Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case-control study

Otavio T. Ranzani¹,²*, Matt Hitchings³,⁴*, Murilo Dorion⁵, Tatiana Lang D’Agostini⁶, Regiane Cardoso de Paula⁶, Olivia Ferreira Pereira de Paula⁶, Edlaine Faria de Moura Villela⁶, Mario Sergio Scaramuzzini Torres⁷, Silvano Barbosa de Oliveira⁸,⁹, Wade Schulz¹⁰, Maria Almiron⁸, Rodrigo Said⁸, Roberto Dias de Oliveira¹¹, Patrícia Vieira da Silva¹², Wildo Navegantes de Araújo²,⁸,¹³, Jean Carlo Gorinchteyn¹⁴, Jason R. Andrews¹⁵, Derek A.T. Cummings†, Albert I. Ko⁵,¹⁶, Julio Croda⁵,¹²,¹⁷

¹-Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
²-Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
³-Department of Biology, University of Florida, Gainesville, FL, USA
⁴-Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
⁵-Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
⁶-Disease Control Coordination of the São Paulo State Department of Health, São Paulo, Brazil
⁷-Municipal Health Secretary of Manaus, Brazil, AM, Brazil
⁸-Pan American Health Organization, Brasília, DF, Brazil
⁹-Universidade de Brasília, Brasília, DF, Brazil
¹⁰-Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
¹¹-State University of Mato Grosso do Sul - UEMS, Dourados, MS, Brazil
¹²-Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
¹³-National Institute for Science and Technology for Health Technology Assessment, Porto Alegre, RS, Brazil
¹⁴-Health Secretariat of the State of São Paulo, São Paulo, Brazil
¹⁵-Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
¹⁶-Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
¹⁷-Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, MS, Brazil

*Authors contributed equally
†Authors contributed equally

Correspondence to: Prof Julio Croda, Universidade Federal de Mato Grosso do Sul and Fundação Oswaldo Cruz, julio.croda@fiocruz.br

Keywords: COVID-19; CoronaVac; inactivated whole-virus vaccine, P.1 variant; test-negative study; case-control study; Brazil

Manuscript word count: 2,850

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background Mass vaccination is being used in response to coronavirus disease (COVID-19) epidemics, including those driven by emerging variants of concern. We evaluated the effectiveness of the inactivated whole-virus vaccine, CoronaVac, against symptomatic COVID-19 in the elderly population of São Paulo State, Brazil during widespread circulation of the P.1 variant.

Methods We conducted a test-negative, case-control study of adults ≥70 years of age from São Paulo State from January 17 to April 29, 2021, during which vaccination with a two-dose regimen of CoronaVac was implemented. We identified RT-PCR-confirmed COVID-19 cases as well as controls who had a symptomatic illness with a negative RT-PCR test from national surveillance and state vaccination databases. Controls were pair-matched to cases by age category, sex, self-report race, municipality, prior COVID-19 status, and date of RT-PCR testing. We estimated vaccine effectiveness, adjusted for age and comorbidities, using conditional logistic regression.

Findings We selected 7,950 matched pairs with a mean age of 76 years from 26,433 COVID-19 cases and 17,622 test-negative controls. Adjusted vaccine effectiveness was 18.2% (95% CI, 0.0 to 33.2) and 41.6% (95% CI, 26.9 to 53.3) in the period 0-13 and ≥14 days, respectively, after the 2nd dose. Administration of a single vaccine dose was not associated with reduced odds of COVID-19. Vaccine effectiveness ≥14 days after the 2nd dose declined with increasing age and was 61.8% (95% CI 34.8 to 77.7), 48.9% (95% CI 23.3 to 66.0) and 28.0% (95% CI 0.6 to 47.9) among individuals 70-74, 75-79 and ≥80 years of age, respectively (pinteraction = 0.05).

Interpretation CoronaVac was 42% effective in the real-world setting of extensive P.1 transmission, but significant protection was not observed until completion of the two-dose regimen and vaccine effectiveness declined with increasing age. These findings underscore the need to maintain non-pharmaceutical interventions when mass vaccination with CoronaVac is used as part of an epidemic response.

Funding Pan American Health Organization.
Research in context

Evidence before this study

We searched Pubmed for articles published from inception of the pandemic until May 10, 2021, with no language restrictions, using the search terms “vaccine”, “COVID-19”, “SARS-CoV-2”, “elderly”, “age”, “older”. Randomised controlled trials (RCTs) have yielded varying estimates (51-84%) for the effectiveness of the inactivated whole-virus vaccine, CoronaVac, against symptomatic COVID-19. Current evidence is lacking on whether CoronaVac or other COVID-19 vaccines are effective against disease caused by the SARS-CoV-2 variant of concern, P.1, or in a setting of extensive P.1 circulation. No studies have reported the real-world effectiveness of CoronaVac and other inactivated vaccines among elderly individuals, a population that was underrepresented in RCTs of these vaccines.

Added value of this study

In a population-based matched test-negative case-control study, we found that a two-dose regimen of CoronaVac had an effectiveness of 42% in preventing symptomatic COVID-19 among adults ≥70 years of age during an epidemic associated with widespread P.1 variant transmission. Significant protection was not observed until the period ≥14 days after administration of the second dose. We observed a significant decline in vaccine effectiveness with increasing age in the elderly population.
Implications of all the available evidence

In the setting of extensive P.1 transmission, the effectiveness of CoronaVac in adults ≥70 years of age was similar to that observed in RCTs conducted in younger populations prior to the emergence of P.1. These findings provide supportive evidence for the use of this vaccine in countries that are experiencing P.1-associated epidemics. However, significant protection was not detected until after administration of the second dose, indicating that vaccination in countries where CoronaVac supplies are constrained may need to prioritize completion of the two dose regimen among the highest risk populations. The delay in achieving vaccine-mediated protection also underscores the need to initiate and maintain non-pharmaceutical interventions when mass vaccination with CoronaVac is used in a response to an epidemic. National immunisation programs should optimise the vaccination of the very elderly (≥80 years), accounting for specific vaccines or vaccination schemes.
Introduction

The coronavirus disease (COVID-19) pandemic has caused 3.3 million deaths worldwide as of early May 2021, and elderly individuals have suffered disproportionate morbidity and mortality. Since the beginning of the pandemic the development of an effective vaccine against severe acute respiratory syndrome coronavirus (SARS-CoV-2) was a priority, and several vaccines have been tested and licensed for use. A key public health question is whether the licensed vaccines are effective in the elderly, who may have impaired immune responses, and who were underrepresented in the clinical trials.

Brazil has experienced one of the world’s highest COVID-19 burdens during the pandemic with more than 15 million cases and 421,000 deaths as of early May 2021. Variants of Concern (VOC) have played an important role in the recent epidemic wave in Brazil which began in early 2021. The P.1 VOC, which was first detected in Manaus, has increased transmissibility, and has accrued mutations associated with decreased in vitro seroneutralisation, has disseminated throughout the country and now accounts for the majority of SARS-CoV-2 isolates genotyped during the recent wave.

Several vaccines against COVID-19 have been proven efficacious in Phase III trials and are being used in mass vaccination campaigns across the globe, including Sinovac's CoronaVac vaccine. CoronaVac, an inactivated whole-virus vaccine, has been approved by 32 countries/jurisdictions, and will be a key vaccine for low-income and middle-income countries. However, there limited evidence regarding the protection granted by CoronaVac in
older individuals and in those with comorbidities, groups that were not well represented in clinical trials. Additionally, the evidence of its real-world effectiveness in the general population and against VOCs, remains limited.

We conducted a matched test-negative, case-control study to evaluate the real-world effectiveness of CoronaVac in the general population ≥70 years in São Paulo State, the most populous state in Brazil, where P.1 is the predominant circulating variant.

Methods

Study setting
The State of São Paulo (23°3′S, 46°4′W) has 645 municipalities and 46 million inhabitants, among which 3.23 million are ≥70 years of age. The state has experienced three successive COVID-19 waves during which 2,997,282 cases (cumulative incidence rate: 6,475 per 100,000 population) and 100,649 deaths (cumulative mortality: 217 per 100,000 population) have been reported as of 9 May 2021 (Figure 1A, Supplementary Figure 1). The State Secretary of Health of São Paulo (SES-SP) initiated a COVID-19 vaccination campaign for the general population on 17 January 2021 according to an age-based prioritization strategy (Figure 1, B-D) and is administering a two-dose regimen of CoronaVac, separated by a 2-to-4-week interval, and a two-dose regimen of ChAdOx1, separated by a 12-week interval. As of 29 April 2021, 8.63 million doses (5.16 and 3.47 million first and second doses, respectively) and 2.06 million doses (1.987 and 0.07 million first and second doses, respectively) have been administered of CoronaVac and ChAdOx1, respectively.
Study design

We conducted a retrospective, test-negative,\(^{20,21}\) matched case-control study to estimate the effectiveness of CoronaVac in reducing the odds of symptomatic RT-PCR-confirmed COVID-19. The study population was adults ≥70 years of age who had a residential address in São Paulo State and had complete and consistent information between data sources on age, sex, residence, and vaccination status and dates. We selected cases and matched controls who had positive and negative SARS-CoV-2 RT-PCR test results, respectively, during the study period of January 17 to April 29, 2021.

The study design and statistical analysis plan were specified in advance of extracting information from data sources and are described in a publicly available protocol (https://github.com/juliocroda/VebraCOVID-19) and the Supplement. The study was approved by the Ethical Committee for Research of Federal University of Mato Grosso do Sul (CAAE: 43289221.5.0000.0021).

Data Sources

We obtained individual-level information on demographic characteristics, comorbidities, SARS-CoV-2 testing, and COVID-19 vaccination during the study period by extracting information on 6 May 2021 from the SES-SP laboratory testing registry (GAL), the national surveillance databases for COVID-19-like illnesses (e-SUS) and severe acute respiratory illness (SIVEP-Gripe), and the SES-SP vaccination registry (Vacina Já). Notification of suspected COVID-19 cases and SARS-CoV-
2 testing results is compulsory in Brazil. The information technology bureau of the São Paulo State Government (PRODESP) linked individual-level records from the four databases using CPF numbers (Brazilian citizens’ unique identifier code) and provided anonymised datasets. We retrieved information on SARS-CoV-2 variants from genotyped isolates deposited in the GISAID database.

Selection of cases and matched controls

Cases were selected from the study population who had symptomatic COVID-19, defined as an individual who had a COVID-19-like illness; had a positive SARS-CoV-2 RT-PCR test result from a respiratory sample which was collected within 10 days after the onset of symptoms; and did not have a positive RT-PCR test in the preceding 90-day period. Controls were selected from the study population who had a COVID-19-like illness; had a negative SARS-CoV-2 RT-PCR test result from a respiratory sample that was collected within 10 days after the onset of symptoms; and did not have a positive RT-PCR test in the prior 90 days during the preceding study period or in the subsequent 14 days. Cases and controls were excluded if they received the ChAdOx1 vaccine before sample collection for RT-PCR testing. COVID-19-like illness was defined as the presence of one or more reported COVID-19 related symptoms.

We matched one test-negative control to each case according to RT-PCR sample collection date (±3 days); age category (5-year age bands, e.g., 70-74, 75-79 years); municipality of residence; self-reported race (defined as brown, black, yellow, white, or indigenous); and prior reported COVID-19-like illness between February 1, 2020 and January 16, 2021. Matching factors were
chosen from variables that were associated with vaccination coverage or timing, and with SARS-CoV-2 infection risk or healthcare access (see protocol in Supplement). Upon identification of each case, a single control was chosen from the set of all eligible matching controls.

Statistical analysis

We estimated the effectiveness of CoronaVac against symptomatic COVID-19 during the periods 0-13 and ≥14 days after the second vaccine dose and ≥14 days after a single vaccine dose. Furthermore, we estimated the effectiveness of a single dose during the period 0-13 days after the first dose, when the vaccine has no or limited effectiveness. An association during this period may serve as an indicator of unmeasured confounding in the effectiveness estimate. The reference group for vaccination status was individuals who had not received a first vaccine dose before the date of sample collection.

We used conditional logistic regression to estimate the odds ratio (OR) of vaccination among cases and controls. 1-OR provided an estimate of vaccine effectiveness under the assumptions of a test-negative design. We included age as a continuous variable and COVID-19-associated comorbidities (cardiovascular, renal, neurological, haematological, or hepatic comorbidities, diabetes, chronic respiratory disorder, obesity, or immunosuppression) as covariates in the model.

We conducted a pre-specified analysis of vaccine effectiveness among age sub-groups but could not perform such analyses of previous infection because of small numbers. Additional post hoc
analyses were performed of vaccine effectiveness for subgroups stratified by sex, number of chronic comorbidities (none vs. at least one), the two most frequent chronic comorbidities (cardiovascular disease and diabetes), and region of residence (“Grande São Paulo” health region vs. others). Interaction terms were incorporated into the model to evaluate the association of each subgroup of interest with vaccine effectiveness ≥14 days after the second dose.

Power calculation

After generating matched case-control pairs and before performing the analyses, we simulated the power of the data set to identify a vaccine effectiveness of 40% for the comparison of receiving two doses ≥14 days after the second dose and not receiving a vaccine dose (see protocol in Supplement). After extracting the surveillance databases on May 6, 2021, we determined that the power of the study was 99.9%.

All analyses were done in R, version 4.0.2.

Role of the funding source

All funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The Health Secretary of State of São Paulo and PRODESP reviewed the data and findings of the study, but the academic authors retained editorial control. OTR, MDTH, MSST, and JC had full access to de-identified data in the study
and OTR and MDTH verified the data, and all authors approved the final version of the manuscript for publication.

Results

COVID-19 epidemic and vaccination campaign in São Paulo State

Peak COVID-19 incidences during the second wave and larger third wave occurred in January 2021 and March 2021, respectively, (Figure 1A) and were preceded by increases in the prevalence of P.2 in November 2020 and P.1 in January 2021, respectively, among genotyped isolates from the state (Figure 1E). P.1 replaced other SARS-CoV-2 variants during the study period and accounted for 85% (2,239/2,618) of genotyped isolates that were collected between 1 March to 30 April 2021 and deposited into the GISAID database. The vaccination campaign, initiated on January 17, 2021, achieved an estimated coverage of roughly 85% and 65% for the first (2.82 million) and second (2.10 million) CoronaVac doses, respectively, among adults ≥70 years of age by April 29, 2021 (Figure 1B-D). After initiation of the vaccination campaign, COVID-19 incidence increased and peaked in late March in all age groups except for adults ≥90 years of age (Figure 1A).

Study population

Among 114,872 individuals ≥70 years of age who were eligible for study inclusion (Figure 2), 43,774 reported COVID-19-like illness and were administered 44,055 RT-PCR tests. Of the 43,774 individuals, 15,852 (36.2%) who provided 15,900 RT-PCR test results were selected into 7,950 matched case and control pairs.
Table 1 shows the characteristics of eligible individuals with positive and negative RT-PCR tests and selected cases and matched controls. Overall, less than 2.5% and 0.2% of the eligible individuals had a reported COVID-19-like illness or a positive SARS-CoV-2 RT-PCR test result, respectively, prior to the study period. Cases had higher proportions of reported comorbidities than controls. Supplementary Table 1 shows the distribution of matched pairs according to vaccination status of cases and controls at the time of RT-PCR testing. The majority of discordant pairs, based on vaccination status, were selected after 14 March 2021 (Supplementary Figure 3). Cases and controls who completed the two dose regimen had similar inter-dose intervals (mean 29 vs. 25 days). Likewise, cases and controls who were vaccinated had similar distributions for the intervals between administration of vaccine doses and RT-PCR testing (Table 1 and Supplementary Figure 3).

Vaccine effectiveness

The adjusted effectiveness of the two-dose CoronaVac schedule against symptomatic COVID-19 was 41.6% (95% CI 26.9 to 53.3) and 18.2% (95% CI 0.0 to 33.2) in the period ≥14 days and 0-13 day, respectively, after administration of the second dose (Table 2). We did not identify a significant reduction or increase in the odds of COVID-19 in the time periods following a single vaccine dose, including the period 0-13 days which serves as a potential bias indicator. Increasing number of comorbidities were significantly associated with increased odds of COVID-19 in the adjusted analyses.
Adjusted vaccine effectiveness in the period ≥14 days after the second dose declined with increasing age and was 61.8% (95% CI 34.8 to 77.7), 48.9% (95% CI 23.3 to 66.0) and 28.0% (95% CI 0.6 to 47.9) among individuals 70-74, 75-79 and ≥80 years of age, respectively (pinteraction = 0.05)(Figure 3). Vaccine effectiveness among individuals with reported diabetes was lower but not significantly different from those without reported diabetes (VE 26.9% vs. 45.6%, pinteraction = 0.12). Vaccine effectiveness did not differ among sub-groups with differing sex, presence of comorbidities, reported cardiovascular disease, or regions of residence (Table S2).

Discussion

This test-negative case-control study found that a two-dose schedule of CoronaVac had a real-world effectiveness of 41.6% (95% CI 26.9 to 53.3) against symptomatic COVID-19 during an epidemic in Brazil. This estimate of vaccine effectiveness in the elderly population is similar to estimates obtained in an RCT of Brazilian healthcare workers (vaccine efficacy, 50.7%, 95% CI 35.6 to 62.2)\(^4\) and was lower than those observed from an RCT in Turkey (vaccine efficacy, 84%, 95% CI 65 to 92).\(^16\) Furthermore, we have addressed several evidence gaps for the use of this vaccine: 1) vaccination with CoronaVac demonstrated an effectiveness in the setting of widespread P.1 transmission which was similar to that found in the Brazilian RCT conducted prior to the emergence of P.1, 2) the vaccine did not confer significant protection until 14 days after completion of the two dose regimen; and 3) vaccine effectiveness declined with increasing age among adults ≥70 years of age.
Our study did not directly address the question whether vaccination with CoronaVac was effective against P.1 associated COVID-19 since isolates were not systematically genotyped. However, 90% (1,790/1,999) of the discordant pairs in this matched case-control study were selected during the period 1 March to 29 April 2021, when P.1 accounted for 85% of the genotyped isolates during surveillance in São Paulo state. Although further studies are required to determine the effectiveness against P.1 and additional VOCs, our findings provide supportive evidence for the use of CoronaVac in countries in South America which are experiencing epidemics due to extensive spread of P.1\(^{12}\) and are administering mass vaccination with CoronaVac as part of the epidemic response.

The absence of demonstrable effectiveness of CoronaVac until completion of the two dose regimen has profound implications for its use in an epidemic response. In contrast to COVID-19 vaccines that confer protection after the first dose,\(^{13,28}\) we did not detect significant effectiveness for CoronaVac until \(\geq14\) days after the second dose (more than six weeks after the first dose). Our findings suggest that in countries where CoronaVac supplies are constrained, vaccination should prioritize completion of the two-dose regimen among the highest risk populations and avoid expanding to broader segments for which provisions for a second dose have not been secured. In addition, our findings underscore the imperative for initiating and maintaining non-pharmaceutical interventions (NPIs) when CoronaVac is used in a response to an epidemic and advising vaccinated individuals that the reduction in risk afforded by the vaccine may not occur until a minimum of 14 days after the second dose.
A key evidence gap has been the effectiveness of CoronaVac in the elderly population, since few (n=632)16 or no adults ≥ 60 years were enrolled in the Brazilian and Turkish RCTs, respectively. We found that CoronaVac had an effectiveness in the elderly population similar to that observed in RCTs of younger populations. However, we observed a significant decline in vaccine effectiveness with increasing age from 61.8\% (95\% CI 34.8 to 77.7) in adults 70-74 year olds to 28.0\% (95\% CI 0.6 to 47.9) in adults ≥ 80 years of age. These findings parallel real-world evidence for the BNT162b2 mRNA vaccine, which found reduced effectiveness in residents of long-term care facilities in Denmark,29 skilled nursing facilities in the USA,30 and the general population with ≥ 80 years of age in Israel.31 Together, these findings suggest that effective COVID-19 vaccination of the elderly population may require specific vaccines or vaccination schemes.

CoronaVac may impart a benefit with respect to preventing severe disease and mortality due to COVID-19. A preliminary aggregated analysis using weekly times series of COVID-19 deaths in Brazil found a relative decrease in mortality among those ≥ 80 years compared with all ages after the vaccination with CoronaVac and ChAdOx1,32 suggesting a discernible impact of vaccination on severe COVID-19 outcomes. We did not evaluate the effectiveness of CoronaVac against severe COVID-19 associated outcomes, such as hospitalization and deaths, within this test-negative design given the inherent biases that hamper selection of appropriate controls. Additional investigation is required to address this key public health question.
Our study had additional limitations. We could not assess the influence of a previous SARS-CoV-2 infection on vaccine effectiveness since passive surveillance identified few individuals with a positive RT-PCR or rapid antigen test before the study period. Prior to the start of the vaccination campaign, the estimated seroprevalence of COVID-19 in inhabitants who were ≥60 years of age in the capital of São Paulo State was 19.9% (95% CI, 14.9-29.9) in January 2021. Our estimates of vaccine effectiveness may therefore be subject to downward bias. They may also be subject to additional sources of unmeasured confounding. The "bias-indicator" association between recent vaccination with a single dose 0-13 days before sample collection was close to null, suggesting that vaccinated and unvaccinated individuals did not differ in their underlying risk of testing positive for SARS-CoV-2. However, we can not exclude the possibility of time-varying changes in behaviour or testing practices that may introduce bias in our estimates.

In summary, we found that a two-dose schedule of CoronaVac was effective in preventing symptomatic COVID-19 among elderly individuals and in a setting with extensive P.1 variant transmission. A key question remains whether the effectiveness of this vaccine in real-world settings will be higher against severe COVID-19 associated outcomes, as suggested by RCTs. However, the delayed onset of vaccine-mediated protection and the declining effectiveness among older age groups underscores the need to complete administer complete dosing schedules and maintain non-pharmaceutical interventions when CoronaVac is used as part of a mass vaccination campaign in response to an epidemic. National immunisation programs should optimise the vaccination of the very elderly (≥80 years), accounting for specific vaccines or vaccination schemes.
Author contributions

All authors conceived the study. OTR, MDTH and MD completed analyses with guidance from JRA, DATC, AIK, and JC. MSST, OFPP, OTR and MDTH curated and validated the data. OTR and MDTH wrote the first draft of the manuscript. TLD, RCP, OFPP, EFMV, MA, RS, JCG, WNA provided supervision. All authors contributed to, and approved, the final manuscript. JC is the guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Declaration of interests

All authors have completed the ICMJE uniform disclosure form at

www.icmje.org/doi?pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Data sharing

Deidentified databases as well as the R codes will be deposited in the repository

https://github.com/juliocroda/VebraCOVID-19

Acknowledgements

We are grateful for the Pan American Health Organization's support and the São Paulo State in making the databases available for analysis. JC is supported by the Oswaldo Cruz Foundation
(Edital Covid-19 – resposta rápida: 48111668950485). OTR is funded by a Sara Borrell fellowship (CD19/00110) from the Instituto de Salud Carlos III. OTR acknowledges support from the Spanish Ministry of Science and Innovation through the Centro de Excelencia Severo Ochoa 2019-2023 Program and from the Generalitat de Catalunya through the CERCA Program.
References

8. Naveca FG, Nascimento V, de Souza VC, et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat Med 2021; published online May 25. DOI:10.1038/s41591-021-01378-7.

Figure 1. Incidence of reported COVID-19, vaccination coverage, and prevalence of SARS-CoV-2 variants of concern from Oct 1, 2020 to April 29, 2021 in São Paulo State, Brazil. Panel A shows the 14-day rolling average of daily age group-specific incidence of reported COVID-19 (cases per 100,000 population). Panels B, C and D show daily cumulative vaccination coverage in age groups ≥90, 80-89 and 70-79 years, respectively. Population estimates for age groups were obtained from national projections for 2020. Panel E shows the monthly prevalence of SARS-CoV-2 variants among genotyped isolates in the GISAID database (extraction on May 24th 2021). Vertical bars, from left to right in each panel, show the dates that adults ≥90, 80-89 and 70-79 years of age in the general population became eligible for vaccination.
Figure 2. Flowchart of the identification of the study population from surveillance databases and selection of matched cases and controls.
Figure 3. Adjusted vaccine effectiveness during the period ≥14 days after the 2nd CoronaVac dose for subgroups of adults ≥70 years of age. Estimates of vaccine effectiveness were obtained from a conditional logistic regression model that included covariates of age (continuous) and the number of comorbidities and incorporated an interaction term between the category of interest and the period ≥14 days after the second CoronaVac dose.
Table 1. Characteristics of adults ≥70 years of age who were eligible for matching and selected into case-test negative pairs.

<table>
<thead>
<tr>
<th>Characteristics*</th>
<th>Eligible cases and controls</th>
<th>Matched pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test-negative (n=17,622)^</td>
<td>Test-positive (n=26,433)^</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, mean (SD), years</td>
<td>77.53 (6.78)</td>
<td>76.71 (6.19)</td>
</tr>
<tr>
<td>Age categories, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-79 years</td>
<td>12,123 (68.8)</td>
<td>19,673 (74.4)</td>
</tr>
<tr>
<td>80-89 years</td>
<td>4,301 (24.4)</td>
<td>5,437 (20.6)</td>
</tr>
<tr>
<td>≥90 years</td>
<td>1,198 (6.8)</td>
<td>1,323 (5.0)</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>7,689 (43.6)</td>
<td>12,431 (47.0)</td>
</tr>
<tr>
<td>Self-reported race†, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White/Branca</td>
<td>13,415 (76.1)</td>
<td>19,796 (74.9)</td>
</tr>
<tr>
<td>Brown/Pardo</td>
<td>3,192 (18.1)</td>
<td>4,983 (18.9)</td>
</tr>
<tr>
<td>Black/Preta</td>
<td>785 (4.5)</td>
<td>1,258 (4.8)</td>
</tr>
<tr>
<td>Yellow/ Amarela</td>
<td>226 (1.3)</td>
<td>390 (1.5)</td>
</tr>
<tr>
<td>Indigenous/Indigena</td>
<td>4 (0.0)</td>
<td>6 (0.0)</td>
</tr>
<tr>
<td>Residence in “Grande São Paulo” Health Region, n (%)</td>
<td>12,381 (70.3)</td>
<td>16,538 (62.6)</td>
</tr>
<tr>
<td>Reported number‡, n (%)</td>
<td>Not vaccinated 10,027 (56.9)</td>
<td>12,668 (47.9)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>One or two</td>
<td>6,984 (39.6)</td>
<td>12,548 (47.5)</td>
</tr>
<tr>
<td>Three or more</td>
<td>611 (3.5)</td>
<td>1,217 (4.6)</td>
</tr>
<tr>
<td>Cardiovascular disease , n (%)</td>
<td>5,293 (30.0)</td>
<td>10,079 (38.1)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>3,233 (18.3)</td>
<td>6,533 (24.7)</td>
</tr>
</tbody>
</table>

**Prior SARS-CoV-2 exposure **

| Reported COVID-19-like illness**, n (%) | 685 (3.9) | 354 (1.3) | 35 (0.4) | 35 (0.4) |
| Positive SARS-CoV-2 test result ††, n (%) | 66 (0.4) | 13 (0.0) | 1 (0.0) | 4 (0.1) |

Vaccination status

Not vaccinated, n (%)	11,986 (68.0)	17,233 (65.2)	5,485 (69.0)	5,561 (69.9)
Single dose, within 0-13 days, n (%)	1,446 (8.2)	2,976 (11.3)	747 (9.4)	762 (9.6)
Single dose, ≥14 days, n (%)	1,797 (10.2)	3,312 (12.5)	843 (10.6)	851 (10.7)
2nd dose, within 0-13 days, n (%)	1,041 (5.9)	1,533 (5.8)	437 (5.5)	421 (5.3)
2nd dose, ≥14 day, n (%)	1,352 (7.7)	1,379 (5.2)	438 (5.5)	355 (4.5)

Interval between 1st and 2nd dose, mean (SD), days	25 (6)	30 (12)	25 (6)	29 (11)
Interval between 1st dose and RT-PCR testing, mean (SD), days	28 (19)	23 (16)	24 (17)	23 (16)
Interval between 2nd dose and RT-PCR testing, mean (SD), days	20 (15)	17 (14)	18 (15)	17 (14)

*Continuous variables are displayed as mean (SD); categorical variables are displayed as n (%).
These numbers refer to RT-PCR tests and represent 43,774 individuals for the eligible cases and controls and 15,852 individuals in the matched cases and controls.

†Race/skin colour as defined by the Brazilian national census bureau (Instituto Nacional de Geografia e Estatísticas).

‡Comorbidities included: cardiovascular, renal, neurological, haematological, or hepatic comorbidities, diabetes, chronic respiratory disorder, obesity, or immunosuppression.

**Prior to the start of the study on 17 January, 2021 and after systematic surveillance was implemented on 1 February, 2020.

***Reported illness with COVID-19 associated symptoms in the eSUS and SIVEP-Gripe databases.

††Defined as a positive SARS-CoV-2 RT-PCR or antigen detection test result.
Table 2: Effectiveness of CoronaVac against symptomatic COVID-19 in adults ≥70 years of age.

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>VE (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single dose, within 0-13 days vs. unvaccinated*</td>
<td>0.97 (0.85-1.12)</td>
<td>2.7% (-11.7-15.3)</td>
<td>0.70</td>
</tr>
<tr>
<td>Single dose, ≥14 days vs. unvaccinated*</td>
<td>0.91 (0.78-1.05)</td>
<td>9.5% (-5.3-22.3)</td>
<td>0.20</td>
</tr>
<tr>
<td>2nd dose, within 0-13 days vs. unvaccinated*</td>
<td>0.81 (0.66-0.98)</td>
<td>19.5% (1.9-34)</td>
<td>0.03</td>
</tr>
<tr>
<td>2nd dose, ≥14 days vs. unvaccinated*</td>
<td>0.60 (0.48-0.74)</td>
<td>40.5% (25.8-52.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single dose, within 0-13 days vs. unvaccinated*</td>
<td>0.98 (0.85-1.12)</td>
<td>2.5% (-12.2-15.3)</td>
<td>0.72</td>
</tr>
<tr>
<td>Single dose, ≥14 days vs. unvaccinated*</td>
<td>0.90 (0.77-1.04)</td>
<td>10.5% (-4.4-23.3)</td>
<td>0.16</td>
</tr>
<tr>
<td>2nd dose, within 0-13 days vs. unvaccinated*</td>
<td>0.82 (0.67-1.00)</td>
<td>18.2% (0.0-33.2)</td>
<td>0.05</td>
</tr>
<tr>
<td>2nd dose, ≥14 days vs. unvaccinated*</td>
<td>0.58 (0.47-0.73)</td>
<td>41.6% (26.9-53.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>Number of comorbidities†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-Two vs. None</td>
<td>1.65 (1.54-1.76)</td>
<td>-</td>
<td><0.001</td>
</tr>
<tr>
<td>Three or more vs. None</td>
<td>1.74 (1.48-2.05)</td>
<td>-</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*At date of index sample collection for cases and controls.
†Comorbidities included: cardiovascular, renal, neurological, haematological, or hepatic comorbidities, diabetes, chronic respiratory disorder, obesity, or immunosuppression.
Supplementary appendix

Supplement to: Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case-control study

Table of Contents

Supplementary Figure 1. Daily cases (Panel A) and incidence (Panel B, per 100,000 population) of reported COVID-19 from Mar 15, 2020 to Apr 29, 2021 in São Paulo State, Brazil. .. 2

Supplementary Figure 2. Timing of enrolment of discordant case-control pairs by vaccination category.. 3

Supplementary Figure 3. Timing of RT-PCR sample collection date relative to 1st (left column) and 2nd (right column) vaccine dose date, among cases (top row) and controls (bottom row) who were vaccinated during the study period. ... 4

Supplementary Table 1. Distribution of concordant and discordant matched case-control pairs. .. 5

Supplementary Table 2. Estimated effectiveness of CoronaVac, according to time intervals after administration of single dose and 2nd dose, in subgroups of adults \(\geq 70\) years of age... 6

Protocol for the Teste-Negative Case-Control Study in São Paulo State... 8
Supplementary Figure 1. Daily cases (Panel A) and incidence (Panel B, per 100,000 population) of reported COVID-19 from Mar 15, 2020 to Apr 29, 2021 in São Paulo State, Brazil.

Green lines in Panel A and lines in Panel B show the 14-day rolling average of daily counts and incidences, respectively. Population estimates for age groups were obtained from national projections for 2020. Vertical bars, from left to right in each panel, show the dates that adults ≥90, 80-89 and 70-79 years of age in the general population became eligible for vaccination.
Supplementary Figure 2. **Timing of enrolment of discordant case-control pairs by vaccination category**

![Graph showing the timing of enrolment of discordant case-control pairs by vaccination category.](image-url)
Supplementary Figure 3. Timing of RT-PCR sample collection date relative to 1st (left column) and 2nd (right column) vaccine dose date, among cases (top row) and controls (bottom row) who were vaccinated during the study period.
Supplementary Table 1. **Distribution of concordant and discordant matched case-control pairs.**

<table>
<thead>
<tr>
<th>Controls</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unvaccinated</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>4,920</td>
</tr>
<tr>
<td>Single dose, dose 1 within 0-13 days</td>
<td>301</td>
</tr>
<tr>
<td>Single dose, dose 1 ≥14 days</td>
<td>167</td>
</tr>
<tr>
<td>Two doses dose 2 within 0-13 days</td>
<td>82</td>
</tr>
<tr>
<td>Two doses, dose 2 ≥14 days</td>
<td>91</td>
</tr>
</tbody>
</table>
Supplementary Table 2. *Estimated effectiveness of CoronaVac, according to time intervals after administration of single dose and 2nd dose, in subgroups of adults ≥70 years of age.*

All models are adjusted by age (continuous) and number of comorbidities, and include an interaction term between the subgroup of interest and vaccinations with 2 doses, ≥14 days after 2nd vaccine dose.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted OR (95% CI)</th>
<th>Adjusted VE (95% CI)</th>
<th>p-value for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-74 (n=8,178)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.38 (0.22-0.65)</td>
<td>61.8% (34.8-77.7)</td>
<td></td>
</tr>
<tr>
<td>75-79 (n=4,122)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.51 (0.34-0.77)</td>
<td>48.9% (23.3-66.0)</td>
<td>0.05</td>
</tr>
<tr>
<td>80+ (n=3,600)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.72 (0.52-0.99)</td>
<td>28.0% (0.60-47.9)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females (n=9,348)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.60 (0.45-0.80)</td>
<td>40.1% (19.8-55.3)</td>
<td>0.85</td>
</tr>
<tr>
<td>Males (n=6,552)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.56 (0.39-0.80)</td>
<td>44.0% (20.4-60.6)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No reported (n=8,074)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.60 (0.45-0.80)</td>
<td>40.0% (20.3-54.8)</td>
<td>0.81</td>
</tr>
<tr>
<td>Reported (n=7,826)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.57 (0.44-0.74)</td>
<td>43.1% (26.3-56.0)</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>No reported (n=10,273)</td>
<td>≥14 days after 2nd vaccine dose</td>
<td>42.4% (25.5-55.5)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>Reported (n=5,627)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.58 (0.45-0.75)</td>
<td>42.4% (25.5-55.5)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>No reported (n=12,294)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.54 (0.43-0.69)</td>
<td>45.6% (30.6-57.4)</td>
</tr>
<tr>
<td>Health regional area</td>
<td>Reported (n=5,627)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Grande São Paulo” (n=7,382)</td>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.58 (0.44-0.77)</td>
<td>42% (23.0-56.4)</td>
</tr>
<tr>
<td></td>
<td>Not “Grande São Paulo” (n=8,518)</td>
<td>≥14 days after 2nd vaccine dose</td>
<td>0.58 (0.41-0.84)</td>
</tr>
</tbody>
</table>
Protocol for the Teste-Negative Case-Control Study in São Paulo State

Version 01.3 / April 30th 2021

Released in https://github.com/juliocroda/VebraCOVID-19/
PROTOCOL

Evaluation of Vaccine Effectiveness in Brazil against COVID-19 (VEBRA-COVID)

Sub-Study: A Test-Negative Case-Control Study on the Effectiveness of COVID-19 Vaccines amongst the General Population of São Paulo State in Brazil

Version: 01.3 / April 30th 2021

<table>
<thead>
<tr>
<th>Table 1. Protocol Revisions</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in Version 1.3</td>
<td></td>
</tr>
<tr>
<td>Addition of ChAdOx1 exposure times</td>
<td>We added the time windows following the first and second doses of ChAdOx1 to be 0-13 days, 14-27 days and ≥28 days</td>
</tr>
<tr>
<td>Revised expected vaccine effectiveness</td>
<td>In the VEBRA-COVID analysis of the elderly (≥70 years of age) in São Paulo, we aimed to answer the research question of whether vaccines had a real-world effectiveness of public health value rather than whether they had a real-world effectiveness that was consistent with efficacy estimates from RCTs. Thus, we powered the study for a real world effectiveness above a lower threshold of 40%, below which the value of the vaccination would require reconsideration.</td>
</tr>
<tr>
<td>Change of matching criteria from CEP (5 digits) to Municipality and self-reported race</td>
<td>We based this decision on three main reasons: 1 – A great proportion of municipalities in São Paulo State has a unique CEP (zipcode), so everyone in that municipality has the same CEP. For these municipalities, we would lose within municipality socioeconomic information 2 – We observed a larger proportion of invalid CEPs mainly in the e-SUS database compared with the SIVEP-Gripe database, which may introduce potential bias since SIVEP-Gripe has a higher proportion of severe COVID-19 cases 3 – A significant number of unique CEPs were inconsistently placed in more than one municipality.</td>
</tr>
<tr>
<td>Addition of outcomes for the cohort analysis of test-positive cases</td>
<td>We added ICU admission and respiratory support, occurring within 21 days of initial SARS-CoV-2 test positivity. We also changed hospitalization from occurring within 14 days to within 21 days of initial SARS-CoV-2 test positivity.</td>
</tr>
</tbody>
</table>
I. Background

Since the emergence of severe acute respiratory virus coronavirus 2 (SARS-CoV-2), Brazil has experienced one of the world’s highest incidence and mortality rates in the world, with over 13 million reported infections as of the middle of April 2021. São Paulo, the most populous state in Brazil (~46 million inhabitants), is the state with the highest number of cases and deaths: 2,827,833 cases and 92,548 deaths as of April 24th 2021. Variants of Concern (VOC) also had a key role on the recent several surges in Brazil and São Paulo State. The P.1 VOC, which was first detected in Manaus on Jan 12, 2021, and now consists of the majority of new infections, being dominant in several states in Brazil. P1. has accrued mutations associated with decreased neutralization, and has since spread throughout Brazil, synchronizing the epidemic in country in a scenario of relaxed non-pharmacological interventions.

The rapid development of novel vaccines against COVID-19 allowed countries to start vaccine distribution programs within a year of the identification of the novel virus. Among the first vaccines to be developed was Sinovac’s CoronaVac vaccine. Phase III trials were conducted in Turkey, Chile, Singapore and Brazil. The Brazilian trial was conducted among a study population of healthcare professionals, and reported that the effectiveness of CoronaVac after 14 days following completion of a two dose schedule was 50.7% (95% CI 36.0-62.0) for all symptomatic cases of COVID-19, 83.7% (95% CI 58.0-93.7) for cases requiring medical attention, and 100% (95% CI 56.4-100) for hospitalized, severe, and fatal cases. CoronaVac was approved for emergency use on 17 January in Brazil, and used to vaccinate healthcare workers and the general population. AstraZeneca-Oxford’s ChAdOx1 vaccine was approved on the same day and was administered beginning on 23 January 2021. In Brazil, ChAdOx1 schedule is for 12 weeks between first and second dose.

As vaccine programs continue, there has been much interest in estimation of vaccine effectiveness through observational studies, and specifically in settings where VOC are circulating. Such studies have advantages over clinical trials, including increased size and follow-up time, and reduced cost. However, as vaccinated and unvaccinated individuals are likely different in their SARS-CoV-2 risk and healthcare access, these studies must address bias through design and analysis. Several studies have demonstrated the effectiveness of COVID-19 vaccines against infection caused by the B.1.1.7 variant. However, large-scale real-world investigations on vaccine effectiveness have not been conducted in regions where the P.1 variant is prevalent.

II. Methods

1. Study Design: We will conduct a retrospective matched case-control study, enrolling cases who test positive for SARS-CoV-2 and controls who test negative for SARS-CoV-2 amongst the general population (Section 3) as of the day that the COVID-19 vaccination campaign was initiated at the study sites. The study will evaluate vaccine effectiveness on the primary outcome of symptomatic SARS-CoV-2 infection. We will identify cases and matched controls by extracting information from health surveillance records and ascertain the type and data of vaccination by reviewing the state COVID-19 vaccination registry. In this design, one minus the odds ratio (1-OR) of vaccination comparing cases and controls estimates the direct effect of vaccination on the disease outcome. In a separate
analysis, we will assess the association between vaccination and hospitalization and/or death among individuals who have tested positive for SARS-CoV-2.

2. IRB and Ethics Statement: The protocol has been submitted to the Ethical Committee for Research of Federal University of Mato Grosso do Sul (CAAE: 43289221.5.0000.0021). The work of investigators at the University of Florida, Yale University, Stanford University, and Barcelona Institute for Global Health was conducted to inform the public health response and was therefore covered under Public Health Response Authorization under the US Common Rule.

Study Details

Study Site: The State of São Paulo (23°3′S, 46°4′W) is the most populous state in Brazil: an estimated population of 46,289,333 in 2020. São Paulo State has 645 municipalities and its capital, São Paulo city, has 12 million inhabitants. São Paulo State reported 2,827,833 COVID-19 cases (cumulative incidence rate: 6,109 per 100,000 population) and 92,548 deaths (cumulative mortality: 200 per 100,000 population), by 24/04/2021. The State Secretary of Health of Sao Paulo (SES-SP) initiated its COVID-19 vaccination campaign on 17 January 2021 and is administering two vaccines, CoronaVac and ChAdOx1. As of 24 April 2021, 10.7 million doses (6.9 million first doses and 3.8 million second doses) have been administered in the State.

Data Sources and Integration: We will identify eligible cases and controls from the State of São Paulo who test positive and negative, respectively, from the state laboratory testing registry of public health laboratory network; 2) Determine vaccination status from state vaccination registries; and 3) Extract information from national healthcare and surveillance databases that will be used to define outcomes, match controls to cases, determine vaccination status, serve as covariates for post-stratification and provide a source for cross-validation of information from databases. Registries are not available which enables constructing a cohort of people eligible for vaccination in the general population. Data sources for this study will include:

- State laboratory testing registry (GAL) of the network of public health laboratories
- State COVID-19 vaccination registry (Vacina Já)
- National surveillance database of severe acute respiratory illnesses (SIVEP-Gripe) created by Ministry of Health Brazil in 2009
- National surveillance system of suspected cases of COVID-19 (e-SUS) from mild to moderate "influenza like illness", created by the Ministry of Health Brazil in 2020

The databases will be integrated by the São Paulo State Government – PRODESP - using CPF numbers (Brazilian citizens’ unique identifier code) and send to the VEBRA-COVID group anonymized. The database will be updated on a bi-weekly basis.

Study Population

Inclusion criteria:
- Has a residential address in the State of São Paulo,
- Eligible to receive a COVID-19 vaccine based on age,
- With complete information, which is consistent between databases, on age, sex, and residential address
- With consistent vaccination status and dates for those who were vaccinated.

Exclusion criteria:
- Does not have a residential address in the State of São Paulo,
- Not eligible to receive a COVID-19 vaccine based on age,
- With missing or inconsistent information on age, sex, or city of residence
- With existing but inconsistent vaccination status or dates.
Case definition and eligibility: We will use information from integrated GAL/SIVEP-Gripe/e-SUS databases to identify cases that are defined as eligible members of the study population (as defined above, Study Population) who:

- Had a sample with a positive SARS-CoV-2 RT-PCR, which was collected between January 17, 2021 and 7 days prior to database extraction of information
- Did not have a positive RT-PCR test in the 90 day period preceding the index positive RT-PCR result
- Have complete and consistent data on SARS-CoV-2 RT-PCR test results

Control definition and eligibility: We will use integrated GAL/SIVEP-Gripe/e-SUS databases to identify eligible controls. Controls are defined as eligible members of the study population who:

- Had a sample with a negative SARS-CoV-2 RT-PCR result, which was collected after January 17, 2021,
- Did not have a positive RT-PCR test in the 90 day period preceding the index positive RT-PCR result
- Did not have a subsequent positive RT-PCR test in the 7-day period following the index positive RT-PCR result
- Have complete and consistent data on SARS-CoV-2 PCR test results

When studying each vaccine, individuals that received another vaccine are eligible for selection as a case and/or control until the day they receive their vaccine, i.e. we will consider test positive and test negative cases for RT-PCR collected before the day of receipt of the other vaccine.

Matching: Test-negative controls will be matched 1:1 to the cases. We chose the matching factors to balance the ability to reduce bias and to enroll sufficient case-control pairs. Matching factors will include variables that are anticipated to be causes of the likelihood of receiving the vaccine, risk of infection and likelihood of receiving PCR testing for SARS-CoV-2 (see Figures 1-5):

- Age, categorized as 5-years age bands (e.g., 70-74, 75-79 years),
- Sex,
- Municipality,
- Self-reported race,
- Window of ±3 days between collection of RT-PCR positive respiratory sample for cases and collection of RT-PCR negative respiratory sample for controls. If the date of respiratory sample collection is missing, the date of notification of testing result will be used.

We will use the standard algorithms to conduct matching which include: 1) setting a seed, 2) locking the database, 4) creating a unique identifier for matching after random ordering, 5) implementing exact matching based on matching variables, sampling controls at random if more than one available per case within strata.

An individual who fulfils the control definition and eligibility and later has a sample tested that fulfils the case definition and eligibility can be included in the study as both a case and a control. An individual who fulfils the control definition for multiple different sample collection dates can be included in the study as a control for each collection date, up to a maximum of three times.

Exposure definition:

CoronaVac vaccination:

- Received the first vaccine dose, and not having received a second dose, in the following time periods relative to sample collection for their PCR test:
 - 0-13 days
 - ≥14 days
- Received the second dose in the following time periods relative to sample collection for their PCR test:
 - 0-13 days
 - ≥14 days

ChAdOx1 vaccination:

- Received the first vaccine dose, and not having received a second dose, in the following time periods relative to sample collection for their PCR test:
- Received the second dose in the following time periods relative to sample collection for their PCR test:
 - 0-13 days
 - 14-27 days
 - ≥28 days

Statistical Analyses: We will evaluate the effectiveness of CoronaVac and ChAdOx1 for the following SARS-CoV-2 infection outcomes:
- Primary: Symptomatic COVID-19, defined as one or more reported COVID-19 related symptom with onset within 0-10 days before the date of their positive RT-PCR test
- Secondary:
 - COVID-19 associated hospitalization within 21 days of the symptom onset
 - COVID-19 associated ICU admission within 21 days of the symptom onset
 - COVID-19 associated respiratory support
 - COVID-19 associated death within 28 days of symptom onset

We will evaluate vaccine effectiveness for the primary outcome according to the test-negative design. Table 1 shows a list of all planned analyses in the test-negative design. The test-negative design may introduce bias when evaluating outcomes of hospitalizations and deaths during an epidemic. We will therefore perform time to event/logistic regression analysis of test positive cases to evaluate the association of vaccination status and the risk for hospitalization, ICU admission, COVID-19 respiratory support, and death after infection.

Our initial analyses will focus on estimating vaccine effectiveness in the population with age ≥70 years of age who were the initial priority group of the COVID-19 vaccination campaign.

Case-control analysis: Analyses of the primary outcome will be restricted to case and control pairs who are matched based on the presence of a COVID-19 related symptom before or at the time of testing.

We will use conditional logistic regression to estimate the odds ratio (OR) of vaccination among cases and controls, accounting for the matched design, where 1-OR provides an estimate of vaccine effectiveness under the standard assumptions of a test-negative design. For the CoronaVac analysis, the reference group will be individuals who have not received a first dose of CoronaVac by the date of respiratory sample collection. For the ChAdOx1 analysis, the reference group will be individuals who have not received a first dose of ChAdOx1 by the date of respiratory sample collection. Date of notification of the testing result will be used if the date of respiratory sample collection is missing. To evaluate potential biases and the timing of vaccine effectiveness after administration, we will evaluate the windows of vaccination status corresponding: A) 0-13 days and ≥14 days after the 1st dose and 0-13 days and ≥14 days after the 2nd dose of CoronaVac; and B) 0-13 days, 14-27 days and ≥28 after the 1st dose and 0-13 days and ≥14 days after the 2nd dose of ChAdOx1.

We will include the following covariates in the adjusted model, which we hypothesize are predictive of vaccination, the risk of SARS-CoV-2 infection and COVID-19 severity and healthcare access and utilization:
- Age as continuous variable
- Comorbidities (None, 1-2, ≥3 comorbidities)
- Evidence of prior SARS-CoV-2 infection (defined as positive PCR test, antigen test or rapid antibody test)

Although data on comorbidities is available through e-SUS and SIVEP-Gripe, this data may have different degrees of missingness between databases and between cases and control groups. Adjusting for comorbidities using complete case data will likely introduce bias. We will explore the feasibility of multiple imputation of comorbidity in a sensitivity analysis. Additional sensitivity analyses will evaluate potential effect modification of the vaccine effectiveness by history of a positive RT-PCR, antigen or serological test result prior to the vaccination campaign and age subgroups.
Survival/logistic regression analysis of hospitalization, ICU, respiratory support and death: We will perform additional analyses for hospitalization and death amongst individuals who test positive and estimate the hazards according to vaccination status at the date of positive test, adjusting for covariates described in the case-control analyses. Sensitivity analyses will be conducted to evaluate the association of influence of a positive RT-PCR, antigen or serological test result prior to the vaccination campaign.

Sample size calculations and timing of analyses: The power of a matched case-control study depends on the assumed odds ratio and the number of discordant pairs (i.e. pairs in which the case is exposed and the control is unexposed, or vice versa), which is a function of the assumed odds ratio and the expected prevalence of exposure among controls. Moreover, the estimate of the odds ratio for one level of a categorical variable compared to baseline is determined by the distribution of all discordant pairs. As vaccine coverage and incidence are changing over time, the latter in ways we cannot predict, and there is no power formula for this analysis, we will simulate power and enroll individuals until we have reached a target power, which we can assess without analyzing the data. In particular, after determining the number of discordant case-control pairs for each combination of exposure categories, we will randomly assign one of each pair to each relevant exposure type according to a Bernoulli distribution, with the probability determined by the assumed odds ratio comparing the two categories. We will run an unadjusted conditional logistic regression on the simulated dataset to determine the p-value, and estimate the power as the proportion of N=1,000 simulations that return p<0.05. Code to perform the power calculation can be found at https://github.com/mhitchings/VEBRA_COVID-19.

Timing of final analyses: We will perform an analysis of the primary outcome upon reaching simulated 80% power to detect vaccine effectiveness of 40% ≥14 days after the second dose for the CoronaVac. For the ChAdOx1, we will perform an analysis of effectiveness of at least one dose upon reaching simulated 80% power to detect vaccine effectiveness of 40% ≥28 days after the first dose. In addition, we will perform an analysis of effectiveness of two doses upon reaching simulated 80% power to detect vaccine effectiveness of 40% ≥14 days after the second dose. We chose a vaccine effectiveness of 40% to address the question of whether vaccination with CoronaVac and ChAdOx achieved a threshold of real-world effectiveness, below which the public health value of vaccination may need to be reconsidered.

Privacy: Only SES-SP, São Paulo State data management had access to the identified dataset to linkage the datasets by name, date of birth, mother's name and CPF. After the linkage, the CPF was encrypted and the de-identified dataset was sent to the team for analysis.

Working group: Matt Hitchings, Otavio T. Ranzani, Julio Croda, Albert I. Ko, Derek Adam Cummings, Wildo Navegantes de Araujo, Jason R. Andrews, Roberto Dias de Oliveira, Patricia Vieira da Silva, Mario Sergio Sacaramuzzini Torres, Wade Schulz, Tatiana Lang D Agostini, Edlaine Faria de Moura Villela, Regiane A. Cardoso de Paulo, Olivia Ferreira Pereira de Paula, Jean Carlo Gorinchteyn
References

5 Naveca F, Nascimento V, Souza V, et al. COVID-19 epidemic in the Brazilian state of Amazonas was driven by long-term persistence of endemic SARS-CoV-2 lineages and the recent emergence of the new Variant of Concern P.1. In Review, 2021 DOI:10.21203/rs.3.rs-275494/v1.

Figure 1: PCR testing rate by age, sex and self-reported race (from data extracted on April 07, 2021)

Figure 2: PCR positive testing rate by age, sex and self-reported race (from data extracted on April 07, 2021)
Figure 3: PCR positive proportion by age, sex and self-reported race (from data extracted on April 07, 2021)

Figure 4: Vaccine coverage by age, sex and self-reported race (from data extracted on April 07, 2021)
Panel A. Indicators by Municipality

Panel B. Indicators by Municipality and Race

Figure 5: PCR testing rate (pcr done), PCR positive testing rate (pcr pos), positivity proportion (tpp) and vaccine coverage (vac) by each municipality (A) and municipality and race (B). RM SP denotes metropolitan area of São Paulo city (from data extracted on April 07, 2021)
Supplementary Figure 1. Reported RT-PCR or Antigen confirmed COVID-19 in the general population of the São Paulo State, Brazil from October 2020 to April 7, 2021. Lines depict moving 14-day averages for case. Vertical lines represent vaccine eligibility by age.

Supplementary Figure 2. Reported RT-PCR or Antigen confirmed COVID-19 rates in the general population of the São Paulo State, Brazil from October 2020 to April 7, 2021. Lines depict rolling averages. Vertical lines represent vaccine eligibility by age.
<table>
<thead>
<tr>
<th>Analysis</th>
<th>Exposure</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoronaVac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary outcome, primary exposure</td>
<td>Two-dose regimen of CoronaVac in the period starting 14 days after administration of the 2nd dose</td>
<td></td>
</tr>
<tr>
<td>Primary outcome, secondary exposure (2-dose)</td>
<td>Two-dose regimen of CoronaVac in the period 0-13 days after administration of the 2nd dose</td>
<td>Positive test for SARS-CoV-2, with at least one COVID-19 symptom reported 0-10 days before sample collection date</td>
</tr>
<tr>
<td>Primary outcome, secondary exposure (1-dose)</td>
<td>One-dose regimen of CoronaVac, in the period starting 14 days after administration of the 1st dose</td>
<td></td>
</tr>
<tr>
<td>Primary outcome, bias indicator</td>
<td>One-dose regimen of CoronaVac, in the period 0-13 days after administration of the 1st dose</td>
<td></td>
</tr>
<tr>
<td>ChAdOx1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary outcome, primary exposure</td>
<td>One-dose regimen of ChAdOx1 in the period starting 28 days after administration of the 1st dose</td>
<td></td>
</tr>
<tr>
<td>Primary outcome, secondary exposure (2-dose)</td>
<td>Two-dose regimen of ChAdOx1 in the period ≥14 days after administration of the 2nd dose</td>
<td></td>
</tr>
<tr>
<td>Primary outcome, secondary exposure (1-dose)</td>
<td>One-dose regimen of ChAdOx1, in the period starting 14-27 days after administration of the 1st dose</td>
<td>Positive test for SARS-CoV-2, with at least one COVID-19 symptom reported 0-10 days before sample collection date</td>
</tr>
<tr>
<td>Primary outcome, secondary exposure (1-dose)</td>
<td>One-dose regimen of ChAdOx1, in the period starting 14 days after administration of the 1st dose</td>
<td></td>
</tr>
<tr>
<td>Primary outcome, secondary exposure (2-dose)</td>
<td>Two-dose regimen of ChAdOx1, in the period starting 0-13 days after administration of the 2nd dose</td>
<td></td>
</tr>
<tr>
<td>Primary outcome, bias indicator</td>
<td>One-dose regimen of ChAdOx1, in the period 0-13 days after administration of the 1st dose</td>
<td></td>
</tr>
</tbody>
</table>