1	The late positive potentials evoked by negative emotional pictures predict autonomic
2	responses to an acute psychosocial stressor in healthy adults
3	
4	Hongxia Duan ^{1,2} , Zhuxi Yao ¹ , Liang Zhang ^{3,4} , Nils Kohn ² , Jianhui Wu ^{1,5*}
5	
6	¹ Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, 518060,
7	China
8	² Donders Institute for Brain, Cognition and Behavior, Department for Cognitive Neuroscience,
9	Radboud University Medical Centre, Nijmegen, The Netherlands
10	³ CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
11	⁴ The University of Chinese Academy of Sciences, Beijing, China
12	⁵ Shenzhen Institute of Neuroscience, Shenzhen 518057, China
13	
14	*Corresponding author: Center for Brain Disorder and Cognitive Science, Shenzhen
15	University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen, 518060 China.
16	E-mail address: wujh8@szu.edu.cn
17	
18	Running Title: LPPs predict autonomic stress responses

20	Abstract: Individuals vary substantially in their response to an acute stressor. Identifying the
21	factors contributing to these individual differences in stress reactivity is of particular interest
22	but still remains largely unknown in the stress and resilience domain. The present study aimed
23	to investigate whether and how brain reactivity to negative stimuli during a non-stressful state
24	could predict autonomic and neuroendocrine stress responses to an acute psychosocial
25	stressor in healthy adults. To address this issue, fifty-two healthy young adults were recruited
26	to view negative or neutral pictures while their electroencephalogram was recorded during a
27	non-stressful state on the first experimental day. On the second experimental day, their
28	autonomic and neuroendocrine responses to the Trier Social Stress Test (TSST) were
29	measured. Results showed that increased late positive potential (LPP) to negative relative to
30	neutral pictures was significantly associated with higher heart rate response but not with the
31	cortisol response to acute social stress. These results implicate greater neural reactivity to
32	negative stimuli as a physiological marker of heightened acute autonomic responses. These
33	findings may help identify individuals who are at increased risk of developing negative
34	outcomes under stress.
35	
36	Keywords: ERP, Late positive potential, Negative emotion, Acute stress, Heart rate, Cortisol

38 1. Introduction

39	We all experience stressors in our daily life. Physiologically, there are two inter-related
40	and separated stress response systems, i.e., the autonomic nervous system (ANS) and the
41	hypothalamic-pituitary-adrenocortical (HPA) axis. The ANS provides fast responses to acute
42	stressors, leading to a rapid increase in heart rate (HR), whereas the HPA axis shows a
43	relatively slower response with an elevated circulating glucocorticoid (cortisol in humans)
44	level, peaking 10~20 minutes after stressor onset. These two interacting physiological
45	systems on the one hand mobilize and reallocate resources aiming at helping individuals to
46	cope with environmental threats and restore homeostasis, and on the other hand temporarily
47	suppress activities that are not essential to survival (de Kloet et al., 2005; Lupien et al., 2009;
48	Ulrich-Lai & Herman, 2009).
49	Interestingly, one characteristic of our responses to acute stressors is its large variability
50	across individuals, especially for psychological stressors (for a review, see Lupien et al.,
51	2007). Moreover, prior studies have suggested that exaggerated stress responses may decrease
52	cognitive ability and increase emotional sensitivity, which in turn lead to mental problems (de
53	Kloet et al., 2005; Lupien et al., 2009). Therefore, understanding this individual variability
54	can enable us to identify vulnerability to stress-related problems and further prevent
55	maladaptive consequences of stress.
56	The ANS and HPA responses to acute stressors are initiated and regulated by relatively
57	hard-wired neural circuits in the brain (Ulrich-Lai & Herman, 2009). Especially, the amygdala
58	plays an important role in the up-regulation of physiological stress responses, and the
59	prefrontal cortex and hippocampus, where glucocorticoid receptors are abundantly expressed,
60	are involved in the negative feedback regulation of cortisol response (McEwen, 2004).
61	Crucially, these physiological responses are primarily driven by subjective explanation: once
62	a situation is interpreted to be (potentially) threatening to the subjective wellbeing, the stress
63	response is triggered to deal with it. What lies at the root of the physiological stress responses
64	is the information processing in the stress-related neural circuits (Ulrich-Lai & Herman, 2009).
65	Thus, quantifying neurocognitive activity in the stress-related neural circuits may shed light

66 on our understanding of individual differences in stress responses.

67	Neurocognitive processing of negative emotional information can be a promising factor
68	influencing acute stress reactivity. The amygdala plays a central role in the processing of
69	emotional information including threat detection and appraisal and facilitated attention to
70	salient stimuli (Cunningham & Kirkland, 2014; Gupta, 2019; Murray, 2007; Sergerie et al.,
71	2008; Vuilleumier, 2005). Meanwhile, interacting with the hippocampus and medial
72	prefrontal cortex, the amygdala is a key brain region for stress regulation (Ulrich-Lai &
73	Herman, 2009). In fMRI studies, amygdala activity, reflected indirectly by blood oxygen
74	level-dependent (BOLD) fMRI signal, has been widely confirmed with increased response to
75	negative information, and therefore used to index neural reactivity to emotional stimuli
76	(Cunningham & Kirkland, 2014; McLaughlin et al., 2014; Sergerie et al., 2008; Swartz et al.,
77	2015). With event-related potentials (ERPs), which has high temporal resolution, researchers
78	have identified a sustained positive component reflecting sustained attention towards and
79	elaborative processing of emotionally/motivationally salient information, the late positive
80	potential (LPP). The LPP begins at approximately 300 ms after stimulus onset and sustains
81	until stimulus offset with a broad posterior-superior scalp distribution (Cuthbert et al., 2000;
82	Schupp et al., 2000; for a review see Hajcak et al., 2010). Prior studies of source analysis
83	(Keil et al., 2002) and simultaneous fMRI and EEG recordings (De Rover et al., 2012; Liu et
84	al., 2012; Sabatinelli et al., 2007) revealed that neural substrate of the LPP involves cortical
85	and subcortical brain regions including the prefrontal cortex and amygdala.
86	Increased brain reactivity to negative emotional information may predict exaggerated
87	stress responses considering the up-regulating role of the amygdala in stress response.
88	Emerging evidence showed that relatively exaggerated amygdala reactivity towards negative
89	stimuli predicted more posttraumatic stress symptoms in response to a terrorist attack
90	(McLaughlin et al., 2014) and more behavioral and psychological symptoms in response to
91	highly stressful events in combat (Admon et al., 2009) and in common civilian life (Swartz et
92	al., 2015). Similarly, increased LPP amplitude for negative relative to neutral pictures was
93	correlated with more posttraumatic stress symptoms due to traumatic life events (Lobo et al.,

94	2014). These findings suggest that pre-trauma individual differences in neural reactivity to
95	negative stimuli are predictive for the risk to develop stress-related mental disorders after
96	traumatic stressor exposure. Meanwhile, impairments of the physiological stress system are
97	implicated in stress-related psychiatric symptoms/disorders (for reviews, see Pitman et al.,
98	2012; Sherin & Nemeroff, 2011). Crucially, the link between stress and emotion
99	processing-related neural circuit (e.g., prefrontal cortex, amygdala) is bidirectional; the neural
100	circuit not only is impaired by stress but also plays an important role in regulating the stress
101	response. So far, only one study demonstrated that reduced emotion regulation ability
102	revealed as decreased prefrontal cortex activation during emotional incongruent trials
103	predicted enhanced responses to acute social stress in cortisol and α -amylase (Kaldewaij et
104	al., 2019).
105	Therefore, the present study aimed to examine whether and how neurocognitive
106	processing of emotionally negative information, i.e., the emotion processing-related LPP
107	component, could predict physiological response to an acute psychosocial stressor in a
108	healthy population. Participants were instructed to passively view negative and neutral
109	pictures in a non-stressful state with their EEG recorded. Afterwards, participants returned to
110	complete a laboratory-induced psychosocial acute stress task (the Trier Social Stress Test,
111	TSST; Kirschbaum et al., 1993) while their ANS (heart rate) and HPA (cortisol) responses
112	were monitored. According to previous findings, we hypothesized that individuals with
113	enhanced neural activity as indicated by larger LPP amplitudes to negative stimuli would
114	show stronger autonomic and/or neuroendocrine responses to an acute stress response.
115	
116	2. Methods
117	2.1 Participants
118	Fifty-two healthy young adults (19 females and 33 males) with the age ranged from 18 to 25
119	years (M = 22.5, SD = 1.6) were recruited to participate in the present study. Considering
120	potential influences on stress responses, all participants were pre-screened and excluded

121 according to the following criteria: major chronic physiological disease or endocrine disorder; 122 history of psychiatric or neurological disorders; symptoms of chronic anxiety, depression or 123 insomnia; chronic use of psychiatric, neurological, or endocrine medicine; chronic overnight 124 work or irregular day/night patterns; any medication use within three days before 125 participating in the study; current periodontitis; excessive consumption of alcohol (more than 126 two alcoholic drinks a day) or nicotine (more than five cigarettes a day). For females, we 127 included those who did not take oral contraceptives during recruitment by telephone screen 128 and invited them to participate in the experiment before or after their ovulation period (which 129 is defined as the 12th to 16th days prior to the first day of the next menstrual cycle), in order 130 to control the potential influence of sex hormone on stress responses (Kirschbaum et al., 131 1999; Kudielka & Kirschbaum, 2005). All participants had normal or corrected-to-normal 132 vision and were right-handed by self-report. All participants gave written informed consent at 133 the beginning of the experiment and got monetary compensation for their participation. This 134 experiment was approved by the Ethics Committee of Human Experimentation at the Institute 135 of Psychology, Chinese Academy of Sciences. 136

137 2.2 General procedure

138 Participants completed two experimental sessions within two weeks (the interval between the 139 first and second session was within 6 days, except for one participant with a 13-day delay). 140 For the first session, participants completed the passive viewing task with their EEG 141 continuously recorded. For the second session, participants returned to our lab to complete the 142 TSST while their stress responses were monitored. The TSST was implemented between 1:00 143 pm to 5:00 pm to avoid the circadian fluctuation of cortisol levels (Dickerson and Kemeny, 144 2004; Kudielka et al., 2004) and heart rates (e.g., Vandewalle et al., 2007). Upon arrival, 145 participants were instructed to rest in a quiet room for 30 min during which they filled in 146 questionnaires. After the rest period, participants provided the first salivary sample for a 147 baseline measurement. Thereafter, participants completed the TSST task for stress induction, 148 during which heart rate was continuously recorded. Salivary samples were provided at 0 min

- 149 (post-TSST 1), 20 min (post-TSST 2), 45 min (post-TSST 3), and 60 min (post-TSST 4) after
- 150 the end of the TSST task.
- 151
- 152 2.3 Stimulus Materials
- 153 A total of 60 pictures were selected from the International Affective Picture System (IAPS;
- Lang et al., 1999), of which 30 were negative, depicting unpleasant scenes (e.g., threat and
- 155 mutilation), and 30 were neutral, depicting neutral scenes (e.g., household objects, leaves,
- 156 trees).¹ The negative and neutral pictures differed significantly on normative ratings of
- 157 valence (negative: M = 2.48, SD = 0.57; neutral: M = 5.03, SD = 0.34; t(58) = -21.112, p
- 158 < .001), arousal (negative: M = 5.66, SD = 0.54; neutral: M = 2.92, SD = 0.49; t(58) = 20.479,
- 159 p < .001), and dominance (negative: M = 3.77, SD = 0.60; neutral: M = 6.02, SD = 0.36; t(58)

160 =
$$-17.455, p < .001$$
)

- 161
- 162 2.4 Passive viewing task
- 163 After an initial practice block, three experimental blocks were completed with 1-2 min breaks
- 164 between the blocks. The 60 pictures were presented only once in a random order in each
- 165 experimental block. Each picture was displayed for 1000 ms in full screen on a 17-in.
- 166 (43.18-cm) monitor, occupying about 27.3° of horizontal visual angle and about 21.8° of
- vertical visual angle with a viewing distance of approximately 70 cm. The inter-trial interval
- varied randomly between 1200 and 1800 ms, during which a white cross was presented in the
- 169 centre of a black background (Hot et al., 2006). Participants were instructed to watch the
- 170 pictures attentively.
- 171
- 172 2.5 EEG recording and preprocessing
- 173 During the passive viewing task, the EEG was recorded from 64 scalp sites using Ag/AgCl

¹ The numbers of the IAPS pictures used were the following: negative (1111, 1275, 2751, 3015, 3051, 3062, 3064, 3102, 3130, 3160, 3550, 6244, 6530, 6834, 9007, 9120, 9180, 9253, 9400, 9405, 9415, 9430, 9432, 9433, 9500, 9520, 9530, 9592, 9611, and 9920) and neutral (2214, 2215, 2372, 2381, 2383, 2440, 2480, 2495, 2514, 2516, 2580, 2749, 2850, 2870, 2880, 5520, 5530, 5740, 6150, 7004, 7006, 7031, 7034, 7060, 7090, 7185, 7187, 7205, 7234, and 7950).

174 electrodes, which were placed according to the international 10-20 system and mounted in an 175 elastic cap (Neuroscan Inc., Charlotte, North Carolina, USA). An on-line reference to the left 176 mastoid and an off-line algebraic re-reference to the average of left and right mastoids were 177 adopted. A pair of electrodes was placed above and below the left eye to record the vertical 178 electrooculogram (VEOG). A pair of electrodes was placed 10 mm from the outer canthi of 179 each eye to record the horizontal electrooculogram (HEOG). All inter-electrode impedance 180 was kept below 5 k Ω . Signals were amplified and bandpass filtered from 0.05 to 100 Hz. Data 181 were digitized at 1000 Hz. 182 The EEG data were processed using Scan 4.3 software (Neuroscan, USA). Eye-movement 183 artifacts were corrected from the EEG data using a regression procedure implemented in the 184 Neuroscan software (Semlitsch et al., 1986). Data were digitally low-pass filtered with 30 Hz 185 and were epoched into periods of 1400 ms (including 400 ms pre-stimulus time as baseline)

186 time-locked to the onset of the emotional pictures. Trials with artifacts exceeding $\pm 100 \,\mu V$ 187

188

189 2.6 Stress induction

were rejected from analysis.

190 The TSST task has been shown to be effective in eliciting stress responses (Buchanan et 191 al., 2012, 2009). The task was consisted of a 5-min preparation, a 5-min speech, and a 5-min 192 mental arithmetic. In the preparation period, participants were seated in laboratory room A 193 and instructed to prepare a speech for an imagined scenario in which they were accused of 194 shoplifting and they had to defend themselves in front of the store managers. They were also 195 informed that their performance would be videotaped and evaluated. After preparation, 196 participants were escorted to laboratory room B, where three experimenters (two females) in 197 white coats pretending to be managers were presented. After the speech, participants were 198 asked to complete a mental arithmetic task, which was to subtract serially the number 13 199 starting at 1022 as fast and accurate as possible. Once an error was made, participants had to 200 restart at 1022. Throughout the speech and arithmetic task, participants spoke into a 201 microphone and a video camera in front of the three experimenters. The experimenters

202 communicated with the participant in a neutral manner with a neutral expression and provided

- 203 no facial or verbal feedback.
- 204
- 205 2.7 Measurement of acute stress response

206 A wireless chest heart rate transmitter and a wrist monitor recorder (Polar RSC800CX,

207 Polar Electro, Finland) was used for heart rate recording. The heart rate was recorded for 5

208 min at baseline, continuously recorded for 15 min throughout the TSST task, and recorded for

209 3 min each for the four post-stress measurements at 0 min, 20 min, 45 min, and 60 min after

210 the end of the TSST (i.e., post-TSST 1-4). Averaged heart rate across each recording period

211 was obtained from the Polar performance software and was defined as the number of beats

212 per minutes (bpm).

Salivette collection tubes (Sarstedt, Rommelsdorf, Germany) were used to collect saliva
samples for salivary cortisol levels at baseline and at 0 min (post-TSST 1), 20 min

215 (post-TSST 2), 45 min (post-TSST 3), and 60 min (post-TSST 4) after the end of the TSST.

216 Saliva samples were frozen at -22 °C immediately after collection until analysis and was

thawed and centrifuged at 3000 rpm for 5 minutes before analysis. Cortisol concentration was

218 determined by use of a commercial electrochemiluminescence immunoassay (Cobas e 601,

219 Roche Diagnostics, Numbrecht, Germany) with the lower sensitivity being 0.5 nmol/l. Three

220 cortisol values were missing due to insufficient saliva and imputed by combining the group

221 mean and standard deviation for the missing cortisol sample at that time point, and the mean

of the available cortisol samples of the participant (Booij et al., 2013).

223

224 2.8 Questionnaires

Trait anxiety was measured with the Chinese version of the trait subscale of the State-Trait Anxiety Inventory which showed good reliability and validity (STAI-T; Shek, 1993;

227 Spielberger, 1983; Zhang et al., 2012). The STAI-T consists of 20 items with each rated on a

four-point Likert scale, with a range of score from 20 to 80. Personality was assessed by the

229 Big Five Personality Scale which included neuroticism, extraversion, openness to experience,

230	agreeableness, and conscientiousness (Donnellan et al., 2006; Zhang et al., 2012). The Big
231	Five Personality Scale consists of 20 statements (4 for each personality dimension) rated on a
232	five-point Likert scale, giving a range of 4–20 for each personality dimension.
233	
234	2.9 Data analysis
235	For each participant, ERP waveforms were averaged for the negative and neutral pictures
236	separately. The LPP was defined as the mean amplitude in the time window of 400-800 ms at
237	the parietal region (P1, Pz, and P2) where the overall LPP modulation was largest based on
238	visual inspection of the grand average ERPs (see figure 1). To increase stability of the data,
239	the mean LPP amplitude was calculated by averaging the LPP amplitude across the P1, Pz,
240	and P2 electrodes. To validate the valence effect on the LPP amplitude, a one-way
241	repeated-measures ANOVA with valence (negative vs. neutral) as within-subjects factor was
242	performed. Then, the LPP difference waves (Δ LPP) was calculated by subtracting neutral
243	from negative LPPs to serve as an ERP index of emotional processing.
244	For the stress response, a one-way repeated-measures ANOVA was performed on HR with
245	Time as within-subject factor (baseline, during-TSST, post-TSST 1, post-TSST 2, post-TSST
246	3, and post-TSST 4). Then, heart rate increase ratio (Δ HR-ratio) was calculated by dividing
247	the difference between the baseline HR and HR during the TSST task by the baseline HR to
248	index autonomic stress response for each participant.
249	For the cortisol response to stress, a one-way repeated-measures ANOVA was conducted
250	for salivary cortisol with Time as within-subject factor (baseline, post-TSST 1, post-TSST 2,
251	post-TSST 3, and post-TSST 4). Then, cortisol increase ratio (Δ Cort-ratio) was calculated by
252	dividing the difference between baseline cortisol levels and the peak value (which was the
253	cortisol level measured at 20 min after the end of TSST (post-TSST 2)) by the baseline
254	cortisol to index HPA-axis stress response for each participant.
255	Bivariate correlations between Δ LPP amplitude and the stress response measures
256	(Δ HR-ratio and Δ Cort-ratio) were first calculated. Hierarchical regression analyses were then

257 conducted to investigate the predicting value of the Δ LPP amplitude on the stress response. 258 Two separate hierarchical regression analyses were conducted for the autonomic (Δ HR-ratio) 259 and the endocrine stress response (Δ Cort-ratio) as dependent variables, respectively. In the 260 regression models, control variables including age, sex, years of education, neuroticism, and 261 trait-anxiety which might influence stress response (Egloff et al., 2002; Fox et al., 2010; 262 Kudielka et al., 2009; Wu et al., 2017) were entered in Step 1. Subsequently, the Δ LPP 263 amplitude was entered as predictor in Step 2. 264 Statistical analyses were performed in SPSS 18.0. Greenhouse-Geisser correction was used when sphericity was violated. Partial n^2 was reported as a measure of effect size where 265 266 appropriate. Post hoc comparisons were conducted using Bonferroni correction to obtain 267 adjusted *p*-values. All reported *p*-values were two-tailed, and the level of significance was set 268 at .05. 269 270 3. Results 271 3.1 ERP data 272 The ERP waveforms time-locked to the negative and neutral picture onset and the

273 difference wave (negative minus neutral) are shown in Figure 1. Negative pictures elicited

larger LPP amplitudes as compared to neutral pictures (F(1,51) = 97.274, p < .001, partial η^2

275 = .652). The mean amplitude (\pm SD) of \triangle LPP was 2.87 (\pm 2.12) μ V.

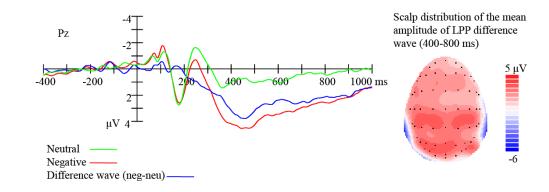
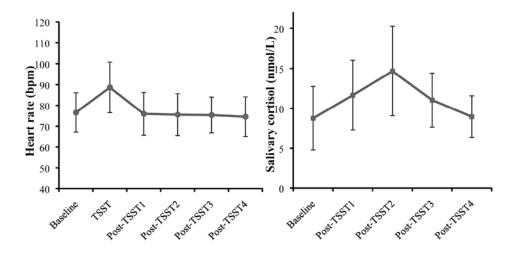


Figure 1: Left: The ERP waveforms time-locked to the negative and neutral picture onset and the difference (negative minus neutral) wave at Pz. Time 0 represents picture onset. Right:


279 The scalp distribution of Δ LPP mean amplitude.

280

281 *3.2 Stress responses*

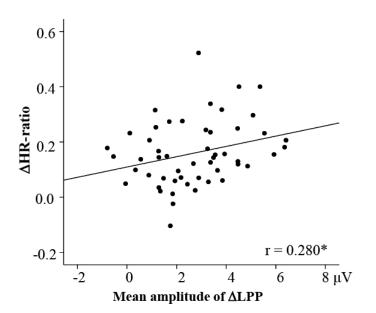
282 The means and standard deviation of HR and salivary cortisol levels measured before,

during, and after the TSST are depicted in Figure 2.

284

285

Figure 2: Mean values and standard deviation of heart rate (left) and salivary cortisol level (right)
measured before, during, and after the TSST task. Baseline: measured after 30-min rest; TSST:
measured during the TSST task; Post-TSST 1 to 4: measured at 0 min, 20 min, 45 min, and 60 min
after the end of the TSST task. Error bars are SD.


290

291 For the HR, the repeated-measures ANOVA revealed a significant main effect of Time 292 $(F(5, 255) = 64.575, p < .001, partial \eta^2 = .559)$. Post hoc analysis indicated significantly 293 higher HR during the TSST task compared to the baseline and post TSST measures (p_s 294 < .001). The differences between the baseline HR and the four post-TSST measures were not 295 significant ($p_s > .05$). The mean value (\pm SD) of the Δ HR-ratio was 0.16 (\pm 0.12). 296 For the cortisol response, the repeated-measures ANOVA also revealed a significant main effect of Time (F(4, 204) = 38.463, p < .001, partial $\eta^2 = .430$). Post hoc analysis showed that 297 298 salivary cortisol levels measured at 0 min, 20 min, and 45 min after the end of the TSST were 299 significantly higher than cortisol levels measured at baseline and higher than 60 min after the

- and of the TSST ($p_s < .01$). There was no significant difference between cortisol levels at
- baseline and that measured at 60 min after the end of the TSST (p > .05). The cortisol level
- 302 reached peak at 20 min after the end of the TSST task which was higher than cortisol at 0 min
- and 45 min after the end of the TSST task ($p_s < .001$). The mean value (± SD) of Δ Cort-ratio
- 304 was 0.82 (\pm 0.86).
- 305
- 306 *3.3 Prediction of stress responses by emotional ERP measure*
- 307 Pearson correlation analysis showed that the Δ LPP amplitude was positively correlated

308 with Δ HR-ratio (r = 0.280, p < .05, Figure 3), but not with Δ Cort-ratio (r = 0.161, p = 0.253).

309

311 Figure 3: Scatter plot of the bivariate correlation between the Δ LPP amplitude and the heart rate

312 response to acute psychosocial stress (Δ HR-ratio) (n = 52). The mean amplitude of Δ LPP

313 calculated as the mean amplitude of the negative minus neutral trials. The heart rate stress

314 response (Δ HR-ratio) was calculated as the difference between the baseline HR and HR during the

- 315 TSST task divided by baseline value. *: p < .05.
- 316

317 Table1 shows the results of the hierarchical regression analysis for the HR response to stress with

318 the Δ LPP amplitude being predictor and Δ HR-ratio being outcome. Model 2 explained a

- 319 significant amount of the variance in the HR response to the acute psychosocial stressor
- 320 (Δ HR-ratio). The amplitude of Δ LPP was a significant predictor after controlling for age, sex,
- 321 years of education, neuroticism, and trait-anxiety. In contrast, the hierarchical regression model for
- 322 the cortisol response to stress (Δ Cort-ratio) was not significant and the amplitude of Δ LPP could
- 323 not predict the Δ Cort-ratio (p > 0.10).
- 324 Table 1
- 325 Hierarchical regression analyses predicting HR response to the stressor.

Predictors	β	t	R2	$\Delta R2$
Model 1			0.134	
Model 2			0.230	0.096*
Sex	0.121	0.9		
Age	0.205	1.6		
Neuroticism	-0.107	<1		
Trait Anxiety	-0.268	-1.7		
Δ LPP amplitude	0.313	2.4*		

326 Note: The outcome measure was the Δ HR-ratio during the TSST task (the difference between the

327 baseline HR and HR during the TSST task divided by the baseline HR). ΔLPP amplitude was the

328 averaged amplitude of LPP towards negative relative to neutral pictures at the parietal region (P1,

329 Pz, and P2). Sex, age, neuroticism, and trait-anxiety were included in Model 1 and the ΔLPP

amplitude was further included in Model 2. *: p < .05.

331

332 4. **Discussion**

333 The present study aimed at investigating the relationship between neurocognitive measure

of emotional processing (i.e., LPP) and physiological responses to acute stress. The results

showed that negative pictures elicited larger LPP amplitudes as compared with neutral

336 pictures, and the TSST successfully induced acute ANS and HPA responses (as reflected by

- 337 increased HR and cortisol, respectively). More importantly, increased LPP amplitudes
- 338 towards negative relative to neutral stimuli during the non-stressful state significantly
- 339 predicted HR response but not cortisol response to acute psychosocial stress (i.e., the TSST).

340	We found that enhanced LPP amplitudes to negative compared to neutral pictures in a
341	non-stressful state were associated with higher HR responses to acute psychosocial stress. The
342	LPP has been proposed to indicate sustained attention towards and elaborative processing of
343	motivationally or emotionally salient stimuli (Cuthbertet al. 2000; Schupp et al. 2000; also see
344	Hajcak et al. 2010 for review). Autonomic stress response (i.e., HR response) has been
345	suggested to launch fast fight/flight reaction and initial effort to cope with stressors, yet
346	enhanced response be related to increased health risks such as hypertension, coronary heart
347	disease, diabetes (Egloff et al., 2002; Peters et al., 1998). The current finding showed that
348	individuals who tend to engage more attention to process negative information would also
349	recruit the autonomic system to a higher degree in order to deal with a stressful situation,
350	which in the long-run might increase the risks to develop stress-related health problems.
351	The positive correlation we found can be explained in three ways. First, with a
352	prospective design, it adds to the evidence that negative processing bias plays a causal role in
353	stress vulnerability (e.g., Fox et al., 2010). For example, prior fMRI and EPR studies found
354	that relatively exaggerated amygdala reactivity and increased LPP amplitude towards negative
355	stimuli before trauma exposure were predictive to posttraumatic symptoms in response to
356	traumatic stressors (Admon et al., 2009; Lobo et al., 2014; McLaughlin et al., 2014; Swartz et
357	al., 2015). Egloff and colleagues (2002) found that attentional bias to negative stimuli
358	measured by response times positively predicted HR and blood pressure responses to an
359	evaluated speech task in females. Characterized by paying more attention to negative
360	environmental cues, individuals may interpret the stressor in a more negative way and in turn
361	be more stressed in the TSST task, as reflected in a higher autonomic response. Second,
362	although only negative pictures were used in our experiment, the LPP can be elicited by
363	arousing stimuli regardless of its valence (Cuthbert et al., 2000; Hajcak et al., 2010; Schupp et
364	al., 2000). Therefore, it is possible that more sustained attentional engagement with
365	emotionally arousing information rather than biased processing of negatively valence
366	information per se may have led to a higher arousal response in the stressful situation,
367	revealed as an exaggerated heart rate increase. In line with this explanation, literature has

368 shown that attentional bias towards both angry and happy faces was predictive to PTSD

369 symptoms (Schäfer et al., 2016).

370	Since our findings are correlational in nature, a third possible explanation is common
371	underlying neural mechanisms of emotional information processing and autonomic stress
372	response. Prior studies using simultaneous fMRI and EEG recording (Liu et al., 2012;
373	Sabatinelli et al. 2007; 2013), genetic analysis, and pharmacological manipulation (de Rover
374	et al., 2012) have suggested that the increased LPP amplitude reflects amygdala modulation,
375	which plays an important role in autonomic stress response (e.g., Fortaleza et al., 2012). Thus,
376	a generally hypersensitive amygdala may explain both high amplitude of LPP towards
377	negative stimuli and high HR response to stress.
378	In contrast to the autonomic stress response, we found that attentional processing of
379	negative stimuli was not a significant predictor of cortisol response to acute psychological
380	stress. These results are consistent with previous behavioral studies, in which the negative
381	attentional bias measured by reaction times was related to HR and blood pressure responses
382	(Egloff et al., 2002) but not to cortisol response (Fox et al., 2010) to a TSST-liked public
383	speech stressor. Previous literature showed that the ANS and HPA stress response systems to
384	some degree have different regulating neural circuits. The central nucleus of the amygdala
385	was suggested to preferentially regulate the autonomic stress response, whereas the medial
386	and basolateral amygdala nuclei weight in more on HPA axis response modulation (for a
387	review, see Ulrich-Lai and Herman, 2009). In emotional information processing, the central
388	nucleus was found being prominent in attentional modulation on the visual system
389	(Krolak-Salmon et al., 2004), which is also a neural source of the LPP (Liu et al., 2012;
390	Sabatinelli et al., 2007; 2013). Future research should use imaging techniques with higher
391	space-resolution (e.g., fMRI and MEG) to further explore the neural circuits of emotion
392	processing in predicting physiological stress response.
393	Several limitations to the present study should be noted. First, only healthy young adults
394	were recruited. It should be tested whether current finding can be generalized to other age
395	groups. Second, we investigated females of normal menstrual cycles before and after their

396	ovulation period but did not measure gonadal hormones to determine their menstrual cycle
397	stages. Future research can combine such objective measures to test whether current finding
398	can be generalized to different menstrual cycle stages in female. Third, we only focused on
399	negative emotional neurocognitive processing here. Future studies should address whether
400	positive and negative emotional processing have different predictive power on stress
401	responses. Last but not least, the passive viewing paradigm we used here is relatively simple
402	and no behavioural data is reported. More studies with delicate experimental design should be
403	applied to replicate the current findings. Nevertheless, it is worthwhile to mention that the
404	LPPs in a free-viewing context in the absence of behavioural outputs could be utilized as a
405	sensitive biomarker of emotion processing in clinical populations with impaired motor
406	function, such as Alzheimer's disease and other neurological disorders.
407	To summarize, neural processing of negative emotional information reflected by the
408	amplitude of LPP during non-stressful condition showed a positive correlation with HR
409	response toward an acute psychological stressor among healthy young adults. The present
410	findings indicate that the neural processing of negative emotional information can be used as
411	a biomarker of individual autonomic stress reactivity.
412	

414 **Reference**

- 415 Admon, R., Lubin, G., Stern, O., Rosenberg, K., Sela, L., Ben-Ami, H., Hendler, T., 2009.
- 416 Human vulnerability to stress depends on amygdala's predisposition and hippocampal
- 417 plasticity. Proc. Natl. Acad. Sci. 106(33), 14120-14125.
- 418 https://doi.org/10.1073/pnas.0903183106
- 419 Booij, S.H., Bouma, E.M.C., De Jonge, P., Ormel, J., Oldehinkel, A.J., 2013. Chronicity of
- 420 depressive problems and the cortisol response to psychosocial stress in adolescents:
- 421 The TRAILS study. Psychoneuroendocrinology. 38(5), 659-666.
- 422 https://doi.org/10.1016/j.psyneuen.2012.08.004
- 423 Buchanan, T.W., Bagley, S.L., Stansfield, R.B., Preston, S.D., 2012. The empathic,
- 424 physiological resonance of stress. Soc. Neurosci. 7(2), 191-201.
- 425 https://doi.org/10.1080/17470919.2011.588723
- 426 Buchanan, T.W., Tranel, D., Kirschbaum, C., 2009. Hippocampal damage abolishes the
- 427 cortisol response to psychosocial stress in humans. Horm. Behav. 56(1), 44-50.
- 428 https://doi.org/10.1016/j.yhbeh.2009.02.011
- 429 Cunningham, W.A., Kirkland, T., 2014. The joyful, yet balanced, amygdala: Moderated
- 430 responses to positive but not negative stimuli in trait happiness. Soc. Cogn. Affect.
- 431 Neurosci. 9(6), 760-766. https://doi.org/10.1093/scan/nst045
- 432 Cuthbert, B.N., Schupp, H.T., Bradley, M.M., Birbaumer, N., Lang, P.J., 2000. Brain
- 433 potentials in affective picture processing: Covariation with autonomic arousal and
- 434 affective report. Biol. Psychol. 52, 95–111.
- 435 https://doi.org/10.1016/S0301-0511(99)00044-7
- 436 de Kloet, E.R., Joëls, M., Holsboer, F., 2005. Stress and the brain: from adaptation to disease.
- 437 Nat. Rev. Neurosci. 6(6), 463-475. https://doi.org/10.1038/nrn1683
- 438 De Rover, M., Brown, S.B.R.E., Boot, N., Hajcak, G., Van Noorden, M.S., Van Der Wee,
- 439 N.J.A., Nieuwenhuis, S., 2012. Beta receptor-mediated modulation of the late positive
- 440 potential in humans. Psychopharmacology (Berl). 219(4), 971-979.

441	https://doi.org/10.1007/s00213-011-2426-x
442	Dickerson, S.S., Kemeny, M.E., 2004. Acute stressors and cortisol responses: A theoretical
443	integration and synthesis of laboratory research. Psychol. Bull. 130(3), 355-391.
444	https://doi.org/10.1037/0033-2909.130.3.355
445	Donnellan, M.B., Oswald, F.L., Baird, B.M., Lucas, R.E., 2006. The Mini-IPIP scales:
446	Tiny-yet-effective measures of the Big Five factors of personality. Psychol. Assess.
447	18(2), 192–203. https://doi.org/10.1037/1040-3590.18.2.192
448	Egloff, B., Wilhelm, F.H., Neubauer, D.H., Mauss, I.B., Gross, J.J., 2002. Implicit Anxiety
449	Measure Predicts Cardiovascular Reactivity to an Evaluated Speaking Task. Emotion.
450	2(1), 3-11. https://doi.org/10.1037/1528-3542.2.1.3
451	Fortaleza, E.A.T., Scopinho, A.A., Corrêa, F.M.A., 2012. β-Adrenoceptors in the medial
452	amygdaloid nucleus modulate the tachycardiac response to restraint stress in rats.
453	Neuroscience. 227, 170-179. https://doi.org/10.1016/j.neuroscience.2012.09.048
454	Fox, E., Cahill, S., Zougkou, K., 2010. Preconscious Processing Biases Predict Emotional
455	Reactivity to Stress. Biol. Psychiatry. 67(4), 371-377.
456	https://doi.org/10.1016/j.biopsych.2009.11.018
457	Gupta, R., 2019. Positive emotions have a unique capacity to capture attention. Prog. Brain
458	Res. 247, 23-46. https://doi.org/10.1016/BS.PBR.2019.02.001
459	Hajcak, G., Macnamara, A., Olvet, D.M., 2010. Event-related potentials, emotion, and
460	emotion regulation: An integrative review. Dev. Neuropsychol. 35(2), 129-155.
461	https://doi.org/10.1080/87565640903526504
462	Hot, P., Saito, Y., Mandai, O., Kobayashi, T., Sequeira, H., 2006. An ERP investigation of
463	emotional processing in European and Japanese individuals. Brain Res.
464	https://doi.org/10.1016/j.brainres.2006.09.020
465	Kaldewaij, R., Koch, S., Zhang, W., Hashemi, M. M., Klumpers, F., Roelofs, K., 2019.
466	Frontal Control Over Automatic Emotional Action Tendencies Predicts Acute Stress
467	Responsivity. Biological psychiatry. Cogn. Neurosci. Neuroimaging, 4(11), 975–983.
468	https://doi.org/10.1016/j.bpsc.2019.06.011

469	Keil. A.	. Bradlev	. M.M.	Hauk.	О.	, Rockstroh	B.,	Elbert.	Т.	Lang.	P.J.	2002.	Large	-scale

- 470 neural correlates of affective picture processing. Psychophysiology. 39(5), 641-649.
- 471 https://doi.org/10.1017.S0048577202394162
- 472 Kirschbaum, C., Kudielka, B.M., Gaab, J., Schommer, N.C., Hellhammer, D.H., 1999. Impact
- 473 of gender, menstrual cycle phase, and oral contraceptives on the activity of the
- 474 hypothalamus-pituitary-adrenal axis. Psychosom. Med. 61, 154-162.
- 475 https://doi.org/10.1097/00006842-199903000-00006
- 476 Kirschbaum, C., Pirke, K.M., Hellhammer, D.H., 1993. The 'Trier Social Stress Test'--a tool
- 477 for investigating psychobiological stress responses in a laboratory setting. 28(1-2),
- 478 76-81. Neuropsychobiology. https://doi.org/10.1159/000119004
- 479 Krolak-Salmon, P., Hénaff, M.A., Vighetto, A., Bertrand, O., Mauguière, F., 2004. Early
- 480 amygdala reaction to fear spreading in occipital, temporal, and frontal cortex: A depth
- 481 electrode ERP study in human. Neuron. 42, 665-676.
- 482 https://doi.org/10.1016/S0896-6273(04)00264-8
- 483 Kudielka, B.M., Buske-Kirschbaum, A., Hellhammer, D.H., Kirschbaum, C., 2004. HPA axis
- 484 responses to laboratory psychosocial stress in healthy elderly adults, younger adults,
- 485 and children: Impact of age and gender. Psychoneuroendocrinology. 29(1), 83-98.
- 486 https://doi.org/10.1016/S0306-4530(02)00146-4
- 487 Kudielka, B.M., Hellhammer, D.H., Wüst, S., 2009. Why do we respond so differently?
- 488 Reviewing determinants of human salivary cortisol responses to challenge.

489 Psychoneuroendocrinology. 34, 2-18. https://doi.org/10.1016/j.psyneuen.2008.10.004

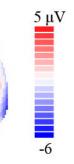
- 490 Kudielka, B.M., Kirschbaum, C., 2005. Sex differences in HPA axis responses to stress: a
- 491 review. Biol. Psychol. 69(1), 113-132.
- 492 https://doi.org/10.1016/j.biopsycho.2004.11.009
- 493 Liu, Y., Huang, H., McGinnis-Deweese, M., Keil, A., Ding, M., 2012. Neural Substrate of the
- 494 Late Positive Potential in Emotional Processing. J. Neurosci. 32(42), 14563-14572.
- 495 https://doi.org/10.1523/jneurosci.3109-12.2012

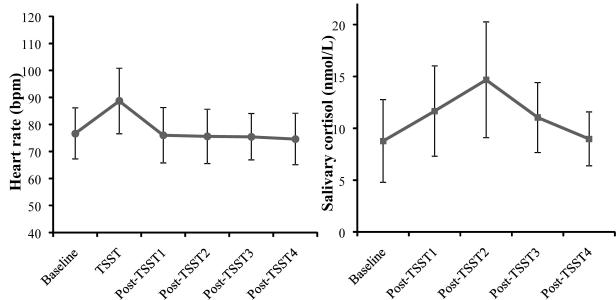
- 496 Lobo, I., David, I.A., Figueira, I., Campagnoli, R.R., Volchan, E., Pereira, M.G., de Oliveira,
- 497 L., 2014. Brain reactivity to unpleasant stimuli is associated with severity of
- 498 posttraumatic stress symptoms. Biol. Psychol. 103, 233-241.
- 499 https://doi.org/10.1016/j.biopsycho.2014.09.002
- 500 Lupien, S.J., Maheu, F., Tu, M., Fiocco, A., Schramek, T.E., 2007. The effects of stress and
- 501 stress hormones on human cognition: Implications for the field of brain and
- 502 cognition. Brain Cogn. https://doi.org/10.1016/j.bandc.2007.02.007
- 503 Lupien, S.J., McEwen, B.S., Gunnar, M.R., Heim, C., 2009. Effects of stress throughout the
- 504 lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10(6), 434-445.
- 505 https://doi.org/10.1038/nrn2639
- 506 McEwen, B.S., 2004. Protection and damage from acute and chronic stress: allostasis and
- 507 allostatic overload and relevance to the pathophysiology of psychiatric disorders.
- 508 Ann. N. Y. Acad. Sci. 1032, 1-7. https://doi.org/10.1196/annals.1314.001
- 509 McLaughlin, K.A., Busso, D.S., Duys, A., Green, J.G., Alves, S., Way, M., Sheridan, M.A.,
- 510 2014. Amygdala response to negative stimuli predicts ptsd symptom onset following
- 511 a terrorist attack. Depress. Anxiety. 31(10), 834-842. https://doi.org/10.1002/da.22284
- 512 Murray, E.A., 2007. The amygdala, reward and emotion. Trends Cogn. Sci. 11(11), 489-497.
- 513 https://doi.org/10.1016/j.tics.2007.08.013
- 514 Peters, M.L., Godaert, G.L.R., Ballieux, R.E., Van Vliet, M., Willemsen, J.J., Sweep, F.C.G.J.,
- 515 Heijnen, C.J., 1998. Cardiovascular and endocrine responses to experimental stress:
- 516 Effects of mental effort and controllability. Psychoneuroendocrinology. 23, 1-17.
- 517 https://doi.org/10.1016/S0306-4530(97)00082-6
- 518 Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W.,
- 519 Milad, M. R., Liberzon, I., 2012. Biological studies of post-traumatic stress disorder.
- 520 Nat. Rev. Neuroscience, 13(11), 769–787. https://doi.org/10.1038/nrn3339
- 521 Sabatinelli, D., Lang, P.J., Keil, A., Bradley, M.M., 2007. Emotional perception: Correlation
- of functional MRI and event-related potentials. Cereb. Cortex. 17, 1085–1091.
- 523 https://doi.org/10.1093/cercor/bhl017

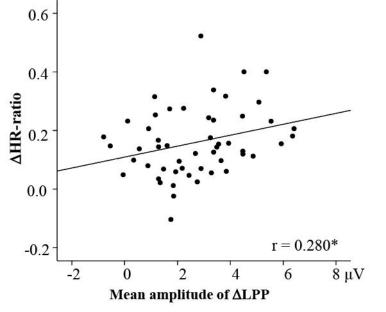
524	Schäfer, J., Bernstein, A., Zvielli, A., Höfler, M., Wittchen, H.U., Schönfeld, S., 2016.
525	Attentional bias temporal dynamics predict posttraumatic stress symptoms: A
526	prospective-longitudinal study among soldiers. Depress. Anxiety. 33(7), 630-639.
527	https://doi.org/10.1002/da.22526
528	Schupp, H.T., Cuthbert, B.N., Bradley, M.M., Cacioppo, J.T., Tiffany, I., Lang, P.J., 2000.
529	Affective picture processing: The late positive potential is modulated by motivational
530	relevance. Psychophysiology. 37, 257–261.
531	https://doi.org/10.1017/S0048577200001530
532	Semlitsch, H. V., Anderer, P., Schuster, P., Presslich, O., 1986. A Solution for Reliable and
533	Valid Reduction of Ocular Artifacts, Applied to the P300 ERP. Psychophysiology.
534	23,695-703. https://doi.org/10.1111/j.1469-8986.1986.tb00696.x
535	Sergerie, K., Chochol, C., Armony, J.L., 2008. The role of the amygdala in emotional
536	processing: A quantitative meta-analysis of functional neuroimaging studies.
537	Neurosci. Biobehav. Rev. 32(4), 811-830.
538	https://doi.org/10.1016/j.neubiorev.2007.12.002
539	Shek, D.T.L., 1993. The Chinese version of the State 🗆 Trait Anxiety Inventory: Its
540	relationship to different measures of psychological well being. J. Clin. Psychol. 49,
541	349-358.
542	https://doi.org/10.1002/1097-4679(199305)49:3<349::AID-JCLP2270490308>3.0.C
543	O;2-J
544	Sherin, J. E., Nemeroff, C. B., 2011. Post-traumatic stress disorder: the neurobiological
545	impact of psychological trauma. Dialogues Clin. Neurosci. 13(3), 263–278.
546	https://doi.org/10.31887/DCNS.2011.13.2/jsherin
547	Spielberger, C.D., 1983. Manual for the State-Trait Anxiety Inventory (STAI Form Y),
548	Consulting Psychologists Palo Alto.
549	https://doi.org/10.1002/9780470479216.corpsy0943
550	Swartz, J.R., Knodt, A.R., Radtke, S.R., Hariri, A.R., 2015. A neural biomarker of
551	psychological vulnerability to future life stress. Neuron. 85(3), 505-511.


552	https://doi.org/10.1016/j.neuron.2014.12.055
553	Ulrich-Lai, Y.M., Herman, J.P., 2009. Neural regulation of endocrine and autonomic stress
554	responses. Nat. Rev. Neurosci. 10(6), 397-409. https://doi.org/10.1038/nrn2647
555	Vandewalle, G., Middleton, B., Rajaratnam, S.M.W., Stone, B.M., Thorleifsdottir, B., Arendt,
556	J., Dijk, D.J., 2007. Robust circadian rhythm in heart rate and its variability:
557	Influence of exogenous melatonin and photoperiod. J. Sleep Res. 16(2), 148-155.
558	https://doi.org/10.1111/j.1365-2869.2007.00581.x
559	Vuilleumier, P., 2005. How brains beware: Neural mechanisms of emotional attention. Trends
560	Cogn. Sci. 9, 585–594 https://doi.org/10.1016/j.tics.2005.10.011
561	Wu, J., Sun, X., Wang, L., Zhang, L., Fernández, G., Yao, Z., 2017. Error consciousness
562	predicts physiological response to an acute psychosocial stressor in men.
563	Psychoneuroendocrinology. 83, 84-90.
564	https://doi.org/10.1016/j.psyneuen.2017.05.029
565	Zhang, JF., Shi, ZB., Zhao, PL., Wang, L., 2012. Posttraumatic growth and related factors
566	in junior middle school students after the Wenchuan earthquake. [Posttraumatic
567	growth and related factors in junior middle school students after the Wenchuan
568	earthquake.]. Chinese Ment. Heal. J. 26(5), 357-362.
569	
570	
570	
571	
572	
573	
574	
575	
576	

577


578


579 Acknowledgement


- 580 This work was supported by the National Natural Science Foundation of China (31771246,
- 581 31530031), the State Scholarship Fund of China (201604910560), the Natural Science
- 582 Foundation of Shenzhen University (2019076), and Guangdong Innovative and
- 583 Entrepreneurial Research Team Program. We acknowledge Xiaofang Sun and Wenyu Li for
- their help in data collection.

Scalp distribution of the mean amplitude of LPP difference wave (400-800 ms)

