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Abstract 
The unpredictability of epileptic seizures exposes people with epilepsy to potential physical 

harm, restricts day-to-day activities, and impacts mental well-being. Accurate seizure forecasters 

would reduce the uncertainty associated with seizures but need to be feasible and accessible in 

the long-term. Wearable devices are perfect candidates to develop non-invasive, accessible 

forecasts but are yet to be investigated in long-term studies. We hypothesized that machine 

learning models could utilize heart rate as a biomarker for well-established cycles of seizures and 

epileptic activity, in addition to other wearable signals, to forecast high and low risk seizure 

periods. 

 

This feasibility study tracked participants’ (n = 11) heart rates, sleep, and step counts using 

wearable smartwatches and seizure occurrence using mobile seizure diaries for at least 6 months 

(mean = 14.6 months, SD = 3.8 months). Eligible participants had a diagnosis of refractory 

epilepsy and reported at least 20 seizures (mean = 135, SD = 123) during the recording period. 

An ensembled machine learning and neural network model estimated seizure risk either daily or 

hourly, with retraining occurring on a weekly basis as additional data was collected. Performance 

was evaluated retrospectively against a rate-matched random forecast using the area under the 

receiver operating curve. A pseudo-prospective evaluation was also conducted on a held-out 

dataset. 

 

Of the 11 participants, seizures were predicted above chance in all (100%) participants using an 

hourly forecast and in ten (91%) participants using a daily forecast. The average time spent in 

high risk (prediction time) before a seizure occurred was 37 minutes in the hourly forecast and 3 

days in the daily forecast. Cyclic features added the most predictive value to the forecasts, 

particularly circadian and multiday heart rate cycles. 
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Wearable devices can be used to produce patient-specific seizure forecasts, particularly when 

biomarkers of seizure and epileptic activity cycles are utilized.  
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Introduction 
 

Epilepsy is one of the most common neurological disorders, affecting roughly 1% of the world’s 

population (1) and responsible for 20.6 million disability-adjusted life-years (DALYs) lost, which 

is comparable to breast cancer in women and lung cancer in men (2). Epilepsy is characterized by 

an increased predisposition of the brain to generate epileptic seizures, which often result in vast 

neurobiological, cognitive, psychologic, and social consequences (3). Despite decades of new drug 

development and surgical treatment, up to one-third of people with epilepsy continue to suffer 

from recurrent seizures (4,5). While most people are symptom-free for more than 99.9% of their 

day-to-day life, epileptic seizures are sudden, potentially catastrophic events that can be life-

threatening both for the person with epilepsy and others. Crucially, sudden death in epilepsy 

(SUDEP), most often following a convulsive seizure, is 27 times more likely than sudden death in 

control populations, a mortality burden second only to stroke when compared to other neurologic 

diseases (6,7). Aside from these risks, living with epilepsy can take a major toll on quality of life 

and independence, as the unpredictable nature of seizures causes feelings of uncertainty (8) and 

impacts participation in common day-to-day activities, such as going to work, driving, and social 

interactions (9). 

 

To address the uncertainty associated with epileptic seizures, researchers across many disciplines 

have spent years investigating the potential for seizure prediction and forecasting (10). The ability 

to reduce the uncertainty of when a seizure is about to occur would have tremendous implications 

for quality of life, and clinical management (10). Timely precautions against seizure-related injury 

or timed adjustment of treatment according to seizure likelihood (chronotherapy) could also reduce 

seizure-related harm, hospitalizations, and healthcare-related costs (11).  

 

Until recently, there was no scientific consensus as to whether seizures would be predictable in a 

prospective setting since most research was based on limited data (from short-duration in-hospital 

electroencephalography (EEG) recordings) and some presented methodological flaws (12). Access 

to better quality data (made available in public databases (13,14) and seizure prediction 

competitions (15)), more rigorous statistical and analytical methods, and results from a clinical 

trial of an intracranial EEG seizure advisory system (NeuroVista (16))  have shown promise that 

seizure prediction devices could be possible in the foreseeable future. Additionally, there is a better 

understanding of the pre-seizure state and of the mechanisms underlying seizure generation 

(ictogenesis), with contributions from basic science, network theory, multiscale 

electrophysiological recordings, and functional neuroimaging (17). Multiple patient-specific 

seizure precipitants have also been identified, including stress (18,19), poor sleep (18), exercise 

(20), diet (21), weather (22,23), alcohol use (24) and poor drug adherence (25). Many of these 

factors have shown potential utility in forecasting seizures (18,23). 

 

Yet perhaps the most significant breakthrough for the field of seizure forecasting has been the 

characterization of short- and long-term seizure occurrence cycles (11,26,27), which typically 

occur in circadian and multiday (often weekly and monthly) periodicities (27,28). Similar cycles 

have been reported in interictal epileptiform activity (IEA) (26), EEG markers of brain critical 

slowing (29) and heart rate (30), all of which have been linked to seizure timing, suggesting that 

seizures are co-modulated by underlying biological cycles. An individual’s seizure cycles can be 

utilized to generate seizure forecasts using both self-reporting seizure diaries (31–33) and 
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electrographic seizures (34). However, the discrete nature of seizure events means that the 

underlying biological cycles may be stronger predictors of seizure occurrence than seizure cycles 

alone (29,34,35). This has already been successfully demonstrated with cycles of IEA in a 

retrospective seizure forecasting study using an implanted intracranial EEG device (34). 

Furthermore, algorithms incorporating biological cycles seem to outperform algorithms using 

more traditional EEG features, such as spectral power and correlation (15). 

 

However, seizure forecasting algorithms typically rely on chronic EEG recordings from invasive, 

implanted devices, which require surgery (and associated risks), are costly, and may not be an 

option for many people with epilepsy. Minimally-invasive or noninvasive wearable devices that 

monitor continuous biomarkers of seizure risk are, therefore, ideal candidates for most people who 

desire seizure forecasts (9). Currently, some wearable devices are commercially available for 

seizure detection (36), although there are also promising results highlighting the utility of 

wearables in seizure forecasting. Wearable sensors can be used to detect actigraphy, blood volume 

pulse, body temperature, cerebral oxygen saturation, electrodermal activity and heart rate, all of 

which have all shown promise in seizure prediction (37–39). Periodic wearable signals, such as 

temperature (40) and heart rate (30) may also be used as a biomarker for seizure cycles (35). For 

example, our recent work in seizure timing and heart rate, measured from a wearable smartwatch, 

shows that seizures are often phase-locked to underlying circadian and multiday cycles in heart 

rate (i.e., there is a strong preference for seizures to occur at specific phases of the heart rate cycle) 

(30). 

 

To address the need for non-invasive seizure forecasting, this study aimed to develop a wearable 

device-based seizure forecaster using a long-term dataset from an observational cohort study, 

Tracking Seizure Cycles. We hypothesized that cycles in heart rate can be leveraged, in addition 

to other wearable signals (other heart rate features, step count and sleep features), to forecast high 

and low seizure risk periods. We also investigated the relative contributions of cycles, heart rate, 

sleep and activity features to forecasting performance. 
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Materials and Methods 
 

Study design and participants 

This retrospective and pseudo-prospective feasibility study was designed using training and 

testing datasets, followed by pseudo-prospective evaluation using a held-out dataset. We utilized 

long-term mobile seizure diaries and a wearable smartwatch to forecast seizure likelihood and 

elucidate the relationship between seizures and non-invasively measured wearable signals, 

namely heart rate, sleep stages, sleep time, and step count. Seizures are known to follow 

circadian and multiday cycles in most people, so there was a specific focus on finding 

physiological cycles with similar periodicities using wearable signals. This builds on our 

previous work that found a relationship between cycles in heart rate and seizure occurrence (30). 

The study was approved by the St Vincent’s Hospital Human Research Ethics Committee 

(HREC 009.19) and all participants provided written informed consent. First enrollment was in 

August 2019. 

 

All participants were from the observational cohort study ‘Tracking Seizure Cycles’ (TSC). 

Participants were over 18 years of age with a confirmed epilepsy diagnosis, and either 

uncontrolled or partially controlled seizures. We chose to recruit an unselected cohort, as seizure 

cycles are known to be present regardless of age, epilepsy syndrome, and seizure type and 

frequency (26,27). Continuous data were collected via mobile and wearable devices for at least 6 

months and up to 20 months. Participants wore a smartwatch (Fitbit, Fitbit Inc., USA) and 

manually reported seizure times in a freely available mobile diary app (Seer App, Seer Medical 

Pty Ltd, Australia). The smartwatch continuously measured participants’ heart rates (via 

photoplethysmography) at 5 s resolution (one recording every 5 seconds). The smartwatch also 

estimated sleep stage (awake, REM, and light and deep sleep) and step count each minute. 

 

Participants were required to have two months or more of continuous wearable data recordings, 

at least 80% adherence (i.e., they must have worn the device at least 80% of the time) and a 

minimum of 20 seizures reported during the recording time to be eligible for seizure forecasting. 

Eligible participant demographic information is given in Table 1. 

 

The seizure forecast was presented in hourly and daily formats to assess the accuracy of an 

hourly forecast compared to a daily forecast. The hourly forecast gave the likelihood of a seizure 

at the start of the hour, every hour. The daily forecast gave the likelihood of a seizure for the day, 

shortly after waking from sleep (based on Fitbit’s sleep end time). 

 

Training, testing and held-out evaluation datasets 

The training dataset included at least 2 months of continuous recordings (M = 5.4 months, SD = 

4 months) and at least 15 seizures (M = 35, SD = 47). The patient-specific training cut-off date 

was the final day that both of these criteria were met. The testing dataset included participants’ 

continuous recordings (M = 6.6 months, SD = 3.1 months) and seizures (M = 87, SD = 112) 

reported from their training cut-off date until 1 February 2021. As a further requirement for 

seizure forecasting, participants must have had at least five lead seizures (at least an hour apart in 

the hourly forecast and at least a day apart in the daily forecast) reported during the testing 

period. Any continuous recordings (M = 2.6 months, SD = 0.5) and seizures (M = 13, SD = 14) 

reported from 1 February 2021 until 25 April 2021 were included in the held-out evaluation 
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cohort, so long as the participant reported at least one seizure during this period. This data was 

held-out to evaluate the efficacy of the forecasting algorithm in a pseudo-prospective setting. 

 

Data preprocessing 

The heart rate, step count, and sleep signals were all processed separately. Heart rate features 

included rate of change in heart rate (RCH) and daily resting heart rate (RHR). Physical activity 

features included steps recorded in the previous hour and steps recorded on the previous day. 

Sleep features included total time asleep (not including naps), time in REM, time in deep and 

light sleep during main sleep, average HR overnight, sleep time deviation from median sleep 

time over the past three months, and wake time deviation from median wake time over the past 

three months. All sleep features were calculated using sleep labels derived from Fitbit’s sleep 

algorithm. Additionally, we included cyclic features, comprising heart rate cycles (circadian and 

multiday), last seizure time, and second-last seizure time. Compared to the hourly forecast, the 

daily forecast only included multiday cycles, days since last seizure time, days since second-last 

seizure time, all sleep features, daily resting heart rate, and steps recorded during the previous 

day. 

 

To derive heart rate features and heart rate cycles, continuous heart rate signals were initially 

down-sampled to one timestamp per minute, followed by interpolation of short missing data 

segments with a linear line (missing segments less than two hours) or longer missing data 

segments with a straight line at the mean heart rate. RCH was used to estimate heart rate 

variability (HRV), which is defined as the variations in RR intervals and is typically derived 

using the QRS complex on an electrocardiogram (ECG). RCH was calculated as the mean beats 

per minute (BPM) in one minute subtracted from the mean BPM in the previous minute, 

representing the change in BPM over two minutes. RCH was resampled every hour for the 

hourly forecast or every day for the daily forecast. Daily RHR was derived as the average of the 

bottom quintile of BPM where no steps were recorded. 

 

To compute the heart rate cycles, we used a similar approach to a method used to extract 

multiday rhythms of epileptic activity (26) (see also (30) for further details). Briefly, circadian 

and multiday peak periodicities of heart rate (cycles) were derived using a Morlet wavelet. The 

heart rate signal was filtered (using a zero-order Butterworth bandpass filter) at the peak 

periodicities and instantaneous phase of the cycle at each timepoint was estimated using a Hilbert 

transform. Cycles were used as features for the forecaster if seizures were significantly phase-

locked to the cycle (p<0.05, according to Omnibus/Hodges-Ajne test for circular uniformity 

(41)). Each cyclic feature (cycle phases and last/second last seizure time) was transformed into 

two linear features by normalizing the signal from 0 to 2π and computing the sine and cosine. 

 

Forecasting algorithm 

Hourly and daily forecasts were generated for each participant. To forecast the likelihood of a 

seizure hourly and daily, we used an ensemble of a long short-term memory (LSTM) neural 

network (42), a random forest (RF) regressor (42), and a logistic regression (LR) classifier (42). 

Figure 1 describes the architecture of the model. The training (green), testing (orange) and 

evaluation (red) cohorts were different lengths in each participant, and algorithm retraining 

occurred weekly during testing and evaluation. The model used sleep features in the LSTM 

model (which contains 7 days of memory) in order to account for the potential effect of built-up 
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sleep debt on seizure risk (18). All other features (cycles, heart rate features and step counts) then 

predicted seizure risk using a random forest model, which performed best by observation. A 

logistic regression model, which weighs inputs’ predictive value, then combined the random 

forest and LSTM outputs into one seizure risk value per hour or day. This was compared to a 

rate-matched random model (occasionally referred to as the chance model) using AUC scores. 

Other metrics were also used to assess forecast performance (see Performance metrics). 

 

The LSTM model was trained on sleep features computed daily after waking. A weekly history 

of sleep features was incorporated into each row input, providing a 7x7 matrix for each forecast, 

representing 7 days and 7 sleep features per day. The LSTM model was composed of a single 

layer with 64 memory units, followed by two densely connected layers, and a linear activation 

function. All networks were trained for 100 epochs. We selected the mean squared error loss 

function as the cost function, using the Adaptive Moment Estimation (Adam) optimizer (43). 

The LSTM model outputted the likelihood of a seizure for the day based on sleep features and 

was used as an input to the LR classifier. 

 

The RF regressors with the bootstrap aggregating technique were trained on all physical activity, 

heart rate, and cyclic features. In the model, the number of decision trees was 1000 and the 

minimum number of samples required to be at a leaf node was 120. From observation, these 

model parameters achieved the highest accuracy across the board during training. Most people, 

particularly participants with low seizure frequency (<2 seizures/month), had a highly 

imbalanced dataset, with non-seizure hours/days occurring far more frequently than seizure 

hours/days. RF models typically performed better on balanced datasets, so oversampling of 

seizure hours/days was undertaken before training the RF model. The output of the RF model 

was the likelihood of a seizure within the following hour or day and was used as an input to the 

LR classifier. 

 

The LR classifiers were trained on the outputs of the LSTM and RF models. To aid the classifier 

in distinguishing between non-seizure hours/days and seizure hours/days and remove the impact 

of pre-ictal and post-ictal changes, the hour/day immediately preceding and following the 

hour/day of each seizure were removed in the training dataset. The output of the LR model was 

the final likelihood of a seizure (risk value); the risk value was represented as a continuous value 

between 0 for no seizure and 1 for a ‘guaranteed’ seizure within the next hour or day, as 

appropriate. 

 

The forecaster classified hours and days as either low, medium, or high risk. The medium and 

high risk cut-off thresholds were computed using the training dataset by optimizing the metrics:  

(C1) time spent in low risk > time spent in medium risk > time spent in high risk; 

(C2) seizures in high risk > seizures in medium risk > seizures in low risk (29). 

If C1 or C2 could not be satisfied, the optimization algorithm maximized the product of the time 

in low risk and the number of seizures in high risk (C3 and C4): 

(C3) maximize the time spent in a low risk state; 

(C4) maximize the number of seizures occurring in the high risk state. 

Retraining the algorithm was implemented to imitate a clinical seizure forecasting device in 

which algorithm coefficients and risk thresholds would be regularly updated. Retraining of the 

seizure forecast occurred on a weekly basis as additional data was collected. 
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Performance metrics 

To assess the performance of the hourly and daily forecasters, a variety of different metrics were 

used. During algorithm testing and for pseudo-prospective held-out evaluation, performance of 

the ensembled model was evaluated using the area under the receiver operating characteristic 

curve (AUC) and compared to the AUC score of a rate-matched (seizure frequency derived from 

all seizures that occurred in the training dataset) random forecast. The AUC scores assessed the 

classifier’s ability to discriminate between non-seizure hours/days and seizure hours/days. 

 

Despite the usefulness of the AUC to measure performance, the AUC can change depending on 

the forecasting horizon (34); in this case, an hourly forecast compared to a daily forecast. This 

motivated the use of Calibration Curves (CC) to measure how well the predicted likelihood 

values corresponded to observed probabilities, and the Brier score (or Brier loss) to quantify the 

accuracy of the predictions. The CC metric provides a visual representation of the forecaster’s 

ability to estimate seizure risk. The ideal CC can be visualized as a diagonal line, where the 

forecaster’s predicted seizure likelihood values are equal to the actual seizure probabilities. 

Anything above this line would be considered underestimating seizure risk and anything below 

would be overestimating seizure risk. The Brier score (or Brier Loss) is shown alongside the CC 

metric, which is often used to assess calibration performance. For the Brier Score, a perfectly 

accurate forecast would result in a loss score of 0 and a poorly performing forecast would result 

in a loss closer to 1. We also considered the accuracy of the forecaster, time spent in low, 

medium and high risk states, and seizures occurring in low, medium and high risk states. 

 

Analyses were executed using Python (version 3.7.9). 
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Figure 1. Forecasting model architecture. The logistic regression ensemble (combining LSTM, Random Forest 

Regressor, and all features) was trained on a training dataset that included at least 15 seizures and at least two 

months of continuous recordings. Two forecasting horizons were compared: hourly and daily forecasts. The LSTM 

model incorporated sleep features from the past seven nights and the random regressor included all other features 

(cycles, heart rate, and physical activity features), in addition to the output daily seizure likelihood estimates from 

the LSTM model. The logistic regression ensemble utilized a 10-fold cross validation approach to forecast seizure 

likelihood hourly or daily. The forecasting model was assessed (using AUC scores) on a retrospective testing set and 

a pseudo-prospective held-out evaluation set and compared to a rate-matched random (RMR) model, where seizure 

frequency was determined by the training set. The algorithm was retrained weekly to imitate a clinical forecast. 
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Results 
 

There were 11 out of 39 participants that met the inclusion requirements (see Methods: Study 

Design and Participants) (Table 1). Eligible participants had an average duration of 14.6 months 

(SD = 3.8) of continuous heart rate and activity monitoring, and an average of 423 nights (SD = 

112) that recorded sleep stages and duration. Participant diaries included an average of 136 (SD 

= 123) seizures reported during the wearable monitoring period. Results from the cohort are 

given in Figures 2-6 and Table 2. Eight of 11 participants (shown in red in Table 1) in the testing 

cohort were also included in the held-out evaluation cohort, as these people reported more than 

one seizure during the evaluation period. The results from the prospective evaluation cohort are 

shown in Figure 7 and Table 2. 

 
Table 1. Eligible participants’ demographic information. Participants that had more than one seizure 

during the evaluation period are shown in red. 

Participant Type of seizures 

(Focal, Generalized 

or Both) 

Total seizures 

during monitoring 

(frequency/month) 

Training 

recording 

length 

(months) 

Testing 

recording 

length 

(months) 

Evaluation 

recording 

length 

(months) 

Sleep 

scoring 

(nights) 

P1 Focal 57 (5.1) 4.2 4.3 2.7 334 

P2 Focal 111 (8.8) 2.0 7.9 2.7 371 

P3 Focal 27 (1.5) 12.6 3.1 2.7 549 

P4 Focal 24 (1.4) 10.6 4.3 2.7 500 

P5 Both 280 (17.0) 2.0 13.3 1.2 459 

P6 Focal 246 (36.7) 2.0 2.1 2.6 199 

P7 Generalized 28 (1.6) 8.5 5.9 2.7 501 

P8 Focal 179 (14.6) 2.5 7.1 2.7 327 

P9 Both 392 (19.6) 9.7 7.6 2.7 586 

P10 Focal 94 (6.6) 2.4 9.2 2.7 428 

P11 Focal 55 (3.9) 3.5 7.8 2.7 399 

Summary 8 focal only, 1 

generalised only, 2 

both generalised 

and focal 

M = 136 (10.6) 

SD = 123 (10.8)  

M = 5.5 

SD = 4.0 

M = 6.7 

SD = 3.2 

M = 2.6 

SD = 0.5 

M = 423 

SD = 112 

 

 

Forecast performance and metrics 

 

Forecasting performance was quantified to determine which participants would have benefitted 

from the non-invasive seizure forecast. First, we used the AUC metric to determine forecasting 
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performance. The AUC score quantifies how useful the forecast is, based on the amount of time 

spent in a high-risk state. An excellent forecast is often considered to have an AUC of greater 

than 0.9. Of the 11 participants, AUC scores showed that seizures were predicted above chance 

in all participants using an hourly forecast (M AUC = 0.74, SD = 0.10) and in 10 participants 

using a daily forecast (M AUC = 0.66, SD = 0.11) (Figure 2 and Table 2). 

 

People with longer recording times usually performed well in both the hourly and daily forecasts. 

A weak positive correlation exited between total recording length and AUC scores in both the 

hourly (R2 = 0.63) and daily (R2= 0.59) forecasters (Supplementary Figure 1). This suggests that 

the forecaster improves over time. 

 

A relationship was also noticed between seizure frequency and forecasting performance. The 

participant with the highest seizure frequency (P6) had the worst performance in both the hourly 

and daily forecasters (0.57 and 0.46, respectively). P6 had a seizure frequency of 36.7 

seizures/month (i.e., more than one per day), which was almost double the next highest 

participant. Across the whole cohort, a weak negative correlation exited between seizure 

frequency and AUC scores in both the hourly (R2 = -0.58) and daily (R2= -0.49) forecasters 

(Supplementary Figure 2). This suggests that participants with lower seizure frequencies (less 

than once per day) perform better than participants with higher seizure frequencies. 

 

Time spent in high, medium, and low risk, alongside the seizure frequency in high, medium, and 

low risk, were also considered (Figure 3). For the hourly forecast, median forecast accuracy was 

86% (min: 56%, max: 95%) and median time in high risk was 14% (min: 5%, max: 45%). For 

the daily forecast, median forecast accuracy was 83% (min: 43%, max: 97%) and median time in 

high risk was 18% (min: 6%, max: 29%). Of the 11 participants, the average time spent in high 

risk (prediction time) before a seizure occurred was 37 minutes in the hourly forecast and 3 days 

in the daily forecast. Typically, greater AUC scores implied that the participant spent more time 

in low risk and most seizures occurred in high risk. For example, P4 spent only 7% of their time 

in high risk state, but 83% of their seizures occurred whilst in high risk (see Figure 5 for an 

example forecast). 

 

Additionally, we evaluated CC metrics and Brier scores (Figure 4). Generally, people with more 

seizures had calibration curves closer to the ideal diagonal line. Hourly and daily forecasts were 

occasionally found to sit well below the ideal line, suggesting that seizure risk was overestimated 

in these cases. Brier score loss, another metric to assess forecast calibration performance, varied 

independently to calibration curve variation. For example, the participants with the highest 

seizure counts (P5 and P9) had similar calibration curves for both the hourly and the daily 

forecast; however, Brier loss scores were much greater for P9 than P5. P4 had the lowest Brier 

loss scores in both the hourly and daily forecast. 
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Figure 2. Receiver operator characteristic (ROC) curves for all participants in the daily and hourly forecast 

(retrospective testing cohort). The dashed diagonal line represents a balanced random forecast. ROC curves show 

that hourly forecasts consistently outperformed a balanced random forecaster, and daily forecasts mostly 

outperformed a balanced random forecaster. Patient-specific forecast performance was assessed by comparing the 

forecaster’s area under the ROC curve (AUC) to the AUC of a rate-matched random forecast (different to the 

balanced random forecast shown above). 
 

 

Table 2. AUC scores of the hourly and daily forecasters for the testing and evaluation cohorts. * indicates 

performance greater than chance (the rate-matched random forecast). 

 

Testing dataset Evaluation dataset 

Hourly AUC Daily AUC Hourly AUC Daily AUC 

P
a
r
ti

ci
p

a
n

t 

1 0.79* 0.64* 0.68* 0.42 

2 0.71* 0.61*   

3 0.93* 0.62* 0.94* 0.69* 

4 0.89* 0.92*   

5 0.75* 0.72*   

6 0.57* 0.46 0.55* 0.62* 

7 0.67* 0.64* 0.41 0.45 

8 0.70* 0.70* 0.82* 0.80* 

9 0.76* 0.68* 0.57* 0.45 

10 0.66* 0.66* 0.61* 0.80* 

11 0.69* 0.61* 0.84* 0.45 

 Mean (SD) 0.74 (0.1) 0.66 (0.11) 0.68 (0.18) 0.59 (0.16) 
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Figure 3. Forecasting and prediction performance metric results in the retrospective testing cohort for the 

hourly and daily forecasters. Individual participant bars are shown for each metric. Population box plots are shown 

on the right of the bars, showing median and upper and lower quartiles for each metric in the hourly and daily 

forecasters. 
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Figure 4. Calibration curves and Brier scores for hourly and daily forecasts summarized for each participant 

in the retrospective testing cohort. The calibration curves show the relationship between the forecasted likelihood 

of seizures and the actual observed probability of seizures. For the calibration curves, 10 bin sizes were used, so 

forecast likelihood values were compared to actual probabilities from 0-10%,10-20%,...,90-100%. The ideal 

calibration curve for a hypothetically perfect forecaster is shown in each plot. 
 

 
Figure 5. Example hourly forecasts showing high, medium, and low risk states and thresholds. Predicted 

seizure likelihood (black line) derived from the hourly forecaster for P4 from the end of September to the end of 

January. Seizures are marked with red triangles. Note that the medium risk and high risk thresholds – indicated by 

the orange and red lines, respectively – can change after weekly retraining. The cyclical seizure likelihood is mostly 

attributable to multiday heart rate cycles. 
 

Feature groups on forecast performance 

 

To characterize the importance of feature groups on forecasting performance, we analyzed AUC 

score change with the addition of particular feature groups (Figure 6). Physical activity and heart 

rate feature groups added little predictive value to the daily forecaster. Sleep features added 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.20.21257495doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.20.21257495


value to the daily forecaster in some people. Physical activity and heart rate features added some 

predictive value to the hourly forecaster; however, sleep features were the weakest predictors in 

the hourly forecaster. In both the hourly and daily forecaster, the cycles feature group was the 

strongest predictor for most people. 10 of 11 participants (all expect P4) had a significant (i.e., 

seizures were significantly locked onto the cycle in the training dataset) circadian cycle and 10 of 

11 (all except P7) people had least one significant multiday cycle. Despite the occasional 

negative AUC score change with the addition of a feature group, it is important to note that it is 

unlikely that there is significant positive or negative value added to the forecaster when values 

are close to 0. 

 

 
 

Figure 6. Auxiliary contribution of each feature group on forecasting performance in the retrospective testing 

cohort. AUC score change represents average change computed over ten runs of the algorithm. Performance of each 

feature group was characterized by comparing the AUC score of the forecasting algorithm once the feature group 

was added to the AUC score of the forecasting algorithm without the feature group. For example, in the case of 

physical activity, we compared the AUC score when the algorithm included all feature groups to the AUC score 

when the algorithm included only heart rate, sleep, and cycles feature groups. 
 

 

Held out evaluation cohort performance 

The held-out evaluation cohort performed well in most cases (Figure 7 and Table 2). 

Performance (based on AUC scores) was better than chance performance in 7 of 8 (88%) people 

using the hourly forecaster (M = 0.68, SD = 0.18) and 4 of 8 (50%) people using the daily 

forecaster (M = 0.58, SD = 0.16). It is important to note that the participant, P7, who did not 

perform better than chance in the hourly forecast had the lowest seizure count during the 

evaluation period and was the only participant without a significant multiday cycle. 
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Figure 7. Receiver operator characteristic (ROC) curves for all participants in the daily and hourly forecast 

(held-out evaluation testing cohort). The dashed diagonal line represents a balanced random forecast. ROC curves 

show that hourly forecasts mostly outperformed a balanced random forecaster, and daily forecasts outperformed a 

balanced random forecaster half of the time. Patient-specific forecast performance was assessed by comparing the 

forecaster’s area under the ROC curve (AUC) to the AUC of a rate-matched random forecast (different to the 

balanced random forecast shown above). 
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Discussion 

 

Summary 

People with epilepsy and their caregivers have expressed their interest in non-invasive wearable 

devices for decades, particularly for seizure forecasting (44) and detection (45). Wearable 

devices are more acceptable to people with epilepsy than invasive, cumbersome or indiscrete 

devices (44,45). Nonetheless, very few studies have investigated the feasibility of non-invasive 

wearables in seizure forecasting. 

 

This study demonstrates that features recorded via non-invasive wearable sensors can contribute 

to accurate seizure forecasts. Individual forecasters performed better than chance with all people 

when an hourly prediction horizon was used, and with 10 of 11 people when a daily prediction 

horizon was used. These results indicate that non-invasive seizure forecasting is possible for 

people with epilepsy with seizure warning periods of up to 24 hours. 

 

In the evaluation cohort, forecasters performed better than chance in 7 of 8 people using the 

hourly forecaster and 4 of 8 people using the daily forecaster. This is contrary to what we 

expected: that the performance would improve with a longer period on which to train the 

algorithm. The lack of improvement in AUC scores in the evaluation cohort may be attributed to 

the shorter recording lengths and seizure counts in the evaluation dataset compared to the testing 

dataset, making it difficult to directly compare the cohorts. Furthermore, the theoretical shift and 

change that may occur in heart rate cycles over time was not considered in this model. This shift 

in cycles may be mitigated by consistently retraining the algorithm on a shorter period of data 

(e.g., the past four months, instead of all past data). 

 

Generally, the hourly forecaster performed better than the daily forecaster. The superior 

performance in the hourly forecasts may be attributed to a number of factors, such as the 

inclusion of circadian heart rate cycles, hourly step count and RCH. The resolution of the daily 

forecaster would also have played a role in the loss of information. For example, high frequency 

seizure days (>1 seizure occurred on a day) were weighted equally to low seizure frequency days 

(1 seizure on a day). 

 

Feature importance 

Overall, cyclic features (heart rate cycles and previous seizure timing) were the strongest 

predictors of seizures in most cases (Figure 6). However, sleep, physical activity, and other heart 

rate features were also valuable predictors in some cases. 

 

Sleep features were useful predictors of seizure likelihood for some people using the daily 

forecaster but were weak predictors in the hourly forecaster. The lack of utility of sleep features 

in the hourly forecaster may be attributed to the design of the algorithm, as the sleep variable 

remains constant for all hours of the day after waking, making it difficult for the algorithm to 

distinguish between non-seizure and seizure hours. In contrast, sleep was a useful feature in the 

daily forecaster, which distinguishes seizure-days from non-seizure days, suggesting that sleep 

does play a role in seizure risk for some people. Sleep features, such as sleep quality, transitions 

and length, have historically been associated with seizures in many people with epilepsy (18,23). 
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It is possible that the role of sleep as a seizure precipitant is highly patient-specific, which 

warrants further investigation in larger cohorts. 

 

Heart rate features – daily RHR and RCH (estimation of HRV) – were useful in predicting 

seizure likelihood in some people (Figure 6). HRV has been of interest to researchers for decades 

and is known to reflect autonomic function (46). HRV has also been used to predict seizures 

minutes in advance, albeit with high false prediction rates (39). It is important to note, however, 

that we have only estimated HRV in this study, and further work should investigate whether 

heart rate variability can be accurately estimated from photoplethysmography. Daily resting heart 

rate, on the other hand, is not often associated with seizure risk, but seemed to be a useful feature 

in some cases. However, daily resting heart rate is likely correlated with multiday rhythms of 

heart rate and thus may not provide distinct value compared to cyclic features that were derived 

from heart rate. 

 

Physical activity features were also predictive of seizures in some people, particularly in the 

hourly forecaster (Figure 6). Physical activity is beneficial for mental health, quality of life, and 

cognitive function for people with epilepsy (47). However, people with epilepsy are less likely to 

engage in physical activity than the general population (48), partially influenced by the 

inaccurate historical belief that exercise can provoke seizures (49). On the contrary, there is some 

evidence that increased physical activity is associated with reduced seizure frequency (50,51). 

Physical activity is also known to benefit common psychiatric comorbidities of epilepsy, such as 

anxiety and depression (52), so exercise may indirectly reduce seizure frequency by impacting 

other seizure precipitants, such as stress and reduced heart rate. We did not explore whether the 

relationship between physical activity was generally positive or negative in this study, but this 

should be investigated in future work. 

 

Demographic and clinical factors 

We generally observed that participants with longer recording times performed better, and more 

consistently over prediction horizons (Supplementary Figure 1). This suggests that seizure 

forecasts utilizing wearable sensors perform better with longer recording times, and are likely to 

improve over time. We suggest that a clinical forecast requires a minimum amount of data or 

events before starting to use the forecaster. Future work should investigate the ideal number of 

events required for the best results, taking into account an individual’s seizure frequency, and the 

optimal number of cycles to observe before incorporating the cycle into the forecaster. 

 

Interestingly, participants with lower seizure frequencies tended to perform better in the hourly 

and daily forecasters (Supplementary Figure 2). This relationship between seizure frequency and 

forecasting performance was also observed in a prospective forecasting study (16). Although it is 

well known that seizure frequency is important to quality of life (53), people with fewer seizures 

are still subject to anxiety and fear caused by the unpredictability of seizures (8,54). Therefore, 

people who have fewer seizures may have the most to benefit from accurate forecaster, as a 

forecaster may enable them to go about their daily lives without fear of an impending seizure. 

 

Despite less than perfect accuracy in the current model, the results may still meet the user 

requirements for a practical seizure gauge device. Many people with epilepsy may use a 

forecasting device despite less than perfect accuracy (44). For example, subjects in a prospective 
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seizure forecasting study found the implanted device useful even though the median sensitivity 

was only 60% (55). Moreover, shorter time horizons (minutes to hours) seem to be preferable 

over longer time horizons (days) (44). This is in line with the current results, where the shorter 

time horizon (hourly) performed better than the longer time horizon (daily). Ultimately, 

prospective seizure forecasting studies with non-invasive wearables are needed to assess user 

requirements and clinical utility. 

 

Limitations 

This study has several limitations. First, self-reported seizure diaries have inherent drawbacks 

and are known to be inaccurate (56). Not everyone with epilepsy is aware of when they 

experience a seizure, particularly if they predominantly have focal aware seizures. However, 

self-reported events are non-invasive, easy to capture, and remain the standard data source for 

medical practice and clinical trials in epilepsy (10). Therefore, seizure diaries remain important 

for non-invasive seizure forecasting. To improve the accuracy of self-reported events, non-

invasive seizure detection devices are available for convulsive seizures, and detection of 

nonconvulsive seizures are in the pipeline (57). Second, it is worth noting that the accuracy of 

heart rate and sleep stages measured from smartwatch devices has been investigated compared to 

electrocardiography and polysomnography, respectively (58–60). Smartwatches are known to be 

useful in obtaining gross estimates of sleep parameters and heart rate but are not yet suitable 

substitutes for electrocardiography and polysomnography. This suggests that complex 

parameters, such as sleep stages and heart rate variability, may need further investigation to 

understand their role as seizure drivers. Third, seizure number and seizure frequency are also 

limiting factors on whether seizure forecasting is possible. When seizure numbers are low, the 

forecaster may be unreliable in some cases due to overfitting in the training set. The optimal 

learning period based on seizure frequency should be investigated in future. Fourth, cyclic 

variables were the most dominant features in both the hourly and daily forecasters, but these 

cycles may shift or change over time, thus affecting the accuracy of the forecaster. In the current 

study, we tested the model using the same cycles derived during initial training of the algorithm. 

This should be considered in future analyses. Finally, we attempted to balance our participant 

recruitment so that it accurately reflected the population of people with refractory epilepsy 

(variety of adult ages, epilepsy types and seizure frequencies); however, the limited number of 

participants in this study means that the population may not have been accurately represented in 

the sample, particularly for people with generalized epilepsy. We also endeavor to explore the 

relationship between forecasting accuracy and epilepsy type in the future. 

 
Conclusion 

We assessed the utility of electronic self-reported seizure diaries and non-invasive wearable 

physiological sensor data to estimate seizure risk in retrospective and pseudo-prospective 

cohorts. This research has shown that non-invasive wearable sensors in the field of seizure 

forecasting is not only possible, but feasible and imminent. Prospective analysis and clinical 

trials should also be undertaken on longitudinal datasets in the future. 
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