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ABSTRACT 17 

Background: The EPICOVID19-RS study conducted 10 population-based surveys in Rio Grande 18 

do Sul (Southern Brazil), starting early in the epidemic. The sensitivity of the rapid point-of-19 

care test used in the first eight surveys has been shown to decrease over time after some 20 

phases of the study were concluded. The 9th survey used both the rapid test and an enzyme-21 

linked immunosorbent assay (ELISA) test, which has a higher and stable sensitivity. 22 

Methods: We provide a theoretical justification for a correction procedure of the rapid test 23 

estimates, assess its performance in a simulated dataset and apply it to empirical data from 24 

the EPICOVID19-RS study. COVID-19 deaths from official statistics were used as an indicator of 25 

the temporal distribution of the epidemic, under the assumption that fatality is constant over 26 

time. Both the indicator and results from the 9th survey were used to calibrate the temporal 27 

decay function of the rapid test’s sensitivity from a previous validation study, which was used 28 

to estimate the true sensitivity in each survey and adjust the rapid test estimates accordingly. 29 

Results: Simulations corroborated the procedure is valid. Corrected seroprevalence estimates 30 

were substantially larger than uncorrected estimates, which were substantially smaller than 31 

respective estimates from confirmed cases and therefore clearly underestimate the true 32 

infection prevalence. 33 

Conclusion: Correcting biased estimates requires a combination of data and modelling 34 

assumptions. This work illustrates the practical utility of analytical procedures, but also the 35 

critical need for good quality, populationally-representative data for tracking the progress of 36 

the epidemic and substantiate both projection models and policy making. 37 
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1. INTRODUCTION 40 

Brazil concentrates 10% of all COVID-19 deaths in the world while having only 2.7% of the 41 

world’s population. As of February 28, 2021, Brazil is the country ranking second and third in 42 

terms of deaths and confirmed cases, respectively. The situation was worsened the rapid 43 

spread of a new variant of the SARS-CoV-2 virus in the Amazon region in the North(1), which is 44 

already circulating in other regions of the country, including the South region(2). Rio Grande 45 

do Sul (the Southernmost state in Brazil) is facing the worst situation since the start of the 46 

pandemic, with infections increasing at unprecedented rates. In February 27 2021, all 47 

subregions of the state were, for the first time, classified as being in a critical situation based 48 

on a controlled social distancing model that uses several indicators and was launched by the 49 

State’s Government in May 2020(3). 50 

Rio Grande do Sul was one of the first regions in the world to have a large population-based 51 

assessment of the COVID-19 epidemic. According to official statistics, the first case and the 52 

first death in the State occurred in February 29 and March 24, 2020, and the first of a series of 53 

10 serological surveys (collectively referred to as the EPICOVID19-RS study(4)) in the State was 54 

caried out in April 11-13, 2020(5). Although a series of surveys starting so early on is useful for 55 

accurately tracking the progression of the epidemic, tests then available that were suitable for 56 

population-based studies had only been tested in recently infected individuals. In the 57 

EPICOVID19-RS study, a rapid point-of-care test was used. Prior to the 1
st

 survey, available 58 

validation studies indicated the test’s performance was sufficiently high for population-based 59 

studies(6). However, future validation studies detected that the sensitivity of this test 60 

decreases over time(7), an assessment that was only possible after some time since the 61 

beginning of the pandemic. In the 9th survey, we used an enzyme-linked immunosorbent assay 62 

(ELISA), which has higher sensitivity than the rapid test that does not decrease over time7-8. 63 

Changing tests between surveys hampers comparing different surveys, thus requiring 64 

analytical procedures to properly utilize previous estimates based on the rapid test in 65 

combination with the ELISA test to obtain a coherent picture of the pandemic in the state. 66 

External data are extremely useful to furnish procedures to correct biased estimates. The more 67 

data the lower the need for modelling assumptions. Typically, such data stems from official 68 

statistics, such as registered cases, deaths, hospitalizations and other indicators. However, 69 

such data have their own limitations, including dependence of testing policies and protocols, 70 

fatality rate, change in treatment protocols, incompleteness and other factors that may 71 

change both over time and among different locations. 72 

Obtaining a coherent and likely more accurate temporal trend of how the epidemic in a given 73 

location using real data is therefore a challenging task, requiring simultaneously and 74 

coherently using different and imperfect sources of data, including official statistics, different 75 

diagnostic tests and information from validation studies. This paper aims at obtaining the 76 

cumulative prevalence of infection in Rio Grande do Sul from a series of nine population-based 77 

serological surveys using a test with temporal variation in sensitivity. 78 

2. METHODS 79 

2.1. Theoretical justification for the correction procedure 80 

Let ���� � � ���� 	��

�
 denote the cumulative number of infections at time �, where ���� is a 81 

non-zero function for the infection incidence (in number of new cases) and � � 1 is the day of 82 

the first infection, so that ��1� � 1 and ���� � 1 for some � � �0,1�. Let ����� � �0,1� denote 83 



a function for the proportion of infections detectable �� days after occurring. Therefore, 84 

���� � � ������� � �� 	�
�

�
 represents the cumulative number of infections detectable at 85 

time �. We assume the population size � is constant throughout the pandemic. In this case, 86 
����

�
 and 

����

�
 respectively denote the true and apparent (detectable) cumulative prevalence of 87 

infections at time �. 88 

From the notation above, the proportion of infections that are still detectable (i.e., the 89 

sensitivity) in day � is: 90 

���� � ����

����
�
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     �1�. 91 

Equation 1 can be interpreted as a weighted average of the proportion of detectable 92 

infections, where the weights correspond to the number of infections that occurred in each 93 

short interval ��, � � 	��, where 	� is a very small positive number. 94 

Let ���� � ����� � ���� � �����, where � is an unknown positive constant. ���� can 95 

denote, for example, the number of deaths, assuming that fatality is constant over time. In this 96 

case, � represents the time when the infection happened, so that ���� denote the number of 97 

new cases which ended up dying. If ���� denotes the number of deaths in time �, then the 98 

appropriate representation would be ��� � �� � �����, where � denotes the number of days 99 

between infection and death. 100 

Substituting ���� for ���� in equation 1 yields: 101 
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That is, the proportion of infections that are still detectable �� days after occurring can also be 103 

obtained using any indicator of the temporal distribution of infections, assuming that such 104 

indicator is a scaled version of ����. 105 

If both that ����� and some function ���� are known, ����� can used to account for the decay 106 

in sensitivity over time, and ���� can used to account for the temporal distribution of the 107 

pandemic. However, in practice, typically only �#��� � ∑ �#����
��� , where �#��� is the 108 

number of deaths that occurred in a given day, is known. From this definition, �#��� �109 

��� � 1� � ���� � � ���� 	�
�

�
�
 and �#��� � ���� for � � ��. Since the exact time of the 110 

events within a day are unknown, an approximation can be made by assigning �� � �� � � to 111 

all events that happened in day �, where �� denotes the date when individuals were tested. 112 

This is a good approximation because the ����� is unlikely to substantially change within a day 113 

– that is, ����� � ���� � 1�. 114 

 115 

From the above, ���� and ���� can be approximated as follows: 116 

���� � � ��� �
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Similar to ���� in equation 1, � ��� in equation 2 can be interpreted as a weighted average of 117 

the proportion of detectable infections, where the weights correspond to the number of 118 

infections that occurred in each day. 119 

In practice, �#��� can be obtained from official statistics. However, the assumption that � is 120 

constant over time is required for equation 2 to yield a good approximation of ����. If this is 121 

not the case, then � should be replaced with ����. Moreover, it is unlikely that ����� is known 122 

in practice. However, it can be estimated, for example, in validation studies. Therefore, �!���� 123 

is included in equation 2 instead of �����. Finally, equation 3 includes �$ ���, which is the 124 

estimated apparent cumulative number of infections estimated using a test with sensitivity 125 

that decreases over time, according to �����. 126 

2.2. Simulation study 127 

For the simulations, ���� � &
�.������ � �.�����, thus yielding ~1 million individuals who got 128 

infected at some point during a one-year period. The population size was 11 million 129 

individuals. Fatality rate was 1% and constant over time. These numbers are roughly of 130 

comparable magnitude to the first year of the epidemic in Rio Grande do Sul. 131 

Individual ' (where ' denotes a generic individual who was infected at some point) was 132 

detectable by the Wondfo test at time � if (�� � (�� � (�� ) � * (�� � (�� � (�� � (��, where: 133 

• (� is the infection date (defined as described above). 134 

• (�~Weibull� �

�.��
,  1.97� is the incubation time9-10. 135 

• (�~N�13.3,  32.49� is the time from symptom onset to seroconversion(11). 136 

• (�~Weibull�68.383320,1.183745� is the time from seroconversion to seroreversion(12). 137 

• (� is the time from symptom onset to diagnosis. This was estimated using official statistics 138 

(see below for a description of these data) as the time difference between the dates of 139 

diagnosis and of symptom onset. For the present analyses, values greater than 21 days 140 

were discarded. 141 

Regarding fatality, 1% of the infected individuals were randomly selected as those who died. 142 

To define when individuals died, we defined the following transition times: 143 

• (� is the time from diagnosis to death. This was estimated using official statistics (see below 144 

for a description of these data) as the time difference between the dates of death and of 145 

diagnosis. 146 

Among individuals who died in the simulation study, values for (�-(� were generated by 147 

sampling from their empirical joint distribution obtained from official statistics, restricting to 148 

those diagnosed with RT-PCR and died. For individuals who did not die in the simulation study 149 

(� values were generated by sampling from official statistics, restricting to those diagnosed 150 

with RT-PCR and did not die. Therefore, this sampling scheme allows for violations of the 151 

assumption that such times are similar between these subgroups. This may introduce some 152 

bias in the corrected estimates, and the simulation study will help to quantify how much this 153 

bias is likely to affect empirical analysis. 154 



If individual ' is one of those who died, if � � (�� � (�� � (�� � (��, then the 'th individual was 155 

deceased at time �. Of note, all times were rounded to the nearest integer, and negative 156 

values in (� were replaced with zero. 157 

In the simulations, the population size decreases over time as infected individuals die. Deaths 158 

due to other causes were not considered because we assumed that, aside from the epidemic, 159 

the population size is constant over time. The parameter of interest is 
����

�
, were � is assumed 160 

to be constant over time. Therefore, this is another source of (likely slight bias) in the 161 

estimates, and such bias will be quantified in the simulations. 162 

To generate �����, a hypothetical validation study involving 20 million individuals, all enrolled 163 

in the day they were infected and each followed up for 400 days, was simulated by 164 

independently sampling 20 million values for (�-(� from their respective distributions. 165 

Therefore, if (�� � (�� � (�� ) �� * (�� � (�� � (��, then individual ' is detectable �� days 166 

after diagnosis. ����� was then defined as the proportion of individuals detectable �� after 167 

diagnosis. Such large validation study essentially implies that there is negligible error due to 168 

sampling variability in �!����, such that �!���� � �����. 169 

We simulated a scenario of 4 population based serological surveys conducted at days � �60, 170 

� �120 and � �180 and � �240. For each survey, 5000 individuals were randomly sampled 171 

from the population. A total of 1000 datasets were simulated by sampling (�-(� from their 172 

respective distributions and randomly allocating these values to the dataset of infected 173 

individuals. 174 

The correction procedure was implemented as an iterated procedure. In each dataset, 2000 175 

iterations of the correction procedure for each survey were applied. In each iteration, �#��� 176 

values for (� were sampled from its distribution. These were subtracted from the date of 177 

symptom onset, which is assumed to be known for each death (as in our empirical application). 178 

This yields a distribution of when individuals who died were infected, which is a valid indicator 179 

of the relative temporal distribution of all infections under the assumption that fatality rate is 180 

constant over time. This relative temporal distribution, in combination with the sensitivity 181 

function �����, was then used to calculate � ��� and �#���.  182 

2.3. Data sources 183 

2.3.1. EPCOVID19-RS study 184 

The EPICOVID19-RS study is a series of 10 large, population-based surveys aiming at tracking 185 

the COVID-19 pandemic in Rio Grande do Sul. For this paper, only surveys 1 to 9 will be used. 186 

Data collection for the 1
st
 and 9

th
 surveys occurred in April 11-13 2020 and February 5-7 2021, 187 

respectively. The study involves nine sentinel cities – that is, the largest city from each one of 188 

the eight intermediate regions of the state as defined by the Brazilian Institute of Geography 189 

and Statistics (IBGE). The exception was the metropolitan region, for which two cities (the 190 

state capital and an additional city) were selected. In each city, 50 census tracts (delimited 191 

areas with approximately 300 households each in urban area, also defined by the IBGE) were 192 

selected with probability proportional to size and ensuring geographical representativity. In 193 

each tract, 10 households were systematically selected. Between surveys, different households 194 

were selected within the same tracts. One individual per households was randomly selected 195 

for interview and testing using the rapid point-of-care lateral-flow WONDFO SARS-CoV-2 196 

Antibody Test (Wondfo Biotech Co., Guangzhou, China), which assesses both IgG and IgM 197 



antibodies against SARS-CoV-2. More details on the study protocol are available elsewhere(4). 198 

For the present analysis, individuals with inconclusive test results were excluded. 199 

2.3.2. Official statistics data 200 

Official statistics data were collected from a dashboard by the Health Secretariat of Rio Grande 201 

do Sul website (https://covid.saude.rs.gov.br/) for the period between February 29, 2020 (the 202 

day of the first confirmed case in the State) and February 28, 2021. All 497 city-level health 203 

secretariats in Rio Grande do Sul provide information daily on several indicators relevant for 204 

monitoring the pandemic in the state, and this information is publicly available per day and per 205 

city. We used the daily absolute number of new deaths attributed to COVID-19 as an indicator 206 

of the relative temporal distribution of infections in the State. As discussed above, this is only 207 

valid under the assumption that fatality is constant over time. We also obtained the daily 208 

absolute number of confirmed infections to calculate the cumulative prevalence of confirmed 209 

infections for comparison with our corrected estimates. 210 

The cities included in the survey have different population sizes, but all received the same 211 

weight in the study (see below for a justification for this). Therefore, weights for each city were 212 

generated for the official statistics dataset as the multiplicative inverse of the number of 213 

deaths in the corresponding city. This ensures that the distribution of deaths in each city has 214 

the same weight in the overall distribution of deaths. A similar weighting scheme was used 215 

when calculating the cumulative prevalence of confirmed infections. 216 

2.4. Statistical analysis 217 

2.4.1. General description 218 

The goal of the analysis is to combine different data sources to obtain a plausible temporal 219 

description of the cumulative prevalence of SARS-CoV-2 infections in Rio Grande do Sul. The 220 

main difficulty is that, in the first eight EPICOVID19-RS surveys, only the Wondfo test was used, 221 

while both Wondfo and ELISA tests were used. The difficulty stems from the fact that, 222 

according to validation studies, the sensitivity of the Wondfo test decreases over time(7). 223 

Therefore, any Wondfo seroprevalence estimate after the very beginning of the pandemic is 224 

likely to be an underestimate in comparison to the ELISA test. 225 

It is in principle possible to use the results from the validation study to account for this 226 

temporal decay in sensitivity, so that sensitivity is assumed to be smaller in later surveys based 227 

on some indicator of the temporal distribution of the epidemic, and therefore correction 228 

procedures will have a stronger impact on estimates from later surveys. In the 9th survey, the 229 

Wondfo seroprevalence was 
��

����
� 2.04%, while the ELISA seroprevalence was 

���

����
� 9.97. 230 

This difference in estimated seroprevalence is not compatible with our validation study, 231 

suggesting that sensitivity of the Wondfo test in the field was lower than in the validation 232 

study (possibly to the lower prevalence of highly symptomatic and/or severe infection cases in 233 

the field, which could influence seroconversion and duration of antibodies over time)(13). 234 

Therefore, the analysis requires two main steps: 235 

a) Calibrating the results from the validation study so that the sensitivity it provides for the 9
th

 236 

survey corresponds to the observed sensitivity, itself estimated by comparting the Wondfo 237 

and ELISA estimates in the 9th survey (this simplified procedure for estimating sensitivity is 238 

justified below). 239 



b) Use the indicator and the calibrated temporal decay in sensitivity to obtain corrected 240 

estimates for surveys 1-8. These corrected estimates can be interpreted as the expected 241 

estimates had ELISA been used. 242 

We now describe each one of these steps in detail. 243 

2.4.2. Calibrating the temporal decay in sensitivity 244 

The validation study (details on study design are provided in the Supplement) had data on the 245 

date of diagnosis by RT-PCR and of testing by the Wondfo test (thus yielding the time between 246 

diagnosis and testing), but not of symptom onset. Therefore, the validation study was re-247 

analyzed in each iteration of the correction procedure. In each iteration: 248 

• The validation study data was resampled without replacement. This allows incorporating 249 

sampling variability in the validation study itself as in a non-parametric bootstrap 250 

procedure. 251 

• (� and (� values were generated and added to the time between diagnosis and testing in 252 

the resampled dataset to generate ��. 253 

• A model for the change in sensitivity over time was then fitted by an automated model 254 

selection procedure (see the Supplement for details). 255 

• Since the validation study lacked data on sensitivity of the Wondfo test for recent 256 

infections, extrapolation for the smallest value of �� in the dataset to �� � 0 was required. 257 

However, the observed data does not capture the increase in sensitivity during the first 258 

days following infection. This gap in the range of �� was imputed by assuming that 259 

sensitivity from �� � 0 (assumed to be 1%) to the smallest value of �� (using the predicted 260 

sensitivity from the model) in the given iteration has a logit-linear relationship. 261 

The process above generated (in each iteration) �! ����, which is the function describing how 262 

sensitivity decreased over time in the validation study. As discussed above, the observed 263 

differences in seroprevalence estimates from the Wondfo and ELISA tests in the 9th survey 264 

were not compatible with our validation study. To account for this difference, we calibrated 265 

�! ���� into �!���� � ;��! �����, where 0 * ; * 1. 266 

The calibration procedure was performed by finding the value of ; using a one dimensional 267 

optimization algorithm such that � ���� (where �� is the date of the 9
th

 survey) is virtually 268 

identical to 
!"��

!"��
� 20.52% (where <�� and <# � respectively denote the seroprevalence as 269 

measured by the Wondfo and ELISA tests in the 9th survey), which is an estimate of the 270 

sensitivity of the Wondfo test in the 9th survey. This process ensures that � ���� is (virtually) 271 

identical to the sensitivity in the last survey, thus making �!���� and field estimates of 272 

sensitivity more compatible. 273 

Importantly, this calibration procedure is arbitrary because many other transformations of 274 

�! ���� could be used. We decided to simply scale �! ���� by a multiplicative constant because 275 

this is a simple procedure that is rank preserving, therefore retaining the overall trends of the 276 

original function. However, the calibration procedure is entirely numerical, thus being agnostic 277 

to biological considerations. Nevertheless, the calibration does return a sensitivity curve that is 278 

at least compatible to field estimates, which is the goal of the calibration procedure. 279 

2.4.3. Correcting the Wondfo estimates from surveys 1-8 280 



As described above, the temporal distribution of deaths was used as an indicator of the 281 

temporal distribution of the epidemic. However, because the official statistics dataset does not 282 

have data when infection occurred (which is indeed virtually impossible to ascertain), the 283 

correction procedure was implemented as an iterated process. In each iteration, (� values 284 

were generated and subtracted from the date at symptom onset (available in the official 285 

statistics dataset), thus yielding the infection date �. 286 

To calculate corrected cumulative prevalence estimates (denoted by <!# $) in surveys 1-8, 287 

sensitivity (denoted by � ��$ �) was calculated as the weighted average of �!���� over the period 288 

from February 29, 2020 to the given survey, where the weight that each date receives is the 289 

sum of the weights (described in section 2.3.2) of all deaths with infection occurring in the 290 

given date. � ��$� was then applied to the following formula: <!# $ �
!"��


��
%̂��

�'(�����%̂�
��
,(14) where 291 

<# $ and <� $ denote the seroprevalence as measured by the ELISA and Wondfo tests 292 

(respectively) in the �th survey; and &̂$ is the specificity of the Wondfo test in the �th survey. 293 

We assumed &̂$ � 1 in all surveys, so the formula simplifies to <!# $ �
!"��

'(����
. 294 

The strategy outlined above assumes that specificity of the Wondfo test is 100%. Although this 295 

is a strong assumption, it can be justified in this context as follows. First, 1 � <!�� � 1 �296 
�

����
� 99.95%, which is a lower bound for the test’s specificity since it was applied in the 297 

field. Second, although we have no data on how specificity changes over time, it is likely to 298 

increase because the sensitivity decreases. Therefore, &̂$ � 1 is likely a good approximation in 299 

this situation, which justifies estimating � ���� as 
!"��

!"��
, simplifies the formula for calculating <!# $ 300 

and prevents it from yielding negative values. Although the formula could still yield <!# $ values 301 

larger than 100%, this cannot happen in the current application because maxA<!�$B � <!�� �302 

2.04% and min�D̂$� � � ���� � 20.52%, and 
�.��

��.��
� <!# �. We also performed a subset of the 303 

analysis using a likelihood-based approach (described in detail elsewhere(15)) and obtained 304 

very similar results. 305 

Confidence intervals of the corrected estimates for surveys 1 to 8 incorporated the different 306 

sources of uncertainty in a bootstrap procedure (see Supplement for details). All analyses were 307 

performed using R 4.0.2. 308 

3. RESULTS 309 

Table 1 displays the results of the simulation study. In comparison to the apparent prevalence, 310 

corrected prevalence estimates were on average much closer to the true prevalence. 311 

Corrected estimates were slightly biased upwards, but both bias and absolute deviation (that 312 

is, the average absolute distance from the true prevalence) were of small magnitude. 313 

Figure 1 shows the cumulative prevalence of infections. The solid line represents the 314 

cumulative prevalence of confirmed infections. Estimates from the Wondfo test were not only 315 

substantially smaller than corrected estimates (especially for later surveys), but also presented 316 

a different overall pattern that would not resemble the remaining results even upon scaling. 317 

Moreover, Wondfo estimates were implausible when compared to the cumulative prevalence 318 

of infection according to official cases. Up to the 8th survey, the Wondfo and official cumulative 319 

prevalence estimates were similar in the additive scale, but in the 9th survey the Wondfo 320 

estimate was substantially smaller than the estimate from official statistics, which is a lower 321 



bound of the true cumulative prevalence. Table 2 shows the seroprevalence estimates for each 322 

survey of the EPICOVID19-RS study using the different methods. 323 

4. DISCUSSION 324 

In this work, we combined data from official statistics, a series of nine population-based 325 

serological surveys and a validation study to estimate the cumulative prevalence of SARS-CoV-326 

2 infection in the State of Rio Grande do Sul (Southern Brazil) by adjusting estimates from a 327 

rapid test into the expected result had the ELISA test been used instead. Corrected estimates 328 

are likely more plausible than estimates using the rapid test, especially when compared to 329 

confirmed cases from official statistics. The corrected result indicated that, as of late February 330 

2021, cumulative prevalence of confirmed cases corresponds to about half of all cases 331 

detected by ELISA. 332 

Describing the temporal evolution of the epidemic is important for several reasons. First, the 333 

true number of infections is required for calculating several important quantities important for 334 

policy making, including fatality and hospitalization rates(16). Second, an accurate estimate of 335 

the temporal distribution allows better calculation of quantities required for projections using 336 

models of infection dynamics, such as the basic reproduction number and how it changes over 337 

time, especially after specific events such as lockdown measures or social events that may lead 338 

to overcrowding. Projections from disease dynamics models early in the pandemic were highly 339 

influential and were one of the few sources of information then available. Although important 340 

and useful, it must be noted that most early projects were necessarily based on preliminary 341 

estimates from other diseases or from small, non-representative studies. Moreover, it is 342 

difficult to a priori identify and incorporate all possible complex factors that may influence the 343 

temporal evolution of the epidemic, many of which are local and difficult to measure. One year 344 

after the first confirmed case in Rio Grande do Sul, there is substantial local data available 345 

from official statistics and the EPICOVID19-RS study, thus allowing comparing initial projections 346 

to the real figures to refine future projection models, which can now use local, real-data 347 

estimates. 348 

The study has considerable strengths. First, the EPICOVID19-RS study is a unique resource that 349 

includes nine population-based seroprevalence surveys covered a period of about 10 months 350 

and begun shortly after the first confirmed case in the State. Second, the distribution of all but 351 

one of the transition times was based on local date. Third, the fact that both the rapid and the 352 

ELISA tests were used in the 9th survey allowed us to calibrate the sensitivity function with a 353 

result obtained in the field. Fourth, corrected results were more plausible than uncorrected 354 

estimates, which underestimated even the cumulative prevalence of confirmed cases after the 355 

8
th

 survey. 356 

An important limitation of the study is the need of many assumptions throughout the 357 

correction process, including: fatality ratio is constant over time; and the sensitivity function 358 

estimated in the validation study (which was enriched for symptomatic cases) is applicable to 359 

the field (which includes the general population) after a calibration procedure. It is not 360 

possible to empirically verify the assumption of constant fatality over time without making 361 

additional assumptions that may lead to circular reasoning. Regarding the sensitivity function, 362 

its validity can only be assessed by repeatedly applying the rapid test over time to individuals 363 

sampled from the general population who had been diagnosed with known date. Establishing 364 

such cohort would be logistically difficult and time consuming, requiring large initial sample 365 

sizes to identify enough infected individuals. It should also be mentioned that the ELISA test is 366 



itself not perfect. Indeed, there is evidence indicating that some individuals do not 367 

seroconvert, and this may be associated with disease severity(13). Therefore, estimates 368 

presented here must be interpreted as the cumulative prevalence of positive ELISA tests rather 369 

than of true infections. 370 

This study is not a definitive guide, but rather an example of the usefulness of integrating 371 

different sources to correct estimates from an imperfect test to obtain a more plausible 372 

temporal trend of the COVID-19 epidemic. Although the study demonstrates the practical 373 

importance of analytical procedures, it also highlights the critical importance of good data, 374 

including population-based estimates from initiatives such as the EPICOVID19-RS study, which 375 

ideally should be performed using appropriate tests; extensive validation studies evaluating 376 

how different factors (such as time since diagnosis) can affect the test’s performance; and 377 

good quality, transparent and freely accessible official statistics. Estimates from large and 378 

populationally-representative data sources with sufficiently fine temporal is the best way to 379 

track the progression of the pandemic and to substantiate policy making, and therefore 380 

obtaining such data should be supported by funders and governments. 381 
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TABLES 433 

 434 

Table 1. Performance of the correction procedure in the simulation study (averaged over 435 

1000 datasets). 436 

E 
True 

prevalence
a
 

Apparent 

prevalence
b
 

Corrected values 

Prevalence
c
 Bias

d
 

Absolute 

bias 

60 0.011% 0.002% 0.014% 0.003 pp 0.022 pp 

120 0.300% 0.093% 0.307% 0.007 pp 0.114 pp 

180 2.383% 0.988% 2.408% 0.025 pp 0.274 pp 

240 6.503% 3.051% 6.518% 0.015 pp 0.416 pp 
a
True cumulative prevalence of infections. 437 

bCummulative prevalence of infections estimated using a test with decaying sensitivity. 438 

c
Cummulative prevalence of infections estimated by the correction procedure. 439 

dDifference between true and corrected prevalence. 440 

pp: Percent points. 441 

  442 



Table 2. Seroprevalence (%) estimates (95% confidence intervals) in Rio Grande do Sul for 443 

each survey. 444 

Survey Wondfo ELISA 

 Method Values Method Values 

1 Measured 0.05 (0.01-0.17) Modelled 0.26 (0.03-1.00) 

2 Measured 0.13 (0.05-0.29) Modelled 0.61 (0.19-1.45) 

3 Measured 0.22 (0.11-0.41) Modelled 0.94 (0.39-1.90) 

4 Measured 0.18 (0.08-0.35) Modelled 0.74 (0.28-1.58) 

5 Measured 0.47 (0.28-0.72) Modelled 2.12 (1.12-3.62) 

6 Measured 0.96 (0.70-1.27) Modelled 4.15 (2.55-6.36) 

7 Measured 1.22 (0.91-1.60) Modelled 4.82 (3.09-7.12) 

8 Measured 1.38 (1.05-1.77) Modelled 5.15 (3.40-7.43) 

9 Measured 2.04 (1.64-2.52) Measured 9.97 (9.03-10.96) 

  445 



FIGURE 446 

 447 

Figure 1. Cumulative prevalence of SARS-CoV-2 infection (according to the ELISA test) in Rio 448 

Grande do Sul (Southern Brazil) from February 29, 2020 to February 28, 2021. 449 

 450 


