We find that the isocaloric replacement of a single item from the average of 19.28 food items daily consumed by U.S. adults reduces the median $iFPro_{WC}$ by 12.15%, from an overall score of 0.7872 to 0.6915 (Figure 3E). Based on observed associations with phenotypes, this translate to a decrease in the odds of metabolic syndrome by 12.25%, a lower concentration of urinary bisphenol A by 8.47%; and an increased blood concentration of vitamin B_{12} and vitamin C by 4.83% and 12.31%, respectively (Figure 3F and Eqs. S6 and S7). Furthermore, the substitution of 10 food items, about half the daily reported items, leads to 37.03% decrease in $iFPro_{WC}$, with associated changes of -21.43% for bisphenol A, $+13.02\%$ for blood vitamin B_{12}, and $+37.26\%$ for blood vitamin C.

Overall, we find that modest substitution strategies made possible by $FPro$ can preserve the general nature of an individual’s diet but reduce reliance on more highly processed food and successfully moderate the observed health implications. To implement such strategies, consumers must be empowered with information on the degree of processing characterizing the foods and beverages they purchase or make, and the available alternatives, information provided
by \textit{FPro} for the whole food supply.

\section*{Discussion}

The remarkable ability of the FoodProX predictions to replicate the manual NOVA classification confirms that food processing results in distinct patterns of nutrient alterations, accurately detected by machine learning. Importantly, FoodProX allows us to build upon and extend the current NOVA classification in several crucial respects, offering automated and reproducible classification of foods across multiple national and commercial databases, ability to classify complex recipes and mixed foods and meals, and ability to quantify the extent of food processing among the large and otherwise homogeneously categorized groups of ultra-processed foods. Given that our algorithm only needs the Nutrition Facts, information already accessible to consumers on packaging and via smartphone apps, web portals, and grocery store and restaurant websites, \textit{FPro} can help monitor the reliance of an individual’s diet on less or more processed food. Differently from dietary indexes such as HEI-15 \cite{64}, designed to measure the alignment of individuals’ diets with the 2015-2020 Dietary Guidelines for Americans, \textit{iFPro} and \textit{FPro} help us identify which foods to substitute, to shift individual consumption patterns towards a less processed diet. Our substitution heuristic indicates that minimal changes in diet can significantly reduce disease risk, a strategy hard to implement with the current NOVA classification, which classifies more than 70\% of the food supply as NOVA 4 \cite{65}.

The consistent predictive power of \textit{FPro} in the epidemiological analysis indicates that it offers an accurate global scale of food processing, capturing the chemical-physical alterations of food and its impact on health. However, \textit{FPro} is currently best suited to rank foods within the same food category, hence offering accurate input for substitution strategies, as explored above. In other words, we should first identify a chemically-driven food group (e.g. “Fruit”), and then quantify the extent of nutrient alterations that leads to different degrees of processing.

Overall, a combination of \textit{FPro} with epidemiological studies and food classification could lead to an automated and practical pipeline capable of systematically improving population diet and individual health.
Acknowledgments

We thank Dr. Euridice Martinez Steele at the University of Sao Paulo for providing NOVA manual classification for FNDDS databases. We thank Dr. Wei Wang at Harvard Medical School for consulting as statistical expert. This work was conducted with support from Harvard Catalyst | The Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, National Institutes of Health Award UL 1TR002541) and financial contributions from Harvard University and its affiliated academic healthcare centers. The content is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Catalyst, Harvard University and its affiliated academic healthcare centers, or the National Institutes of Health. A.-L.B is partially supported by NIH grant 1P01HL132825, American Heart Association grant 151708, and ERC grant 810115-DYNASET.

Competing Interests

A.-L.B. is the founder of Scipher Medicine and Foodome, companies that explore the use of network-based tools in health, and Datapolis, that focuses on urban data.

Code and Data Availability

All codes are available upon request at g.menichetti@northeastern.edu. All datasets can be accessed through the cited references.

Author contributions

G.M. and A.-L.B. conceived the project. G.M. designed the study, performed data modeling, analytical calculations, data query and integration, and wrote the manuscript. B.R. performed data query, data integration, statistical analysis, and contributed to writing the manuscript. D.M. contributed to interpreting the results and writing the manuscript. A.-L.B. contributed to the conceptual design of the study and writing the manuscript.
References

Figure 1: **Food Processing and Nutrient Changes (FoodProX).** (a)-(b) Ratio of nutrient concentrations for 100 g of Sauteed Onion and Onion Rings compared to Raw Onion, indicating how processing alters the concentration of multiple nutrients. All nutrients in excess compared to the concentrations found in the raw ingredient are shown in red. (c)-(d) We trained FoodProX, a random forest classifier over the nutrient concentrations within 100 g of each food, tasking it to predict its processing level according to NOVA. FoodProX represents each food by a vector of probabilities \(\{p_i\} \), capturing the likelihood of being classified as unprocessed (NOVA 1), processed culinary ingredients (NOVA 2), processed (NOVA 3), and ultra-processed (NOVA 4). The highest probability determines the final classification label, highlighted in a box on the right.
Figure 2: NOVA Classification and Processing Score. (a) Visualization of the decision space of FoodProX via principal component analysis of the probabilities \(\{p_i\} \). The manual 4-level NOVA classification assigns unique labels to only 34.25% of the foods listed in FNDDS 2009-2010 (empty circles). The classification of the remaining foods remains unknown (“Not Classified”), or must be further decomposed into ingredients (“Composite Recipe”). The list of foods manually classified by NOVA is largely limited to the three corners of the phase space, foods to which the classifier assigns dominating probabilities. (b) FoodProX assigned NOVA labels to all foods in FNDDS 2009-2010. The symbols at the boundary regions indicate that for these foods the algorithm’s confidence in the classification is not high, hence a 4-class classification does not capture the degree of processing characterizing that food. For each food \(k \), the processing score \(FPro_k \) represents the orthogonal projection (black dashed lines) of \(\vec{p}_k = (p_{k1}, p_{k2}, p_{k3}, p_{k4}) \) onto the line \(p_1 + p_4 = 1 \) (highlighted in dark red). (c) We ranked all foods in FNDDS 2009/2010 according to \(FPro \). The measure sorts onion products in increasing order of processing, from “Onion, Raw”, to “Onion rings, from frozen”. (d) Distribution of \(FPro \) for a selection of the 155 Food Categories in What We Eat in America (WWEIA) 2015-2016 with at least 20 items (SI Section 2). WWEIA categories group together foods and beverages with similar usage and nutrient content in the U.S. food supply [34]. All categories are ranked in increasing order of median \(FPro \), indicating that within each food group, we have remarkable variability in \(FPro \), confirming the presence of different degrees of processing. We illustrate this through four ready-to-eat cereals, all manually classified as NOVA 4, yet with rather different \(FPro \). While the differences in the nutrient content of Post Shredded Wheat ’n Bran \((FPro = 0.5658) \) and Post Shredded Wheat \((FPro = 0.5685) \) are minimal, with lower fiber content for the latter, the fortification with vitamins, minerals, and the addition of sugar, significantly increases the processing of Post Grape-Nuts \((FPro = 0.9603) \), and the further addition of fats results in an even higher processing score for Post Honey Bunches of Oats with Almonds \((FPro = 0.9999) \), showing how \(FPro \) ranks the progressive changes in nutrient content.
Figure 3
Figure 3: Health implications and Food Substitution. For each of the 20,047 individuals in NHANES (1999-2006), 18+ years old with dietary records [41], we calculated the individual diet processing scores $iFPro_{WC}$. (a) The average number of unique dishes reported in the dietary interviews, highlighting two individuals A and B, with comparable number of dishes, 12.5 and 13 reported, respectively. (b) The distribution of average daily caloric intake, showing that individuals B and A have similar caloric intake of 1,894 and 2,016 kcal, respectively. (c) The distribution of $iFPro_{WC}$ for NHANES, indicating that individuals A and B display significant differences in $iFPro_{WC}$, with B’s diet relying on ultra-processed food ($iFPro_{WC} = 0.9572$), and A reporting simple recipes ($iFPro_{WC} = 0.3981$) (Figure S6). (d) We measured the association of various phenotypes with $iFPro_{WC}$, correcting for age, gender, ethnicity, socio-economic status, BMI, and caloric intake (SI Section 4). We report the standardized β coefficient, quantifying the effect on each exposure when the Box-Cox transformed dietary scores increase of one standard deviation over the population. For continuous exposures the coefficients are fully standardized, while for logistic regression (disease phenotypes) we opted for partially standardized coefficients to help interpretability (SI Section 4). Each variable is color-coded according to β, positive associations shown in red, and negative associations in blue. (e) Changes in $iFPro_{WC}$ when one (orange) or up to ten (yellow) dishes are substituted with their less processed versions, following the prioritization rule defined in Eq. S5. (f) The impact of substituting different number of dishes on the odds of metabolic syndrome, concentrations of vitamin B_{12}, vitamin C, and bisphenol A, showing that a minimal substitution strategy can significantly alter the health implications of ultra-processed food.
SUPPLEMENTARY INFORMATION

Contents

1 Training Dataset 3

1.1 Food Composition Databases .. 3
1.2 FNDDS 2009-2010 .. 4
1.3 NOVA Manual Classification Coverage 6
1.4 Nutrient Panels ... 7
1.5 Hierarchical Clustering of Foods according to Nutrients 9

2 Random Forest Classifier FoodProX and Food Processing Score \(FPro \) 11

2.1 Random Forest Classifier .. 11
2.2 Feature Importance ... 11
2.3 Food Processing Score \(FPro \) 13
2.4 Validation of \(FPro \) in Different FNDDS Editions 14
2.5 Case Study on Post Cereals 15
2.6 Source of Food .. 15

3 Individual Diet Processing Scores \(iFPro \) and Exposome 17

3.1 Individual Processing Score \(iFPro \) 17
3.2 Population Characteristics 17
3.3 Correlation between \(iFProWG \), \(iFProWC \), and HEI-15 18
3.4 Water Consumption in NHANES 19

4 Environment-Wide Association Study 20

5 Food Substitution .. 29

6 Open Food Facts .. 31

7 Data Quality and Future Directions 32

8 Overview of FoodProX and FPro 36
1 Training Dataset

1.1 Food Composition Databases

The food supply, representing the full inventory of all foods available for human consumption, along with their nutritional content, plays an important role in determining an individual’s nutrient exposure. Nutritional information is captured by food databases, collections of nutrient measurements for extensive samples of the food supply. Here we define as nutrients all chemicals catalogued by food databases, whether they refer to unique chemicals, like vitamin C, or aggregate measures, like total fat or total sugar. Additionally, all major nutrient databases include calories, measuring how much energy our body could get from eating or drinking the selected product. Which foods and which nutrients to report is strictly dependent on the database considered. For instance, USDA SR Legacy, the authoritative source of food composition data in the United States contains 7,793 food items with variable nutrient resolution, from a minimum of 8 nutrients, up to 138 (Figure S1) [2]. In comparison, USDA FNDDS, designed for the epidemiological analysis of dietary intake data collected by the National Health and Nutrition Examination Survey (NHANES), reports 65 to 102 nutrients for all foods, depending on the edition, containing no missing nutrient values (Figure S1) [3,4].

The nutrient resolution available to consumers is significantly lower: the Food and Drug Administration (FDA) mandates the listing of 14 nutrients on the nutrition facts label, from saturated and trans fat, to sodium and vitamin C [1] An updated nutrition facts label was finalized in 2016, removing vitamin A and C, but listing added sugars, vitamin D, and potassium. However, the compliance deadline for certain food categories was extended to July 2021, and for the majority of the data describing branded products, we observed a significantly higher coverage of the nutrition facts prior to 2016.

Figure SI. 1: Nutrient Panel Resolution for Different Food Databases. To fully capture the nutrient alterations caused by food processing, we need access to the nutrient information characterizing each food in the food supply. The resolution available for branded products sold in grocery stores is very limited, frequently less than what required by FDA nutrition facts [1].
1.2 FNDDS 2009-2010

The Food and Nutrient Database for Dietary Studies (FNDDS) is designed by the USDA to provide food composition data (e.g. the amount of Vitamin C per 100 g of a selected ingredient) for foods and beverages reported in the dietary component of the National Health and Nutrition Examination Survey (NHANES), a biannual cross-sectional survey of the US Population conducted by Center for Disease Control and Prevention (CDC) to monitor the health of Americans. FNDDS is derived by combining the food items provided in the USDA National Nutrient Database for Standard Reference (SR). In other words, each item in FNDDS is related to one or more foods in SR, reported as ingredients in FNDDS. Differently from SR, designed for the dissemination of food composition data, FNDDS’s goal is to enable the analysis of dietary intake, hence it contains no missing nutrient values, an ideal setup to train machine learning models [5]. Since 2017, the USDA has been harmonizing these different data sources in FoodData Central (FDC), labeling SR data as SR-Legacy [6]. In particular, SR28 (released in 2015) is the final version of SR-Legacy databases, and it is the foundation of FNDDS 2015-2016. In addition to FNDDS and SR-Legacy, FoodData Central stores also Foundation Foods, a new food composition dataset that reports individual sample measurements behind the nutrient average values that populate the other databases, and metadata reporting the number of samples, location, time-stamps, analytical methods used, and if available, cultivar and production practices.

As shown in Figure S1, for the years 2007-2010 the USDA developed a flavonoids database for population surveys that extended the original nutritional panel of 65 nutrients to 102. For our analysis we kept all nutrients measured in g, mg or µg, dropping “Energy”, “Folate, DFE” and “Vitamin A, RAE”, resulting in 99 nutrients, converted to grams (g).

We chose FNDDS 2009-2010 as data training for FoodProX, as it gave us the possibility to combine the manual labels assigned by Steele et al. in [7], with the widest panel of nutrients available for population studies. Out of 7,253 foods in FNDDS 2009-2010, 2,484 food items are assigned to a unique NOVA class, while the remaining 4,769 foods are not classified (730), or need further decomposition (4,039) into 2,946 ingredients imported from the SR24 database.

Figure S2A shows the proportion of NOVA classes in the initial dataset, labels mainly derived by following the hierarchical encoding of food items provided by FNDDS. Indeed, each food is assigned to an 8-digit code, and the first five digits represent food categories. For instance, code 13230120 is assigned to “Pudding, flavors other than chocolate, ready-to-eat, sugar free” where the first digit ‘1’ represents “Milk and Milk Products”; the first two digits ‘13’ represents “Milk Desserts and Sauce”; and similarly ‘132’ represents “Puddings, Custards, and other Milk.
Desserts.” Relying on FNDDS food categories leads to two major limitations of the current classification system: (a) the existence of many exceptions. For example, a non ultra-processed food could belong to a category assumed to contain only ultra-processed food. Resolving these exceptions is a laborious work that requires domain knowledge; (b) limited scalability, as not all databases have a fine-tuned hierarchy of categories assigned to foods comparable to FNDDS.

Additionally, we found that some unclassified items, despite being labeled as requiring further decomposition, had only one ingredient. For instance, this is the case for the unclassified item ‘Egg, whole, raw’ (food code 31101010), created by linking only a single food from the SR database: ‘Egg, whole, raw, fresh’ (SR code 1123). Hence, we migrated 478 such unclassified single-ingredient foods to the training dataset (Figure S2B).

To further improve the training dataset, we manually classified nine foods, to extend the coverage of staple ingredients like ‘Salt’, or poorly represented classes like meat and fish (Table S1). In particular, the addition of ‘Salt’ in the training helped FoodProX to better calibrate the role of sodium in identifying ultra-processed food.

Figure SI. 2: Proportion of NOVA Classes in the Manual Classification and Training Dataset. (A) Steele et al. [7] manually assigned NOVA classes to 2,484 from 7,253 food items in FNDDS 2009-2010. (B) We identified 478 single-ingredient and unclassified food items in FNDDS 2009-2010 linked to a single food in the SR database with assigned NOVA labels. (C) Final training dataset with the corrections on single-ingredient food items and the addition of 9 manually classified food items reported in Table S1.
Table SI. 1: Manual Additions to the Training Dataset

<table>
<thead>
<tr>
<th>Food code</th>
<th>Food Description</th>
<th>Ingredients</th>
<th>NOVA Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2047</td>
<td>Salt</td>
<td>• Salt, table (directly imported from SR database)</td>
<td>2</td>
</tr>
<tr>
<td>26100100</td>
<td>Fish, NS as to type, raw</td>
<td>• Fish, pollock, walleye, raw</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fish, salmon, sockeye, raw</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fish, tilapia, raw</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fish, catfish, channel, farmed, raw</td>
<td></td>
</tr>
<tr>
<td>26115000</td>
<td>Flounder, raw</td>
<td>• Fish, flatfish (flounder and sole species), raw</td>
<td>1</td>
</tr>
<tr>
<td>26119100</td>
<td>Herring, raw</td>
<td>• Fish, herring, Atlantic, raw</td>
<td>1</td>
</tr>
<tr>
<td>26121100</td>
<td>Mackerel, raw</td>
<td>• Fish, mackerel, Atlantic, raw</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fish, mackerel, Pacific and jack, mixed species, raw</td>
<td></td>
</tr>
<tr>
<td>26125100</td>
<td>Ocean perch, raw</td>
<td>• Fish, ocean perch, Atlantic, raw</td>
<td>1</td>
</tr>
<tr>
<td>26313100</td>
<td>Mussels, raw</td>
<td>• Mollusks, mussel, blue, raw</td>
<td>1</td>
</tr>
<tr>
<td>63123020</td>
<td>Grapes, American type, slip skin, raw</td>
<td>• Grapes, american type (slip skin), raw</td>
<td>1</td>
</tr>
<tr>
<td>27116400</td>
<td>Steak tartare (raw ground beef and egg)</td>
<td>• Beef, ground, 85% lean meat / 15% fat, raw</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Egg, yolk, raw, fresh</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Onions, raw</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fish, anchovy, european, canned in oil, drained solids</td>
<td></td>
</tr>
</tbody>
</table>

1.3 NOVA Manual Classification Coverage

The coverage of NOVA classification for FNDDS 2001-2017 is presented by Figure S3. For over 55% of the databases, NOVA classification relies on having a precise ingredient decomposition of food items, an information that is extremely uncommon. To note, the manual NOVA classification has been updated since the initial classification on FNDDS 2009-2010 used in [7]. For clarity, only for FNDDS 2009-2010 in Figure S3, we used the NOVA classification conducted...
by Steele et al. in [7], which is the data-source that we used to train FoodProX. However, close to the convergence of this manuscript, Steele and colleagues have updated the manual classification for FNDDS 2009-2010, and propagated the labels in different cohorts by matching the food codes through the years. In the updated manual classification of FNDDS 2009-2010 the percentage of food items relying on ingredient decomposition is increased to 58.98% from 55.69%.

Figure SI. 3: Manual NOVA Classification Coverage Over FNDDS 2001-2017. On average 35% of the food items have a manual NOVA label without relying on ingredient decomposition.

1.4 Nutrient Panels

The large nutritional panel available for FNDDS 2009-2010 allowed us to train FoodProX with varying subsets of nutrients. The widest panel consists of 99 nutrients, including the flavonoid measurements developed for NHANES 2007-2010 (Table S2) [8]. Among these 99 nutrients, we further selected and trained on 62 nutrients common to NHANES 2001-2018 (Table S3), and 58 nutrients available in NHANES 1999-2018 (Table S4). Figures 1A-1C in manuscript describe the results on FNDDS 2009-2010, with 99 nutrients, while Figures 1D-1E are related to the analysis of FNDDS 2015-2016, therefore using a nutrient panel of 62 nutrients. For the epidemiological analysis in Section 3 leveraging data from 1999 to 2006, we opted for 58 nutrients.

With the goal to tackle branded products and the consumer space, we additionally trained on a subset of 12 nutrients contributing to FDA nutrition facts (Table S5), excluding calories and total amount of trans fatty acids, as the latter is not available in the original batch of 99
nutrients.

All nutrients were log-transformed and 0 values were substituted with e^{-20}, choice justified by the order of magnitudes spanned by nutrient concentrations in food [9].

Table SI. 2: 99 Nutrient Panel for NHANES 2007-2010

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>37 Additional Nutrients From FNDDS Flavoniod 2007-2010 Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>Vitamin E (alpha-tocopherol) 6:0</td>
</tr>
<tr>
<td>Total Fat</td>
<td>Vitamin D (D2 + D3) 8:0</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>Cryptoxanthin, beta 10:0</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Lycopene 12:0</td>
</tr>
<tr>
<td>Water</td>
<td>Lutein + zeaxanthin 14:0</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Vitamin C 16:0</td>
</tr>
<tr>
<td>Theobromine</td>
<td>Thiamin 18:0</td>
</tr>
<tr>
<td>Sugars, total</td>
<td>Riboflavin 18:1</td>
</tr>
<tr>
<td>Fiber, total dietary</td>
<td>Niacin 18:2</td>
</tr>
<tr>
<td>Calcium</td>
<td>Vitamin B-6 18:3</td>
</tr>
<tr>
<td>Iron</td>
<td>Folate, total 20:4</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Vitamin B-12 22:6 n-3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Choline, total 16:1</td>
</tr>
<tr>
<td>Potassium</td>
<td>Vitamin K (phylloquinone) 18:4</td>
</tr>
<tr>
<td>Sodium</td>
<td>Folic acid 20:1</td>
</tr>
<tr>
<td>Zinc</td>
<td>Folate, food 20:5 n-3</td>
</tr>
<tr>
<td>Copper</td>
<td>Vitamin E, added 22:1</td>
</tr>
<tr>
<td>Selenium</td>
<td>Vitamin B-12, added 22:5 n-3</td>
</tr>
<tr>
<td>Retinol</td>
<td>Cholesterol 4:0</td>
</tr>
<tr>
<td>Carotene, beta</td>
<td>Fatty acids, total saturated 4:0</td>
</tr>
<tr>
<td>Carotene, alpha</td>
<td>4:0</td>
</tr>
</tbody>
</table>

Table SI. 3: 62 Nutrient Panel for NHANES 2001-2018 Cycles

<table>
<thead>
<tr>
<th>Nutrients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>Vitamin E (alpha-tocopherol) 6:0</td>
</tr>
<tr>
<td>Total Fat</td>
<td>Vitamin D (D2 + D3) 8:0</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>Cryptoxanthin, beta 10:0</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Lycopene 12:0</td>
</tr>
<tr>
<td>Water</td>
<td>Lutein + zeaxanthin 14:0</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Vitamin C 16:0</td>
</tr>
<tr>
<td>Theobromine</td>
<td>Thiamin 18:0</td>
</tr>
<tr>
<td>Sugars, total</td>
<td>Riboflavin 18:1</td>
</tr>
<tr>
<td>Fiber, total dietary</td>
<td>Niacin 18:2</td>
</tr>
<tr>
<td>Calcium</td>
<td>Vitamin B-6 18:3</td>
</tr>
<tr>
<td>Iron</td>
<td>Folate, total 20:4</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Vitamin B-12 22:6 n-3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Choline, total 16:1</td>
</tr>
<tr>
<td>Potassium</td>
<td>Vitamin K (phylloquinone) 18:4</td>
</tr>
<tr>
<td>Sodium</td>
<td>Folic acid 20:1</td>
</tr>
<tr>
<td>Zinc</td>
<td>Folate, food 20:5 n-3</td>
</tr>
<tr>
<td>Copper</td>
<td>Vitamin E, added 22:1</td>
</tr>
<tr>
<td>Selenium</td>
<td>Vitamin B-12, added 22:5 n-3</td>
</tr>
<tr>
<td>Retinol</td>
<td>Cholesterol 4:0</td>
</tr>
<tr>
<td>Carotene, beta</td>
<td>Fatty acids, total saturated 4:0</td>
</tr>
<tr>
<td>Carotene, alpha</td>
<td>4:0</td>
</tr>
</tbody>
</table>
Table SI. 4: 58 Nutrient Panel for NHANES 1999-2018 Cycles

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>Vitamin E (alpha-tocopherol) 14:0</td>
</tr>
<tr>
<td>Total Fat</td>
<td>Cryptoxanthin, beta 16:0</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>Lycopene 18:0</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Lutein + zeaxanthin 18:1</td>
</tr>
<tr>
<td>Water</td>
<td>Vitamin C 18:2</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Thiamin 18:3</td>
</tr>
<tr>
<td>Theobromine</td>
<td>Riboflavin 20:4</td>
</tr>
<tr>
<td>Sugars, total</td>
<td>Niacin 22:6 n-3</td>
</tr>
<tr>
<td>Fiber, total dietary</td>
<td>Vitamin B-6 16:1</td>
</tr>
<tr>
<td>Calcium</td>
<td>Folate, total 18:4</td>
</tr>
<tr>
<td>Iron</td>
<td>Vitamin B-12 20:1</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Vitamin K (phyloquinone) 20:5 n-3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Folic acid 22:1</td>
</tr>
<tr>
<td>Potassium</td>
<td>Folate, food 22:5 n-3</td>
</tr>
<tr>
<td>Sodium</td>
<td>Cholesterol fatty acids, total monounsaturated</td>
</tr>
<tr>
<td>Zinc</td>
<td>Fatty acids, total saturated fatty acids, total polyunsaturated</td>
</tr>
<tr>
<td>Copper</td>
<td>4:0</td>
</tr>
<tr>
<td>Selenium</td>
<td>6:0</td>
</tr>
<tr>
<td>Retinol</td>
<td>8:0</td>
</tr>
<tr>
<td>Carotene, beta</td>
<td>10:0</td>
</tr>
<tr>
<td>Carotene, alpha</td>
<td>12:0</td>
</tr>
</tbody>
</table>

Table SI. 5: 12 Nutrient Panel for Branded Products

<table>
<thead>
<tr>
<th>Nutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
</tr>
<tr>
<td>Total Fat</td>
</tr>
<tr>
<td>Carbohydrate</td>
</tr>
<tr>
<td>Sugars, total</td>
</tr>
<tr>
<td>Fiber, total dietary</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Iron</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
<tr>
<td>Vitamin C</td>
</tr>
<tr>
<td>Cholesterol</td>
</tr>
<tr>
<td>Fatty acids, total saturated</td>
</tr>
<tr>
<td>Total Vitamin A = Retinol + Carotene, beta + Carotene, alpha + Cryptoxanthin, beta</td>
</tr>
</tbody>
</table>

1.5 Hierarchical Clustering of Foods according to Nutrients

Leveraging the 99 nutrient panel for FNDDS 2009-2010, we clustered all foods in an unsupervised fashion, using the dynamic tree cut algorithm [10]. The algorithm retrieves 20 clusters, annotated in the first column of the cluster-map shown in Figure S4. The nutrient-derived clusters are not good predictors of NOVA classes, both computationally-derived (Column 2) and manually-assigned (Column 3). We measure the mutual dependence between different clustering methodologies with adjusted mutual information (AMI), an adjustment of the classic mutual information (MI) to account for chance, that takes a value of 1 when two partitions are identical and 0 when the MI between two partitions equals the value expected by chance [11]. In particular, for the foods in the training data which were manually-assigned to NOVA 1, 2, 3, and 4,
Figure SI. 4: Hierarchical Clustering of Foods according to Nutrient Content. We clustered all foods in FNDDS 2009-2010, each represented by a vector of 99 log-transformed nutrients. The cluster-map is annotated according to different classification strategies. In Column 1, starting from the left, each color corresponds to a cluster found by the dynamic tree cut algorithm. In Column 2 we report the predicted NOVA classes by FoodProX, while Column 3 encodes the manual labels used during the training phase of FoodProX. Finally, in Column 4 items are color-coded according to the first two digits of their FNDDS food codes.

we find AMI=0.12. Similarly, for the classes predicted by FoodProX we obtain AMI=0.14. The nutrient-based hierarchical clustering is more consistent with the first two digits of the FNDDS food codes (Column 4), capturing broad food groups as defined by the database (AMI=0.39). This result suggests that the performance of FoodProX is not merely induced by the classification of foods based on nutrient content, but FoodProX combines in a non-linear fashion the features of processing techniques (supervised information learned from NOVA manual labels), with food composition data (unsupervised information learned from FNDDS nutritional values). Similar results were obtained with 62, 58, and 12 nutrient panels described in Section S1.4.
2 Random Forest Classifier FoodProX and Food Processing Score \(FPro \)

2.1 Random Forest Classifier

We evaluated the performance and stability of FoodProX over a 5-fold stratified cross validation of the labeled dataset (Figure S11C), with varying input resolution. In Figures S11A-H we show the ROC curves and Precision-Recall curves for each NOVA class, while in Tables S6A and S6B we report average and standard deviation of AUC and AUP over the 5 folds, and across the different nutrient panels, as reported in the manuscript. The high performance for different nutrient resolutions is encouraging, as for many foods we lack access to an extensive panel of nutrients.

To improve the performance of the classifier on new data and limit over-fitting, we retrained it using SMOTE \[12\] to correct for the unbalance in class representation, and created and ensemble voting system of 5 classifiers trained on 4/5 of the generated data. The predictions on unseen data are then calculated as the average of the 5 classifiers.

![Figure SI. 5: Random Forest Performance Over the 4 NOVA Classes.](image)

Figure SI. 5: Random Forest Performance Over the 4 NOVA Classes. For each NOVA class we evaluated the performance of the random forest classifier with a 5-fold cross validation. We observe similar performances for the classifiers trained with 99, 62 and 12 nutrients. In Panels A-D we show the ROC curves for each NOVA class, while panels E-F display the Precision-Recall curves.

2.2 Feature Importance

Inspired by the work of Parr et al. \[13\], we investigated how different nutrients contribute to the overall performance of FoodProX, i.e. their feature importance. The most popular way
Table SI. 6: AUC and AUP for the four NOVA classes. For each NOVA class we report average and standard deviation of AUC and AUP over the stratified 5-folds, for 12, 62, and 99 input nutrients. We summarize the results across nutrient panels of different resolution in bold.

(A)	NOVA 1	NOVA 2	NOVA 3	NOVA 4
Average AUC Nutrition Facts | 0.981662 | 0.966348 | 0.967094 | 0.976772 |
Std AUC Nutrition Facts | 0.003621 | 0.044898 | 0.010411 | 0.003432 |
Average AUC 62 Nutrients | 0.980837 | 0.962878 | 0.970605 | 0.979866 |
Std AUC 62 Nutrients | 0.00173 | 0.048586 | 0.00806 | 0.004876 |
Average AUC 99 Nutrients | 0.978806 | 0.960406 | 0.971156 | 0.980085 |
Std AUC 99 Nutrients | 0.002772 | 0.052151 | 0.007394 | 0.004237 |

(B)	NOVA 1	NOVA 2	NOVA 3	NOVA 4
Average AUP Nutrition Facts | 0.891112 | 0.756997 | 0.864605 | 0.990558 |
Std AUP Nutrition Facts | 0.035105 | 0.169225 | 0.040566 | 0.001414 |
Average AUP 62 Nutrients | 0.891971 | 0.736245 | 0.873025 | 0.991702 |
Std AUP 62 Nutrients | 0.024412 | 0.185744 | 0.03922 | 0.002178 |
Average AUP 99 Nutrients | 0.881419 | 0.74707 | 0.879123 | 0.991783 |
Std AUP 99 Nutrients | 0.024092 | 0.193387 | 0.032601 | 0.001954 |

Average AUP | 0.888168 | 0.74677 | 0.872251 | 0.991348 |
Std AUP | 0.004785 | 0.008475 | 0.005952 | 0.00056 |

To assess feature importance in the random forest algorithm is the mean decrease impurity, measuring how effective a feature is at reducing uncertainty (classifiers) or variance (regressors) when building the decision trees. However, this methodology is not reliable when potential predictors vary in their scale of measurement or their number of categories [14]. We opted for permutation feature importance, a technique quantifying the relevance of each feature by permuting the specific input column and measuring the decrease in accuracy or R^2 compared to the baseline. This approach handles also the presence of collinear features, i.e. variables with some significant degree of linear or nonlinear dependence, that should be clustered and permuted together.

First, we modified the algorithm to work on a stratified 5-fold cross-validation, with data splits consistent with the cross-validation for the baseline model. Second, we addressed the high degree of collinearity of the nutrient space by removing all measurements like “Total Fat” or “Total flavonoids”, as they represent straightforward linear combinations of other nutrients. On the reduced set of 85 nutrients we studied both rank correlation and feature dependence, i.e. the extent in which each feature can be predicted by the others through a random forest regressor. We cluster together features with $\rho_{\text{Spearman}} \geq 0.80$, and additionally, every nutrient well fitted by the random forest regressor is connected to each of the nutrients in the independent variable set that determines a drop ≥ 0.80 in the coefficient of determination (Figure S6A). Given the stochastic nature of the permutation feature importance, we repeated the estimation 20 times, and ranked the feature clusters according to their average drop in accuracy. In Figure S6B we report the top 10 most significant feature clusters, where only Sodium shows more predictive power than the other nutrients, suggesting that there is no single nutrient marker for food processing.
Figure SI. 6: Permutation Feature Importance. (a) Clusters of features with strong dependence. We cluster together features with $\rho_{\text{Spearman}} \geq 0.80$, and additionally, every nutrient well predicted by the remaining nutrient set through a random forest regressor is connected to each of the independent variables determining a drop ≥ 0.80 in the coefficient of determination. Each connected component determines a single cluster of features permuted at the same time, while isolated nutrients (not shown) are permuted on their own. (b) Top 10 most important nutrient clusters sorted by average permutation importance over 20 reshuffles.

2.3 Food Processing Score $FPro$

The classifier probability space is a 4-D probability simplex that collects all vectors satisfying

$$\left\{ \vec{p} \in \mathbb{R}^4, \ p_1 + p_2 + p_3 + p_4 = 1, \ p_i \geq 0 \ \forall i \right\}. \quad (1)$$

We define the processing score $FPro_k$ as the projection of any food $\vec{p}_k = (p^k_1, p^k_2, p^k_3, p^k_4)$ over the line going from the pure minimally-processed state $\vec{p}_{MP} = (1, 0, 0, 0)$ to the pure ultra-processed state $\vec{p}_{UP} = (0, 0, 0, 1)$, represented by the parametric equation

$$\vec{l}(t) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad (2)$$

equivalent to the explicit equation $p_1 = 1 - p_4$. The orthogonal projection of food \vec{p}_k follows as the intersection between Eq. (2) and the plane passing through \vec{p}_k and orthogonal to $\vec{l}(t)$, i.e.

$$-p_1 + p_4 + p^k_1 - p^k_4 = 0. \quad (3)$$
The parameter t^* satisfying Eqs. S2-S3 determines the processing score $FPro_k$ in Eq. 1. Of note, $FPro$ assigns a value around 0.5 for all NOVA 2/3 classes, which are then differentiated using the p_2/p_3 ratio.

We focused on the extreme classes NOVA 1 and NOVA 4, as by definition [15], they are the only ones with a clear “natural” ranking, ideal to define a processing scale. Indeed, NOVA 3 is not more processed than NOVA 2, they simply collect remarkably different items, according to nutrient composition and consumed portion. However, both classes are more complex than NOVA 1, and less processed than NOVA 4. While it is true that a “pure” NOVA 2/3 item would have $FPro = 0.5$, in real-world data, this is an uncommon scenario, so the extent of the residual probabilities p_1 and p_4 measures if a product is leaning towards the minimally processed or the ultra-processed extreme.

2.4 Validation of FPro in Different FNDDS Editions

We investigated the relation of $FPro$, trained on FNDDS 2009-2010 with a 62 nutrient panel, and NOVA manual classification in other editions of FNDDS, to control for any potential over-fitting and validate the performance of our algorithm on new foods, or foods whose nutrient content has changed over time. In particular, in Figure S7 we show the results for FNDDS 2015-2016, so far, the USDA database for dietary studies with the highest number of food items. All the four classes of manually labeled items correspond to well localized and distinguishable distributions of $FPro$.

2.5 Case Study on Post Cereals.

To further investigate the interplay between nutrient patterns and FPro, we collected the 62 nutrient profiles describing each Post cereal highlighted in Figure 2, and compared them with the nutritional values for 100 grams of unprocessed wheat bran (FPro=0.0682). We chose this specific ingredient as the Post Shredded Wheat ‘N Bran contains whole grain wheat, wheat bran, and the antioxidant Butylated hydroxytoluene \[16\], and we tried to find any potential matching item in FNDDS 2015-2016. In Figure S8, we compare the nutrient values in absolute terms (Panel A), or as ratio with their counterpart in wheat bran (Panel B). Interestingly, we observe how the pattern of alterations involves all nutrients, increasing the level of FPro even for simple products like Post Shredded Wheat ‘N Bran, as its nutrient profile is not characteristic of any natural ingredient per 100 grams, but it corresponds to a mildly processed food (FPro=0.5658).

2.6 Source of Food

The location where a food was prepared, as well the origin of the ingredients, could be indicative of its degree of processing. To investigate this hypothesis we used the variable DR1FS
Figure SI. 8: Nutrient Profiles of Post Cereals compared to “Wheat bran, unprocessed”. (a) All 62 nutrients measured in FNDDS 2015-2016 are shown in log-scale, and with varying color and marker depending on the food item. (b) We rescale the nutrient profile of each cereal by the corresponding value per 100 grams found in unprocessed wheat bran, and plot them in log-scale. The black dashed line corresponds to 1, i.e. identical nutrient content.

in NHANES, corresponding to the question “Where did you get (this/most of the ingredients for this)?”, and available for the years 2003-2018 (https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/DR1IFF_D.htm#DR1FS). By leveraging our analysis of the merged NHANES cohorts between 1999 and 2006 (Section S3.2), we were able to stratify FPro by food source for two cycles (2003-2004, 2005-2005). In Figure S9A we report the 25 different types of food sources found in the population, sorted by decreasing number of records. As expected, “Store” contributes to the majority of the records, followed by “Restaurant fast food/pizza”. In Figure S9B we selected 10 of the most popular food sources, and visualize the related distributions of FPro in increasing order of median. Overall, FPro is significantly different across source categories, as quantified by the Kruskal-Wallis H-test (p-value < 10^{-15}), suggesting that the overlap between the source categories (driven by foods with multiple origins), while present, is limited. We also compared each pair of source categories with the Mann-Whitney U rank test, finding that (Cafeteria not at school, Bar/tavern/lounge), (Cafeteria at school, Bar/tavern/lounge), (Store, Bar/tavern/lounge), and (Restaurant with waiter/waitress, Bar/tavern/lounge) do not survive multiple testing with Bonferroni correction (α = 0.01), indicating continuous distributions with equal medians. Additionally, to control for “overpowering”, i.e. the scenario in which large
samples almost surely determine a statistically significant outcome, we estimated the effect size r following [17]. Across the 45 combinations of food sources, 23 show $r \geq 0.1$ (small effect), 6 have $r \geq 0.3$ (medium effect), and the pair (“Grown or caught by you or someone you know”, “Vending machine”) is characterized by the largest effect size with $r = 0.5798$.

3 Individual Diet Processing Scores $iFPro$ and Exposome

3.1 Individual Processing Score $iFPro$

To capture the extent of processing in individuals’ diet we focus on two weighting schemes: a calorie-based score (Eq. 2), and a gram-based score,

$$iFPro_{WG}^j = \sum_k \frac{w_{jk}}{W^j} FPro_k,$$

where D_j is the number of dishes consumed by individual j, W^j is her total amount of food in grams, and w_{jk} is the amount of grams consumed for each food item (excluding water consumption, see Section S3.4).

3.2 Population Characteristics

NHANES captures a variety of information ranging from demographic and dietary intake, to lab and physical examinations. This wealth of information is compiled into hundreds of publicly available data files, that altogether provide over 1,000 variables.

To investigate the relation between $iFPro$ and health, we focused on NHANES 1999-2006.
exposome and phenome database, a harmonized dataset created by Patel et al. in [18], merging 255 data files from four cycles of NHANES, for a total of 41,474 individuals and 1,191 variables. The summary statistics for \(iFPro_{WC} \) and \(iFPro_{WG} \), characterizing the 20,047 adults (18+) in the cohort, are presented in Tables S7 and S8. All predictions are calculated with the 58 nutrient panel in Table S4.

NHANES follows the well-established two-step 24HRs dietary recall interviews to sample the dietary intake of the American population [19, 20]. The first step is done in-person with a dietitian interviewing each applicant, while ensuring the highest quality of dietary recall over the past 24HRs. The second step consists of a phone interview within 3-10 days to capture a second dietary recall [21]. The multiple 24HRs dietary recalls have proved to be an effective method in the assessment of trends over the dietary intakes of individuals [22]. For all individuals who completed two-day dietary recalls (in-person and phone interview) we calculated a daily average \(iFPro \), while for the remaining participants we used just the data from in-person interview. The relevance of each individual for population statistics is based on survey weights [23,24].

Table SI. 7: Population characteristics for \(iFPro_{WC} \)

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>(iFPro_{WC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts Subjects (n = 20,046)</td>
<td>4</td>
<td>0.0 – 0.2, 0.2 – 0.4, 0.4 – 0.6, 0.6 – 0.8, 0.8 – 1.0</td>
</tr>
<tr>
<td>Age — mean±SE</td>
<td>45.28±0.3</td>
<td>63</td>
</tr>
<tr>
<td>Poverty Income Ratio — mean±SE</td>
<td>2.99±0.04</td>
<td>2.58±0.23</td>
</tr>
<tr>
<td>Calories Consumed — mean±SE</td>
<td>2189.13±10.36</td>
<td>534.25±162.24</td>
</tr>
<tr>
<td>BMI — mean±SE</td>
<td>28.13±0.1</td>
<td>28.45±0.28</td>
</tr>
<tr>
<td>female — count (%)</td>
<td>4 (1)</td>
<td>43 (0.65)</td>
</tr>
<tr>
<td>white — count (%)</td>
<td>3 (0)</td>
<td>20 (0.32)</td>
</tr>
<tr>
<td>black — count (%)</td>
<td>3 (0)</td>
<td>21 (0.33)</td>
</tr>
<tr>
<td>mexican — count (%)</td>
<td>2 (0.5)</td>
<td>15 (0.24)</td>
</tr>
<tr>
<td>other hispanic — count (%)</td>
<td>3 (0)</td>
<td>6 (0.1)</td>
</tr>
</tbody>
</table>

3.3 Correlation between \(iFPro_{WG} \), \(iFPro_{WC} \), and HEI-15

While we find an overall agreement in the population ranking determined by \(iFPro_{WG} \) and \(iFPro_{WC} \) (\(\rho_{\text{Spearman}} = 0.7029 \), Figure S10A), the two measures show significantly different patterns in epidemiological associations, in particular regarding chemical exposures (Figure S16). Indeed, a weight-based index could capture complex dietary patterns arising from consumption of highly processed beverages such as zero-calorie soft drinks, or any type of food contaminants whose amount is independent from the provided calories.

We compared \(iFPro_{WG} \) and \(iFPro_{WC} \) with the HEI-2015, a score measuring the alignment
Table SI. 8: Population characteristics for \(iFProWG\)

<table>
<thead>
<tr>
<th>Counts Subjects ((n = 20,046))</th>
<th>(iFProWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age — mean±SE</td>
<td>45.28±0.3</td>
</tr>
<tr>
<td>Poverty Income Ratio — mean±SE</td>
<td>2.99±0.04</td>
</tr>
<tr>
<td>Calories Consumed — mean±SE</td>
<td>2189.13±10.36</td>
</tr>
<tr>
<td>BMI — mean±SE</td>
<td>28.13±0.1</td>
</tr>
<tr>
<td>female — count (%)</td>
<td>112 (0.62)</td>
</tr>
<tr>
<td>white — count (%)</td>
<td>107 (0.59)</td>
</tr>
<tr>
<td>black — count (%)</td>
<td>20 (0.11)</td>
</tr>
<tr>
<td>mexican — count (%)</td>
<td>37 (0.2)</td>
</tr>
<tr>
<td>other hispanic — count (%)</td>
<td>9 (0.05)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mean</th>
<th>(0.0 – 0.2)</th>
<th>(0.2 – 0.4)</th>
<th>(0.4 – 0.6)</th>
<th>(0.6 – 0.8)</th>
<th>(0.8 – 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts</td>
<td>182</td>
<td>7286</td>
<td>7230</td>
<td>2650</td>
<td></td>
</tr>
<tr>
<td>Subjects ((n))</td>
<td>2699</td>
<td>1871.13±19.67</td>
<td>2134.69±14.34</td>
<td>2342.11±17.73</td>
<td>2356.4±30.02</td>
</tr>
<tr>
<td>Age — mean±SE</td>
<td>27.47±0.15</td>
<td>27.76±0.13</td>
<td>28.37±0.1</td>
<td>29.14±0.19</td>
<td></td>
</tr>
<tr>
<td>Poverty Income Ratio — mean±SE</td>
<td>3.01±0.05</td>
<td>3.13±0.05</td>
<td>3.15±0.05</td>
<td>2.92±0.04</td>
<td></td>
</tr>
</tbody>
</table>

of an individual’s diet with the national dietary guidelines, ranging from 0 (no alignment) to 100 (complete alignment) \[25\]. We followed the National Cancer Institute (NCI) to calculate HEI-15 for NHANES participants \[26\]. As expected, we observe negative correlations emerging (Figures S10B and C), with both \(iFProWG\) (\(\rho_{\text{Spearman}} = -0.4862\)), and \(iFProWC\) (\(\rho_{\text{Spearman}} = -0.5575\)).

3.4 Water Consumption in NHANES

To calculate \(iFPSWG\) (Equation S4), we removed four food codes regarding water consumption, as their reporting through different NHANES cycles showed inconsistencies. Indeed, we noticed that “Water as an ingredient” stopped being tracked since NHANES 2011-2012 (Figure S12A), and the consumption of tap and bottled water started being recorded since NHANES 2003-2004 (Figures S12B and C). These inconsistencies would have affected our analysis of the pooled cohorts.
4 Environment-Wide Association Study

Inspired by [27], we performed an Environment-Wide Association Study (EWAS) on the merged NHANES 1999-2006 cohort, to identify environmental factors and disease-related phenotypes associated with $iFPro_{WC}$, $iFPro_{WG}$, and fraction of calories contributed by manual NOVA 4. To do so, we collected data for 45 exposure modules in [18], and we further added one variable predicting diabetes according to fasting glucose levels ≥126 mg/dL, as advised by the American Diabetes Association [28], two variables predicting metabolic syndrome [29], two assessments of the Framingham Risk Score [30, 31], and the ACC/AHA Risk Score [32], quantifying the 10-year risk of non-fatal myocardial infarction (MI), congestive heart disease (CHD) death, or fatal or nonfatal stroke.

The variables are broadly categorized in two panels (Figure S13A): a health panel, gathering variables describing the overall health of the individuals, from biological age and nutrient...
Figure SI. 12: Water Consumption in Survey Data. (a) “Water as an ingredient” is no longer tracked since NHANES 2011-2012. (b-c) Bottled and tap water have been tracked since NHANES 2005-2006, hence this might introduce inconsistency when combining NHANES 1999-2004 cohorts with their succeeding cohorts. (d) The consumption of baby water has been tracked since NHANES 2009-2010.

biomarkers, to disease phenotypes, and a chemical panel, where we group all chemical exposures measured in blood or urines, linked to pesticides, contaminants, and processing chemical byproducts.

To select the most robust signal, we studied only variables measured in at least two cycles of NHANES. To quantify the statistical associations, we employed the Survey-weighted Generalized Linear Model, and in particular, linear regression to predict continuous variables, and logistic regression for categorical (Figure S13B). All models were adjusted for age, sex, ethnicity, Body Mass Index (BMI), total-caloric intake, and estimated Socioeconomic Status (SES), as provided by NHANES. We employed the ‘survey’ statistical package in R to account for the complex survey design of NHANES [24]. We further filtered all categorical and continuous variables lacking a minimum sample size to perform regression analysis. In particular, for continuous variables we considered a ratio between number of covariates and number of data points \(\leq 1/50 \), while for categorical we applied a similar threshold for the ratio between number of covariates and number of data points in the smallest category (Figure S13C).
Figure S1.13: Overview of the EWAS pipeline on NHANES 1999-2006. (a) For the selected health phenotypes and chemical exposures provided in each cohort of NHANES, we kept only those variables present in at least two cohorts. (b) We investigated possible associations between the selected 405 variables in the combined NHANES 1999-2006 cohort using linear regression for continuous variables and logistic regression for categorical variables. (c) To account for false discovery rate, we adjusted the p-value of β_1 using Benjamini-Hochberg method with $\alpha = 0.05$.

All continuous variables were transformed using Box-Cox transformation or logit function (applied to Framingham and ACC/AHA scores) to stabilize the variance and improve the validity of measures of association. We then standardized all continuous variables, to bring their effect sizes on similar scale. For multiple linear regression, we used fully standardized regression coefficients, indicating how many standard deviations of change in the dependent variable are associated with one standard deviation increase in the independent variables. For logistic regression, we opted for a partial standardization, acting only on the continuous independent variables, as we wanted to keep a straightforward interpretation of the relation between one standard deviation increase in the Box-Cox transformed $iFPro$ and increase/decrease in disease odds.

To account for false discovery rate, we adjusted the p-values corresponding to each score using Benjamini-Hochberg method with $\alpha = 0.05$. Overall, we find 214 significant tests across the three methodologies, with $iFPro_{WC}$ at 134, $iFPro_{WG}$ at 170, and manual NOVA 4 at 92. The summary of the analysis is presented in Figures S14-S17. A comparison with literature results based on manual NOVA 4 is reported in Table S9.
Figure SI. 14: Number of significant tests surviving multiple testing for iFPro\textsubscript{WG}, iFPro\textsubscript{WC}, and fraction of caloric intake from manual NOVA 4. For iFPro\textsubscript{WG} and iFPro\textsubscript{WC}, we find 170 and 134 significant associations, respectively, for a total of 209 unique variables. In comparison, the same analysis using the fraction of calories contributed by manual NOVA 4 finds 92 significant associations, of which 95% is in overlap with iFPro\textsubscript{WG} and iFPro\textsubscript{WC}. Overall, the total number of variables recovered by the three methodologies is 214. Here we report the results stratified by module.

Figure SI. 15: Comparison of the Effect Sizes for the Significant Tests found by iFPro\textsubscript{WG}, iFPro\textsubscript{WC}, and fraction of caloric intake from manual NOVA 4. Across the 214 significant variables recovered by the three methodologies we find that (a) 70.56% of the times iFPro\textsubscript{WC} shows bigger effect sizes compared to manual NOVA 4, while (b) for iFPro\textsubscript{WG} the percentage increases to 77.57%.
Figure SI. 16: Exposure Panel. Each variable reported on the left (e.g. “Acrylamide”) refers to different exposure modules. We report here the standardized β coefficient, quantifying the effect on each exposure when the Box-Cox transformed diet scores increase of one standard deviation over the population. Each variable is color-coded according to β, with positive associations in red, and negative associations in blue. In white, we annotate the variables that do not survive Benjamini-Hochberg FDR.
Figure SI. 17: Health Panel. Each variable reported on the left (e.g., “Aging”) refers to different modules of disease phenotypes and measurements assessing the overall health status of each individual. We report here the standardized \(\beta \) coefficient, quantifying the effect on each exposure when the Box-Cox transformed diet scores increase of one standard deviation over the population. Each variable is color-coded according to \(\beta \), with positive associations in red, and negative associations in blue. In white, we annotate the variables that do not survive Benjamini-Hochberg FDR.
<table>
<thead>
<tr>
<th>Health or Exposure Panel</th>
<th>Paper</th>
<th>In Agreement with iFPro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging</td>
<td>Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project [34] Spain (SUN)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study [37] Molise, Italy (Moli-sani)</td>
<td></td>
</tr>
<tr>
<td>Disease: Hypertension</td>
<td>Ultra-processed food consumption and the incidence of hypertension in a mediterranean cohort: The seguimiento universidad de navarra project [38] Spain (SUN)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Continued on next page
Table 9 – continued from previous page

<table>
<thead>
<tr>
<th>Health or Exposure Panel</th>
<th>Paper</th>
<th>In Agreement with iFPro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease: Metabolic Syndrome</td>
<td>• Dietary share of ultra-processed foods and metabolic syndrome in the US adult population [39] USA (NHANES)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>• Diet quality indices in relation to metabolic syndrome in an Indigenous Cree (Eeyouch) population in northern Québec, Canada [40] Canada (Aschii Environment & Health Study)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A minimally processed dietary pattern is associated with lower odds of metabolic syndrome among Lebanese adults [41] Lebanon</td>
<td></td>
</tr>
<tr>
<td>Disease: Cancer</td>
<td>Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort [42] France (NutriNet-Santé)</td>
<td>Yes</td>
</tr>
<tr>
<td>Body Measures: Total Fat</td>
<td>Contribution of ultra-processed foods in visceral fat deposition and other adiposity indicators: Prospective analysis nested in the PREDIMED-Plus trial [43] Spain (PREDIMED-Plus)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Health or Exposure Panel</th>
<th>Paper</th>
<th>In Agreement with iFPro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Measures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waist Circumference</td>
<td>• Ultra-processed food consumption and excess weight among US adults [44] USA (NHANES)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>• Consumption of ultra-processed food and obesity: cross sectional results from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) cohort (2008–2010) [45] Brazil (ELSA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ultra-processed food consumption and indicators of obesity in the United Kingdom population (2008-2016) [46] UK (NDNS)</td>
<td></td>
</tr>
<tr>
<td>Nutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study [47] USA (NHANES)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>• Impact of ultra-processed foods on micronutrient content in the Brazilian diet [48] Brazil (HBS)</td>
<td></td>
</tr>
<tr>
<td>Biochemistry:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Reactive Protein</td>
<td>Association between consumption of ultra-processed foods and serum C-reactive protein levels: cross-sectional results from the ELSA-Brasil study [49] Brazil (ELSA)</td>
<td>Yes</td>
</tr>
<tr>
<td>Phytoestrogens</td>
<td>Association between dietary share of ultra-processed foods and urinary concentrations of phytoestrogens in the US [50] USA (NHANES)</td>
<td>Yes</td>
</tr>
<tr>
<td>Vegetarian Diet:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Effects of ultra-processing</td>
<td>Consumption of Ultra-Processed Foods by Pesco-Vegetarians, Vegetarians, and Vegans: Associations with Duration and Age at Diet Initiation [51] France (NutriNet-Santé)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Continued on next page
Table 9 – continued from previous page

<table>
<thead>
<tr>
<th>Health or Exposure Panel</th>
<th>Paper</th>
<th>In Agreement with iFPro</th>
</tr>
</thead>
</table>
 • Association between dietary contribution of ultra-processed foods and urinary concentrations of phthalates and bisphenol in a nationally representative sample of the US population aged 6 years and older [53] USA (NHANES) | Yes |
| Acrylamides | Association between Heat-Induced Chemical Markers and Ultra-Processed Foods: A Case Study on Breakfast Cereals [54] Spanish supermarkets | Yes |

5 Food Substitution

The observed variability of $FPro$ for categories of foods similarly consumed in the population (Figure 2E), combined with the EWAS results, quantifying the effect of processed diet on disease risk, suggests a systematic way to implement food substitution and predict its relevance in terms of health indicators [55, 56]. With this goal, we classified all foods consumed by the pooled cohort of 20,047 individuals in NHANES 1999-2006, according to WWEIA [57]. For substitution purposes, the relevance of food k in individual j’s diet can be quantified as

$$r_j^k = f_C^{(k,j)} (FPro_k - FPro_{\text{min WWEIA}(k)})$$ \hspace{1cm} (5)

where $f_C^{(k,j)}$ is the fraction of calories contributed by food k to the dietary profile, while $FPro_{\text{min WWEIA}(k)}$ refers to the food with the lowest $FPro$ within the same WWEIA category of food k. By picking the suggested foods in the original WWEIA classes reported by each individual, we aim to minimally perturb her habits, to maximize the compliance to the new dietary regime. Moreover, as Eq. [5] offers a heuristic to identify which food to prioritize, the overall level of processing is reduced in a minimal number of steps.
The impact of substituting M foods on disease risk is measured in terms of odds ratio (OR), that quantifies the odds of disease occurring when adopting the optimized diet, compared to the original choices. We estimate OR as

$$OR^{j}_{(Sub \ vs \ Orig)} = e^{\beta_1[(iFPro^j_{WC} - \sum_{m=1}^{M} r^j_m)^t - (iFPro^j_{WC})]t},$$

(6)

where β_1 is the effect size describing the strength of the association between $iFPro$ and disease onset, all $\{r^j_m\}$ follow from Eq. S5, and with the superscript t we denote the function-composition of Box-Cox transformation followed by z-score with parameters estimated in the original population.

For continuous variables y like vitamin B_{12}, vitamin C, and bisphenol A, the impact of substituting M foods on individual j’s diet is quantified by

$$\frac{y^j_{Sub}}{y^j_{Orig}} = \frac{\{(y^j_{Orig})^t + \beta_1[(iFPro^j_{WC} - \sum_{m=1}^{M} r^j_m)^t - (iFPro^j_{WC})]t\}^{-t}}{y^j_{Orig}},$$

(7)

where with the superscript $-t$ we refer to the inverse function-composition of Box-Cox transformation followed by standardization (first invert z-score, then Box-Cox).
6 Open Food Facts

Open Food Facts is a free, crowd-sourced world-wide database of food products, with nutrition facts and ingredient list [58]. We collected 233,831 nutritional records from their website, corresponding to 168,681 product ids, annotated with NOVA labels according to a heuristic described at [59]. This database also compiled an extensive list of food additives that gave us the possibility to quantify the number of additives per product. Similarly to the cross-validation explained in Section 2.1 we trained and validated two models on the same 5-fold partition: (1) standard FProX leveraging the logarithm of 11 nutrients used as baseline, (2) FProX with an additional input feature capturing the number of additives in each food. The baseline feature panel includes protein, fat, total carbohydrate, sugars, dietary fiber, calcium, iron, sodium, cholesterol, saturated fat, and trans fat. We removed vitamin A and C from the analysis, given the high number of non available values (NAs). Hence, the cross-validation was run on a selection of 228,689 records, with no NAs in any feature.

Overall, we find commendable performances in both scenarios, with higher AUC and AUP when additives are included in the model (see Table 10). In particular, model (2) outperforms model (1) in assessing NOVA 3. We derived $FPro_1$ and $FPro_2$ following Eq. 1, finding they highly correlate with each other ($\rho_{\text{Spearman}} = 0.9017$), and they both correlate well with the number of additives ($\rho_{\text{Spearman}}(FPro_1, n_{\text{additives}}) = 0.6726$, $\rho_{\text{Spearman}}(FPro_2, n_{\text{additives}}) = 0.8240$). This result is encouraging, as details regarding ingredient list and additives are seldom if ever available in current food composition databases.

Table SI. 10: AUC and AUP for the four NOVA classes in Open Food Facts. For model 1) and 2) we report average and standard deviation of AUC (A) and AUP (B) over the stratified 5-folds.

<table>
<thead>
<tr>
<th></th>
<th>NOVA 1</th>
<th>NOVA 2</th>
<th>NOVA 3</th>
<th>NOVA 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average AUC 11 Nutrients</td>
<td>0.987989</td>
<td>0.986044</td>
<td>0.932033</td>
<td>0.950768</td>
</tr>
<tr>
<td>Std AUC 11 Nutrients</td>
<td>0.000641</td>
<td>0.004172</td>
<td>0.001525</td>
<td>0.000860</td>
</tr>
<tr>
<td>Average AUC 11 Nutrients + Additives</td>
<td>0.992553</td>
<td>0.987785</td>
<td>0.965301</td>
<td>0.978242</td>
</tr>
<tr>
<td>Std AUC 11 Nutrients + Additives</td>
<td>0.000327</td>
<td>0.004682</td>
<td>0.000962</td>
<td>0.000683</td>
</tr>
</tbody>
</table>

(A) (B)

The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
7 Data Quality and Future Directions

- **Data Sample and Variability.** The quality of the training data influences our analysis and the interpretation of FPro. Indeed, all machine learning and AI models become feasible only when extensive labeled datasets are available, and on top of that, they provide reliable results when the training data samples the real world in an exhaustive way, avoiding over-fitting.

A single cycle of FNDDS, as well as SR-Legacy, reports representative nutritional average values for each food/drink, which do not capture the variability due to factors such as recipe variations, production methods, soil quality, and storage time. The training data would then benefit of multiple instances of the same food, helping capture the natural variability in nutrient content, and reduce over-fitting [60]. This is why we have investigated how nutritional values for the same food code change through different FNDDS cycles, and how integrating additional variability is affecting FProX and FPro in assessing “unseen foods” (see Assesment of FPro robustness below). We envision that Foundation Foods, the new USDA food composition dataset available at FoodData Central, will be a great asset to improve the current data training of FPro, once it will increase its coverage to more than 140 foods. Indeed, Foundation Foods includes individual sample measurements behind the nutrient mean values that populate the other databases, and metadata reporting the number of samples, location, time-stamps, analytical methods used, and, additionally, if available, cultivar and production practices.

A further way to improve how machine learning algorithms and AI characterize food data is to study the statistical properties of nutrient distributions in the food supply, and make sure that the training data sample them exhaustively. In Menichetti et al. [9] we observe how the variability of nutrient concentrations in food, despite covering several order of magnitudes, follows a well-defined functional form, related to the lognormal distribution. This is the reason why we log-transformed all nutrient measures before performing the classification, as this is the natural scale of the nutrient fluctuations. Accounting for the variability driven by chemical reactions in the ingredients, as well as for the variability derived from the complete food production chain, plays a major role in successfully capturing associations between food intake and disease phenotypes [61].

Beyond nutrient variability, the training data would benefit of a better representation of different food groups, as in case of raw meat products, important ingredients in many recipes. This poor representation in the dataset is somehow expected, as FNDDS is designed by the USDA to provide food composition data for foods and beverages reported
in the dietary component of NHANES, and raw meat is not commonly consumed by the American population. A better coverage of heterogeneous collection of food groups would also improve the accuracy of the algorithm when facing different national food composition databases, beyond the data collected by the USDA.

Finally, we stress that all potential errors affecting food composition data should generally be random with respect to the machine learning algorithm and the manual NOVA classification that developed FPro, which should only cause attenuation of classification accuracy rather than bias, and attenuation toward the null of all epidemiological outcomes. Thus, our findings would further improve with a more accurate database.

- **Requirements for Branded Products.** While in this study we focus on survey data, our model based on nutritional values can easily work on different food and cohort databases, as proven by our analysis of over 50,000 products collected from major grocery store websites. When facing real-world food data, we have to account for the regulations introduced by government agencies, like the FDA. For instance, in the nutrition facts label nutrients are classified in 3 different classes, characterized by different standards regarding the agreement between declared value on the label and actual values in the sampled food. For nutrients like sugars, total fat, saturated fat, cholesterol, and sodium, the label is considered compliant if the nutrient content of the sampled product is up to 20% above the value declared on the label. Consequently, when relying on the nutrition facts of branded products, FPro should be reported with confidence intervals determined by randomly altering the nutrient content according to FDA regulations.

- **Size and Composition of the Nutrient Panel.** The computation of FPro adapts to different set of nutrients, allowing us to accurately classify food from limited nutrient information. However, the chemical information currently available to train our algorithm is limited by the resolution of food databases. Indeed, many chemicals like acrylamide, ammonium sulfate, azodicarbonamide, butylated hydroxyanisole, and furans, associated with the preparation and preservation of food, are not tracked by national agencies. The lack of quantification of these chemicals becomes even more striking once we acknowledge their impact on human health. With a higher number of chemicals available for all foods, we could aim for an unsupervised classification of food processing, eliminating the need for supervised manual curation. Currently, our analysis in Section S1.5 shows that an unsupervised hierarchical clustering of foods, leveraging the widest nutrient panel available in FNDDS, can not able to independently reproduce the four NOVA classes. It is
possible, however, that the addition of chemical measurements that pertain to processing signatures could further improve the current results, leading to purely chemically driven classification of food processing.

• **Assessment of FPro robustness.** We aim to test the robustness of FPro by measuring the extent of its variations when re-formulation of the same product are created and measured experimentally. This analysis is currently hindered by limited data availability. However, we were able to test how nutrient variability impacts FPro when comparing the same food code in different cycles of FNDDS. Indeed, while FNDDS does not capture sample variability within the same cycle (e.g. 2009-2010, it documents the nutrient variability affecting the same food through the years, as a function of the specific sample or technique chosen to estimate the representative nutritional average. In FoodProXonFNDDS.xlsx we report the nutrient profile of 5,632 foods, present in both FNDDS 2009-2010 and 2015-2016, and how their FPro changed according to the variations in their nutrient content. For all foods we estimate the number of nutrients that changed between the two editions of FNDDS, accounting for the different rounding approximation affecting each nutrient. In presence of one or more nutrients with maximal variation between 10% and 50%, we observe a median \(\Delta \text{FPro} = 0.001556 \) \((Q_1 = 0.000222, Q_3 = 0.004764) \). Allowing significantly bigger fluctuations, as in case of one or more nutrients with maximal variation between 10% and 1000%, we observe a median \(\Delta \text{FPro} = 0.003312 \) \((Q_1 = 0.000722, Q_3 = 0.011310) \).

• **Limitations of Population Surveys.** To test the prediction power of FPro and iFPro for several health phenotypes and chemical exposures, we leveraged the rich panel of analyses collected in NHANES, a population survey that captures dietary intake with 24-hour recalls. A limitation of the 24-hour recall is its reliance on memory, both for identification of foods eaten as well as for quantification of portion sizes, and the need of highly trained interviewers. Although reliance on the participant’s memory leaves room for measurement error, skilled interviewers can produce highly detailed and useful nutritional data comparable to a dietary record \[22\]. 24-hour recalls are also affected by random within-person error, typified by the day-to-day fluctuation in dietary intake. Random within-person error tends to decrease correlation and regression coefficients towards zero and to bias relative risks toward one. Multiple days of intake per individual permit an estimate of within-person day-to-day variability, and it is usually statistically more efficient to increase the number of individuals in the sample rather than increase the number of days beyond two per individual \[69\]. For this reason, NHANES added a second day of dietary intake starting with NHANES 2003 \[22\]. Despite these limitations, 24-hour recalls
are widely used in epidemiology as their statistical issues are well understood, and they were used to rigorously evaluate HEI-2015, a gold-standard non-data-driven dietary score for the epidemiological community [70].
8 Overview of FoodProX and FPro

A

Training Data with NOVA Manual Labels (#2,971 Items)

Select a Nutrient Panel
• 12
• 58
• 99

For each food:
Obtain gram equivalent of the selected nutrient values from FNDDS
(in 100 grams of serving size)

SMOTE

Split data into 5 folds

Classifier 1 Classifier 2 Classifier 3 Classifier 4 Classifier 5

Ensemble of Five Classifiers

FoodProX

B

Obtain FPro of a Food Item

For the selected food item:
Obtain gram equivalent of nutrients for the selected nutrient panel
(in 100 grams of serving size)

Each Classifier Makes Its Predictions

\[p_1^1, p_1^2, p_1^3, p_1^4, p_1^5 \]
\[p_2^1, p_2^2, p_2^3, p_2^4, p_2^5 \]
\[p_3^1, p_3^2, p_3^3, p_3^4, p_3^5 \]
\[p_4^1, p_4^2, p_4^3, p_4^4, p_4^5 \]

FPro\(_{C1}\), FPro\(_{C2}\), FPro\(_{C3}\), FPro\(_{C4}\), FPro\(_{C5}\)

Average Standard Deviation

FPro FPro\(_{std}\)

Figure SI. 18: Summary Overview of FoodProX Classifier (A) and FPro Score (B).
References

[1] FDA Nutrition Facts. https://www.fda.gov/media/99331/download

