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Abstract 

Traumatic brain injury (TBI) is a leading cause of cognitive disability in adults, often 

characterized by marked deficits in episodic memory and executive function. Prior studies have 

found that direct electrical stimulation of the temporal cortex yielded improved memory in 

epilepsy patients, but it is not clear if these results generalize to patients with a specific history of 

TBI. Here we asked whether applying closed-loop, direct electrical stimulation to lateral 

temporal cortex could reliably improve memory in a TBI cohort. Among a larger group of 

patients undergoing neurosurgical evaluation for refractory epilepsy, we recruited a subset 

patients with a history of moderate-to-severe TBI. By analyzing neural data from indwelling 

electrodes as patients studied and recalled lists of words, we trained personalized machine-

learning classifiers to predict momentary fluctuations in mnemonic function in each patient. We 

subsequently used these classifiers to trigger high-frequency stimulation of the lateral temporal 

cortex (LTC) at moments when memory was predicted to fail. This strategy yielded a 19% boost 

in recall performance on stimulated as compared with non-stimulated lists (P = 0.012). These 

results provide a proof-of-concept for using closed-loop stimulation of the brain in treatment of 

TBI-related memory impairment.  
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Introduction 

Memory loss resulting from traumatic, infectious, or inflammatory insults to the brain constitutes 

one of the major health challenges affecting populations worldwide.  Disability resulting from 

traumatic brain injury (TBI), in particular, affects 1-2% of the population and often results in a 

profound and specific impairment in episodic memory, preventing affected individuals from 

maintaining a reasonable quality of life.  Prior TBI also increases risk for several chronic 

neurologic complications, including epilepsy (1) and neurodegenerative diseases (2–4).  The 

variability in the nature and degree of impairment stems from both the nature of the acute insult 

and the subsequent development of neuroinflammation, diffuse axonal injury, diffuse vascular 

injury, and other secondary pathologies  (5–8). 

Although cognitive rehabilitation can help patients develop strategies to adapt to their disability, 

such therapy has limited efficacy in remediating the memory deficits (9). Given the profound 

unmet need facing patients with memory deficits related to acquired brain injury, we sought to 

examine whether closed-loop electrical stimulation can be effective in this patient group.  As 

such therapies have yet to be validated, and because technology for chronic closed-loop 

stimulation is in its infancy, we sought to identify neurosurgical epilepsy patients with a 

significant prior history of TBI and test whether closed-loop neural stimulation could effectively 

boost memory in these patients.  

Each year approximately 2,400 patients in the US undergo invasive electrocorticography 

monitoring for drug-resistant epilepsy, with the goal of localizing the seizure focus and planning 

a potentially-curative resective surgery.  To localize seizures, neurosurgeons implant many  

electrodes that will prove to be outside the seizure onset zone; as such, these patients provide a 

unique window into the electrophysiology of memory and cognition. Additionally, neurologists 

often use electrical stimulation in such cases to map regions of eloquent cortex, so as to avoid 

resecting tissue vital to motor, language and memory function. During such cases researchers 

have also used electrical stimulation as a manipulative tool to study memory and cognitive 

processes.  Investigation of open-loop stimulation protocols have at times demonstrated impaired 

memory (10–12) but in some cases, with careful targeting of specific tracts, these studies have 

also shown improved memory (13–15). 

Here we explored the possibility of using biomarker-guided, closed-loop electrical stimulation, 

to improve memory.  Building upon a recent demonstration that closed-loop stimulation of 

lateral temporal cortex boosts memory for stimulated items we set out to evaluate whether this 

strategy would also work in a “therapy-based” setting, where stimulation would need to improve 

memory function throughout periods of potentially active stimulation.  We further sought to 

validate this therapy in patients with a history of moderate-to-severe TBI.  Among all patients 

undergoing invasive monitoring for resective surgery at six major epilepsy centers, we identified 

eight patients who met our TBI criteria (see Materials and Methods).   Under an IRB approved 

protocol, and with an independent medical monitor reviewing patient safety data, we recruited 

these patients for a multi-session experiment involving memory testing, neural recordings, and 

closed-loop brain stimulation. 
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Results 

Consistent with prior work, our participants exhibited a moderate degree of memory impairment 

as determined by neuropsychological evaluation. Evaluations of memory included the Wechsler 

Memory Scale (WMS-IV), which was administered to all participants, and either the California 

Verbal Learning Test (CVLT-II) or the Rey Auditory Verbal Learning Test (RAVLT).  Using 

the available indices of delayed recall, we constructed a composite measure that included the 

WMS-IV logical memory scale and the word-list recall measures from the CVLT-II and RAVLT 

(see Methods).  Our participant group exhibited impaired memory, as seen in their average 

composite z-score of -1.01 (SEM = 0.31).  This result aligns with prior TBI studies reporting a 

memory deficit of z = -0.82 on a similar index (16).  

During preliminary brain recording sessions we identified personalized biomarkers of successful 

memory encoding (spectral power at eight log-spaced frequencies between 6 and 180 Hz, see 

Methods) that we would use in later sessions to control closed-loop brain stimulation.  To do this, 

participants first took part in computer-controlled memory tasks that would serve as “training” 

sessions for classifiers to learn personalized biomarkers indicative of successful or unsuccessful 

memory. Participants repeatedly studied lists of serially-presented nouns which they attempted to 

freely recall following a brief distractor task, designed to prevent active rehearsal (Fig. 1A, see 

Methods for details).  This memory task mimics typical neuropsychological assessments (e.g., 

the CVLT mentioned above) but allowed us to relate multivariate neural activity captured by the 

100+ clinical recording electrodes to patients’ behavioral performance.   

We constructed logistic-regression classifiers trained on spectral power extracted from each 

participant’s intracranial electroencephalography (iEEG) traces during word encoding, spanning 

frequencies from 6-180 Hz (i.e. the feature set). Using a “leave-one-session-out” cross-validation 

paradigm, classifiers performance was assessed only on held-out sessions of experimental data 

that were never seen by the training algorithm. This process yielded, for each subject, a weighted 

indication of how well each spectral feature could predict later memory. Previous studies have 

documented the success of mnemonic classification in much larger samples of >100 patients (17, 

18); here we show that this approach generalized to our TBI cohort (Fig. 1C). Periods of high 

classifier output – indicating a high probability of successful recall – were associated with 

increased power at high frequencies and diminished power at low frequencies (Fig. 1D). This 

effect appeared consistently across item positions within a list (Fig. 1E). These analyses show 

that classifier-based approach to predicting momentary changes in mnemonic function 

generalized well to our TBI cohort. 
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Fig. 1: Assessing memory and decoding mnemonic success. (A) For each list, participants first studied a list of twelve 

sequentially-presented nouns, then performed an arithmetic-distractor task, and finally attempted to freely recall the 

studied items. Participants contributed data on 40+ study-test lists across 3+ experimental sessions. (B) We trained a 

logistic regression classifier to predict which items would be recalled on the basis of the neural activity (spectral 

power) measured at each electrode during memory encoding (vector labeled x).  Training on hold-out sessions allowed 

us to estimate a weight matrix (w) associating brain activity with memory performance.  (C) We examined the relation 

between the participant-specific neural classifier’s false-positive and true-positive rates, resulting in the ROC curves 

displayed here (mean ROC curve shown in red; overall classification performance well exceeding chance levels (AUC 

= 0.64; t(7) = 6.40, p < 10-3). (D) Although we fit classifiers separately to each participant, the overall pattern derived 

by a forward model (19) revealed that increased high frequency and decreased low frequency activity marked periods 

of successful mnemonic processing. (E) Recall as a function of list position for items classified as in the top half (red) 

vs. bottom half (blue) of predicted recall, based on neural biomarkers.  This shows the magnitude of the difference in 

predicted recall based on neural signals and demonstrates that the effect appeared consistently across list positions. 

 

After building logistic-regression classifiers to decode variability in mnemonic success during 

record-only sessions, and meeting criteria for safe brain stimulation (see Materials and 

Methods), we advanced to the closed-loop stimulation experiment.  Here, we again administered 

a series of delayed-recall lists, randomly assigning each list to either a stimulation or non-

stimulation condition. Within stimulation lists, our algorithm decoded mnemonic success in real 

time using the previously constructed classifiers and triggered 500 ms bouts of 200 Hz, 0.5 mA 

stimulation when the classifier signaled that a patient's memory performance dipped below their 

predicted average (Fig. 2A).  We restricted stimulation to contacts on the left lateral temporal 

cortex, based on evidence from a prior study (20).  Additionally, a recent analysis of stimulation 

frequencies (21) indicated that 200 Hz stimulation more strongly modulated high-frequency 

activity -- an established biomarker of cognition function in human hippocampus and neocortex 

(22–24).     
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Our primary question was whether a fully closed-loop therapy could improve memory for entire 

lists during which only some items are stimulated; prior studies considered stimulation’s effect 

on individual items, leaving open the possibility that helping some items came at the expense of 

hurting others.  We thus examined recall rates in lists with closed-loop stimulation and compared 

those to lists in which stimulation was disabled (non-stimulation, or “sham” lists).  Participants 

recalled reliably more items on the stimulation than on the sham lists (25.2% vs. 21.1%; two-

tailed paired t-test, t(7) = 3.36, p = 0.012). Fig. 2B illustrates the degree of memory improvement 

(or impairment) for each of our eight participants.  Here we quantified stimulation-related 

memory improvement (or impairment) as the mean difference in stimulation and non-stimulation 

list recall rates (determined for each session), divided by the average non-stimulation recall rate 

across participants.  On average, closed-loop LTC stimulation improved recall by 19% (Fig. 2B). 

Our algorithm triggered stimulation an average of 6.5 times during each stimulation list. 

We applied a hierarchical linear mixed-effects model to account for the effect of multiple unique 

stimulation targets (three participants took part in an additional stimulation session with a 

different target location yielding a total of 11 unique targets, Fig. 2C), as well as the effect of list 

position within each session (to control for variability in the randomly assigned positions of 

stimulation and non-stimulation lists). This model relates recall performance on each list to the 

presence of stimulation during each list and the list position within each session.  Recall 

performance often varies over the course of a session (25) leading to a potential bias if the 

random assignment of stimulation conditions to list positions results in one condition occurring 

in more favorable list positions within a session.  A positive relation (β parameter) between recall 

rate and stimulation indicates higher memory performance during lists where poor-biomarker 

states triggered stimulation (as compared with the non-stimulation, “sham” lists).  We observed a 

main effect of closed-loop stimulation (β = 0.043; likelihood-ratio test, χ2
(1) = 5.5; p = 0.019) as 

well as an effect of list position within the session (β = −0.004; likelihood-ratio test,  χ2
(1) =

 9.7; 

p = 0.0018). These results indicate that the delivery of closed-loop LTC stimulation improved 

list-level recall even when controlling for list position and statistically modeling the effect of 

repeated sessions. 

Seven of the eight participants receiving closed-loop stimulation experienced improved memory 

on stimulation lists, but the degree of improvement varied considerably across participants (Fig. 

2B). Although our sample size did not permit a quantitative analysis of individual differences in 

response to therapy, two variables deserve mention. Stimulation targets for the eleven sessions 

lay across variable regions of the superior, middle, and inferior temporal gyrus, due to clinical 

constraints. Fig. 2C illustrates each stimulated target on an average brain along with its 

modulatory effect on recall, indicated by the shading of each sphere.  Classifier generalization 

also varied across stimulation sessions (Fig. 2D) which would increase variability in the 

effectiveness of any closed-loop algorithm.  Elucidation of these and other potential mediating 

factors will require larger studies and explicit manipulations. 
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Fig. 2: Closed-loop stimulation and memory performance. (A) While the patient views a word during the memory 

encoding phase of the delayed recall task (Fig 1A), we applied the logistic-regression classifiers trained in earlier 

record-only sessions (Fig.1B) to predict mnemonic success. Our algorithm triggered 500-ms bouts of 200 Hz 

stimulation to the lateral temporal cortex whenever the estimated probability of recall dropped below 0.5 (B) 

Participant-level memory improvement/impairment. Participants experienced an average 19% increase in recall 

performance (red) with seven of eight patients experiencing some positive effect of closed loop stimulation (t(7) = 2.92, 

p = 0.012). (C) Stimulation targets for each unique stimulation site (n=11 sessions) rendered on an average brain 

surface; sphere shading indicates the percent change in word recall performance. Targets were distributed across the 

superior, middle, and inferior temporal gyrus, though largely located in the middle temporal gyrus. (D) Classifier 

performance. Receiver operating characteristic (ROC) curves showing performance of a record-only classifier tested 

on No-Stim lists during the closed loop sessions (gray lines, n=11 sessions; red line, average ROC). The overall AUC 

across sessions reliably exceeded chance levels (t(10) = 4.82, p < 10-3; see Methods).  

 

Discussion 

 

Direct electrical brain stimulation has emerged as a viable therapeutic tool to rescue function in 

patients with progressive neurological disorders, most prominently refractory Parkinson’s 
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disease and essential tremor (26, 27), and more recently, intractable epilepsy (28, 29), depression 

(30),  and obsessive-compulsive disorder (31).  The lack of effective pharmaceutical therapies 

for many neurological and psychiatric conditions has prompted researchers to investigate the 

potential utility of electrical stimulation in treating a host of other indications, including 

depression, eating disorders, and addiction (32). 

The present study offers a proof-of-concept for a closed-loop brain stimulation strategy to treat 

memory loss in TBI. By first training logistic regression classifiers on spectral power features 

observed during memory encoding, we demonstrated that these classifiers could accurately 

predict subsequent memory even before a subject engaged in overt recall. We further showed 

that these same classifiers could form the basis of a closed-loop stimulation algorithm, in which 

electrical stimulation to the temporal cortex was delivered during predicted memory lapses. 

Recapitualting earlier work in a heterogenous epilepsy cohort (20), this approach yielded an 

average 19% improvement in recalled items across our TBI group, with individual positive 

effects observed in seven of the eight patients.  

To gauge the meaningfulness of a 19% memory boost, we need to consider the degree of 

impairment in this cohort. Among patients with moderate-to-severe TBI, one typically finds that 

delayed recall performance is 0.82 standard deviations below the average performance of age-

matched controls (16).  Based on the distribution of performance of TBI-afflicted individuals in 

delayed-free recall, the 19% improvement observed in our study implies a 0.44 standard 

deviation increase.  Our results therefore suggest a theoretical reduction in the burden of this type 

of memory impairment by 53.6% in these patients. By demonstrating therapeutic efficacy in 

patients who have both a history of moderate-to-severe TBI and documented memory 

impairment we hope our findings will accelerate the development of technologies for patients 

with acquired brain injuries, which could restore some degree of their lost memory function as 

they attempt to rebuild their post-injury lives.  

While these findings are encouraging, more work remains before this technique can be applied in 

a therapeutic setting. First, the electrophysiological responses – not just behavioral responses – to 

brain stimulation must be explored to better understand the neural mechanisms underlying 

improved memory performance. Several studies have recently characterized spectral responses to 

direct brain stimulation, with these early results suggesting that both low and high-frequency 

oscillations can be induced by exogenous pulse trains, depending partly on the local tissue 

architecture of the stimulation site (33). Relatedly, it remains an open question as to how the 

underlying connectivity profile of a stimulation site interacts with consequent change in behavior 

– the structural and functional connectivity of a stimulation site with the medial temporal lobe, 

and other regions of the core memory network, is a point of particular interest and should be 

characterized in future work (34). 

The long-term efficacy of chronically indwelling electrodes for memory enhancement is entirely 

uncharacterized, though addressing this question will be critical to the eventual deployment of 

brain stimulation as a memory therapeutic in TBI patients. The use of direct electrical 

stimulation in Parkinson’s and epilepsy, among other neuropsychiatric conditions, suggests that 

chronic implantation is safe and effective (35). However, chronic modulation of the neural 

circuitry underlying episodic memory could pose additional challenges, including adaptive 

changes in neural responses to stimulation.  
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Finally, our study constitutes a rare case in which direct brain recordings and stimulation can be 

ethically carried out in a group of TBI patients. As such, our study population is small, and likely 

does not capture the full heterogeneity of TBI pathologies. Through continued multi-institutional 

efforts, we hope that future work can extend these results to larger samples, and thus more 

precisely determine the efficacy of therapeutic brain stimulation across a range of underlying 

traumatic neuropathologies.  

 

 

Materials and Methods 

 

Study Design 

Based on prior published work in an independent data set (20), we hypothesized that closed-loop 

stimulation of lateral temporal cortex in human subjects with a history of memory dysfunction 

and traumatic brain injury would provide a boost in recall on an episodic memory task during 

trials receiving stimulation as compared to trials without stimulation. 

 

Research subjects 

We recruited eight patients (7 male, 1 female; mean age 44.5 +/- 11 SD) with intractable epilepsy 

who were undergoing seizure monitoring and localization using implanted intracranial 

electrodes.  We determined the sample size in advance and did not perform group analyses until 

we completed data collection. We identified patients as having a history of moderate-to-severe 

TBI based on criteria established by expert neurologists at the University of Pennsylvania (Dr. R. 

D-A) and University of Texas Southwestern (Dr. K. D.), as follows: a reported history of 

significant head injury accompanied by either prolonged loss of consciousness (>30 minutes), 

post-traumatic amnesia, or imaging results compatible with moderate-to-severe traumatic brain 

injury.  We confirmed left-language dominance based on functional magnetic resonance imaging 

(fMRI) and/or WADA testing in six of these patients; the remaining two patients did not have 

specific data confirming language dominance, but one was right-handed and other self-reported 

as being ambidextrous.  The enrolled patients participated at the following collaborating 

hospitals: Dartmouth-Hitchcock Medical Center (Hanover, NH), Emory University Hospital 

(Atlanta, Georgia), and University of Texas Southwestern Medical Center (Dallas, TX), with the 

University of Pennsylvania (Philadelphia, PA) serving as the Data Coordinating Center. This 

research was part of a multi-center project designed to assess the effects of electrical stimulation 

on memory-related brain function. Institutional review boards approved the study protocol at the 

respective institutions, and each participant gave written informed consent after the nature and 

possible consequences of the study were explained. 

 

Experimental Design 

All enrolled participants underwent the same experimental protocol: multiple sessions of a non-

stimulation behavioral task followed by one or more sessions of a closed-loop stimulation task 

(see details in following subsections).  Each participant served as their own control within each 

stimulation task session (control trials receiving no stimulation).  Patients were aware that 

stimulation could be delivered throughout the closed-loop stimulation task but were blinded to 

the specific trials containing stimulation.  We included all closed-loop stimulation task sessions 
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performed by the participants in the reported results and did not perform group analyses until all 

data were collected. 

Behavioral task 

Each participant performed a delayed verbal free recall task (Fig. 1A) on a laptop, in which they 

studied lists of displayed items for later verbal recall. Each list comprised 12 words selected 

without replacement from a pool of nouns; the word pool consisted of items belonging to 25 

semantic categories (e.g. beverages, kitchen appliances, zoo animals). Each list of 12 items 

consisted of four unique words drawn at random (and without replacement) from each of three 

randomly-selected categories. Participants contributed up to 25 study-test trials per session, plus 

a practice trial discarded in subsequent analyses. Each trial consisted of three main phases: 

encoding, distractor, and recall (Fig. 1A). Following a ten-second countdown period, each trial 

began with the encoding phase, in which the computer displays each item individually for 1600 

ms followed by a randomly jittered 750-1000 ms blank inter-stimulus interval (ISI). After 

viewing the final item of the list, participants entered a distractor phase (20 seconds), in which 

they typed responses to a series of simple arithmetic problems, receiving correct/incorrect 

feedback through an audio tone. Following the distractor phase, a brief auditory tone cued 

participants to speak aloud as many items as possible from the most recent viewed list (30 

seconds), in any order, with vocal responses digitally recorded and later manually annotated for 

analysis. Participants performed the categorized delayed free recall task without brain 

stimulation (i.e. ”record-only”) or with closed-loop brain stimulation (see details below). Two of 

the eight participants performed record-only sessions of a nearly-identical uncategorized variant 

of the delayed free recall task in addition to the categorized variant described above, in which the 

word pool consisted of high frequency nouns. In prior work, analyses of behavioral and 

electrophysiological data across these two task variants have revealed nearly identical 

biomarkers relating to successful memory encoding and retrieval (36).  

Data collection and processing  

The neurosurgical team implanted minimally-invasive stereoelectroencephalography (sEEG) 

depth electrodes (AdTech Medical Instrument Corporation, PMT Corporation, DIXI Medical) 

within the brain parenchyma to collect electrophysiological data (EEG) to best localize 

epileptogenic regions, with specific placement of each electrode planned to support each 

patient’s individual clinical care. The External Neural Stimulator (ENS) (Medtronic, Inc.) 

recorded EEG signals (microvolts; sample rate = 2000 Hz) using a bipolar reference scheme, 

consisting of pairs of immediately adjacent contacts on the implanted sEEG electrodes. During 

testing sessions, the laptop recorded behavioral responses (vocalizations, key presses), 

synchronized to the ENS-recorded EEG via transmitted network packets. In a first pre-

processing step, a 5 Hz band-stop fourth order Butterworth filter (centered on 60 Hz) removed 

line noise from the recorded EEG signals. Then, we performed a spectral power decomposition 

on the time-series data at 8 frequencies from 6-180 Hz, logarithmically- spaced, using Morlet 

wavelets (wave number = 5) for time windows from 0 to 1366 ms relative to word onset, 

including a mirrored buffer (length = 1365 ms) before and after the interval of interest, in order 

to avoid convolution edge effects. Finally, we log-transformed the resulting time-frequency data, 

averaged over the time interval, and z-scored within session and frequency across item 

presentations.  

 

Localization of electrodes to anatomy  
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We performed a patient-specific parcellation of cortical surface regions according to the 

Desikan-Killiany atlas using Freesurfer (37) on pre-surgical volumetric T1-weighted magnetic 

resonance imaging (MRI) scans.  We performed an additional volumetric segmentation of the 

whole brain cortical surface and medial temporal lobe was performed on the T1-weighted scan 

and a high-resolution hippocampal coronal T2-weighted scan using Advanced Normalization 

Tools (ANTS) (38) and Automatic Segmentation of Hippocampal Subfields (ASHS) multi-atlas 

segmentation methods (39). We derived coordinates of the radiodense electrode contacts from a 

post-implant CT using custom software (Voxtool, https://github.com/pennmem/voxTool), and 

co-registered with the T1 and T2 MRI scans using ANTS.  

 

Classification of mnemonic success 

Each participant took part in multiple sessions of a delayed free recall memory task (Fig. 1A). 

The record-only sessions provided behavioral data and EEG time-series data upon which to train 

a participant-specific multivariate logistic regression classifier to identify patterns of brain-wide 

neural activity during memory encoding that predicted recall success (17, 18, 22, 36). The 

classifier utilized recorded EEG spectral power as features for training, measured during 

successful and unsuccessful memory encoding and memory retrieval event epochs from prior 

record-only sessions (Fig. 1B). Encoding event epochs spanned the time 0-1366 ms relative to 

item presentation, and retrieval event epochs spanned -525-0 ms relative to either a valid recall 

or an unsuccessful search period.  Valid recalls did not include repeated items and intrusions of 

non-list items. We defined a deliberation period as a 525 ms interval in which no prior 

vocalizations occurred within 1000 ms from onset and no subsequent recall within 2000 ms.  We 

also excluded time periods within the first and last 1000 ms of the entire retrieval interval.  For 

each valid pre-retrieval epoch, we identified a “matched” unsuccessful search deliberation epoch 

on another list, selecting the epoch from the closest list within the session whose timing within 

the recall period matched that of the valid recall and no vocalization took place.  Given the 

potential imbalance between encoding and retrieval events, we inversely weighted the penalty 

parameter according to the class imbalance (40), and computed class weights for each class as 

1
𝑛𝐴

(

1
𝑛𝐴
+
1
𝑛𝐵

2
)

 

where 𝑛𝐴  is the number of events class A events, and 𝑛𝐵   is the number of class B events. 

Encoding/retrieval class observations had a fixed value weighting of 2.5 (17). 

For each participant, we measured classifier performance on the training dataset using a leave-

one-session-out (LOSO) cross-validation procedure, by measuring the area under the curve 

(AUC) of the receiver operating characteristic (ROC) curve.  The AUC of the ROC relates the 

ratio of the true positive rate (correctly classified as later recalled) and false positive rate 

(incorrectly classified as later recalled) across classification thresholds (Fig. 1C).  A two-tailed, 

one-sample t-test versus chance level AUC of 0.5 (alpha = 0.05) tested for significance of trained 

classifier AUCs across participants. To measure generalization performance of a participant’s 

classifier to the closed-loop session, we used the same AUC metric calculated using the No-Stim 

lists as the evaluation dataset (Fig. 2D), testing for significance using the above described t-test 
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across closed-loop stimulation sessions.  To assess the relative importance of different frequency 

features to the classifier’s performance (Fig. 1D), we calculated a forward model for each 

participant based on the data covariance matrix and the weights of fitted classifier. We also used 

the classifier’s outputs on the training data to separate items into low and high probability of 

memory success based on the median of the distribution of classifier outputs across all items 

(Fig. 1E). This allowed us to characterize how participants’ actual memory performance 

compared with the predictions of the model.  

 

Closed-loop stimulation task and procedure  

In subsequent closed-loop stimulation sessions, the closed-loop system used the multivariate 

logistic regression classifier to decode the probability of recall from neural activity on-line 

during the encoding phase of the task (Fig. 2A). Subjects first performed one No-Stim practice 

list, followed by 25 additional Stim and No-Stim lists. Lists 1-3 were used as a No-Stim baseline 

for normalizing the classifier features; lists 4-25 consisted of 16 lists of Stim and 6 lists of No-

Stim conditions, randomly distributed. Concurrent with the free recall task, the closed-loop 

system calculated spectral power features on recorded data from 0-1366 ms relative to item 

presentation: during Stim lists, if the predicted probability of recall was below 0.5 (i.e. a poor 

memory encoding state), the system immediately triggered stimulation. On No-Stim lists, 

stimulation was not delivered.  During each stimulation event, electrical current passed through a 

single pair of adjacent electrode contacts, as charge-balanced biphasic rectangular pulses (pulse 

width = 300 μs) at 200 Hz frequency, for 500 ms. Each stimulation session began with the 

determination of a safe stimulation amplitude, in which experimenters initially triggered 

stimulation trains at the above parameters at a low, floor amplitude chosen by the monitoring 

clinician, who observed the patient’s EEG for stimulation-induced afterdischarges. With the 

clinician’s approval, the amplitude of additional stimulation incrementally increased, until 

reaching either the target amplitude or a safe maximum amplitude. Target amplitudes were 

below the afterdischarge threshold and below accepted safety limits for charge density; in this 

study, all participants received stimulation at 0.5 milliamperes. As the neurosurgical team 

determined electrode implantation sites on a case-by-case basis to address each patient’s specific 

care, we used a combination of anatomical and functional information to select stimulation sites. 

We prioritized electrodes in lateral temporal cortex (LTC), in particular the middle portion of the 

middle temporal gyrus, where previously published results have indicated a stronger beneficial 

effect (20).  

 

Statistical analysis of the effect of stimulation on memory 

To assess the effect of stimulation on memory performance, we compared participant recall rates 

on Stim lists and No-Stim lists. As standard practice, we excluded the practice list and the first 

three baseline (non-stimulation) lists from these analyses. For each session, we calculated the 

mean percentage of recalled words for the Stim and No-Stim list conditions (i.e. number words 

recalled divided by total number of words). To account for inter-session baseline differences in 

recall, we calculated the difference in individual session Stim and No-Stim recall rates, 

normalized by the mean No-Stim recall rate across all sessions, and tested for significance using 

a two-tailed paired t-test (alpha = 0.05). 
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We further estimated the effect of stimulation on memory performance using a hierarchical 

linear mixed effects model that took account of the varying numbers of closed-loop sessions 

across participants and the effect of list position within each session.  Here, we analyzed recall 

percentage in the model, with Stim/No-Stim and list number (position with the session) as fixed 

effects and session nested in participant as a random intercept effect. A likelihood-ratio chi-

squared test (alpha = 0.05) evaluated the significance of the fixed effects by comparing the 

performance of the full model to that of a reduced model without the fixed effect in question. 
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