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Abstract  

Aims/hypothesis: There is inconsistent evidence for the causal role of serum insulin-like 

growth factor-1 (IGF-1) concentration in the pathogenesis of type 2 diabetes. Here, we 

investigated the association between IGF-1 and type 2 diabetes using a combination of 

multivariable-adjusted and (clustered) Mendelian Randomization (MR) analyses in the UK 

Biobank.  

Methods: We conducted Cox proportional hazard analyses in 451,232 European-ancestry 

individuals of the UK Biobank (55.3% women, mean age at recruitment 56.6 years), among 

which 13,247 individuals developed type 2 diabetes during up to 12 years of follow-up. In 

addition, we conducted two-sample MR analyses based on independent SNPs associated with 

IGF-1. Given the heterogeneity between the causal estimates of individual instruments (P-

value for Q statistic=4.03e-145), we also conducted clustered MR analyses. Biological 

pathway analyses of the identified clusters were performed by overrepresentation analyses.    

Results: In the Cox proportional hazard models, with IGF-1 concentrations stratified in 

quintiles, we observed that participants in the lowest quintile had the highest relative risk of 

type 2 diabetes (HR: 1.31; CI: 1.23-1.39). In contrast, in the two-sample MR analyses, higher 

genetically-influenced IGF-1 was associated with a higher risk of type 2 diabetes. Based on 

the heterogeneous distribution of causal effect estimates, six clusters associated either with a 

lower or a higher risk of type 2 diabetes were identified. The main clusters in which a higher 

IGF-1 was associated with a lower risk of type 2 diabetes consisted of instruments mapping 

to genes in the growth-hormone signaling pathway, whereas the main clusters in which a 

higher IGF-1 was associated with a higher risk of type 2 diabetes consisted of instruments 

mapping to genes in pathways related to amino acid metabolism and genomic integrity.  

Conclusion: The IGF-1 associated SNPs used as genetic instruments in MR analyses showed 

a heterogeneous distribution of causal effect estimates on the risk of type 2 diabetes. This was 
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likely explained by differences in the underlying molecular pathways that increase IGF-1 

concentration and differentially mediate the effects of IGF-1 on type 2 diabetes. 

 

Keywords: Clustered Mendelian randomization analysis; Cohort studies; Mendelian 

randomization analysis; type 2 diabetes; Insulin-like growth factor-1. 

 

Abbreviations: BMI: body mass index; GWAS: genome-wide association analyses; GH: 

growth hormone; IGF-1: insulin-like growth factor-1; MR: Mendelian Randomization; SNPs: 

single nucleotide polymorphisms. 
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Introduction 

Insulin-like growth factor-1 (IGF-1) is a pleiotropic hormone that plays a major role 

in cellular growth, proliferation and survival [1]. The secretion of IGF-1, predominately by 

the liver, is promoted by growth hormone (GH) while conversely, IGF-1 in the circulation 

feeds back centrally to hypothalamus to inhibit GH secretion [2]. The availability of free 

IGF-1 in the blood is regulated by its association with distinct insulin-like growth factor 

binding proteins (IGFBPs) which can increase IGF-1 half-life or block its binding to IGF-1 

receptors [3]. IGF-1 was found to be involved in the pathophysiology of various diseases, 

including cancer, neurodegenerative disease, cardiovascular disease, and type 2 diabetes 

mellitus [4]. Several (prospective) cohort studies have found that lower levels of IGF-1 were 

associated with an increased risk of impaired glucose tolerance, increased insulin resistance 

and hence the development of diabetes mellitus [5, 6]. 

In contrast to these multivariable-adjusted association analyses, a recent study 

demonstrated that a higher genetically-influenced IGF-1 concentration was associated with a 

higher risk of developing type 2 diabetes using Mendelian Randomization (MR) analyses [7]. 

MR is an approach to determine whether the association between risk factors and outcome is 

causal by using genetic variants as instrumental variables [8]. However, in some 

circumstances, there is clear heterogeneity in the causal effects of the individual single 

nucleotide polymorphisms (SNPs) that are used as instrumental variables, which may 

indicate either pleiotropy or differences in biological pathways contributing to high levels of 

the exposure [9]. Clustered MR was recently developed to provide a means to address the 

heterogeneity in causal effects by clustering variants that show similar individual causal 

estimates on the outcome [9]. Previously, such context-dependent MR analyses have been 

proposed to provide more biological perspective in causal associations [10, 11].  
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We hypothesized that heterogeneity in causal effects of individual variants could be a 

reflection of different biological mechanisms involved in the association between IGF-1 and 

type 2 diabetes. For example, variation influenced by processes causing insufficient GH 

signaling may have a different impact on T2D than variation influenced by processes causing 

increased GH resistance. Therefore, in this study, we aimed to investigate the association 

between IGF-1 and incident type 2 diabetes followed by clustered MR analyses [9] in the 

large UK Biobank population, and explored the possible biological pathways involved in the 

clustered causal associations. 
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Methods 

Study setting and study population  

The UK Biobank is a very large prospective cohort study with over 500,000 

participants aged 40-69 years at recruitment across the entire United Kingdom (UK) [12]. 

Participants were recruited between 2006 and 2010 in 22 assessment centers across the UK. 

Baseline examinations in all participants included physical measures, collection of blood, 

urine and saliva, a self-completed touch-screen questionnaire, and a brief computer-assisted 

interview to investigate sociodemographic, family history, environmental factors, lifestyle, 

psychosocial factors, etc. The UK Biobank study was approved by the North-West Multi-

center Research Ethics Committee (MREC). Access to information to invite participants was 

approved by the Patient Information Advisory Group (PIAG) from England and Wales. All 

participants in the UK Biobank study provided written informed consent.  

The present project was accepted under project number 22474. We restricted the 

analyses to the UK Biobank participants who reported to be of European ancestry including 

British, Irish and any other European background, who had information available on serum 

IGF-1 concentration, and who were in the full release imputed genomics datasets.  

 

Genotyping and genetic imputations 

Genome-wide genotype data for all 500,000 UK Biobank participants generated using 

Affymetrix UK BiLEVE Axiom array (initial 50,000 participants) and the Affymetrix UK 

Biobank Axiom Array (remaining 450,000 participants), which genotyped around 850,000 

variants. All genetic data were quality controlled centrally by UK Biobank resources. In 

addition, UK Biobank resources performed centralized imputations on approximately 96 

million genotypes using the UK10K haplotype [13], 1000 Genomes Phase 3 [14], and 

Haplotype Reference Consortium (HRC) reference panels [15]. Autosomal SNPs were pre-

phased using SHAPEIT3 and imputed using IMPUTE4. Related individuals were identified 
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by estimating kinship coefficients for all pairs of samples using only markers weakly 

informative of ancestral background. More information on the genotyping processes and 

genetic imputation can be found online 

(https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=263). 

 

Biochemical analyses 

Biological samples were collected to measure biochemical markers including IGF-1 at 

baseline (2006-2010) comprising ~480,000 participant samples. Serum levels of IGF-1 were 

analyzed using chemiluminescent Immunoassay (DiaSorin Liaison XL) with a one-step 

sandwich. Coefficients of variation derived from the internal quality control samples of the 

low, medium, and high IGF-1 concentrations ranged from 6.03-6.18%. More information on 

assay performance of the UK Biobank Biomarker Project can be found online 

(https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1227). 

 

Outcome definitions  

Information on the diagnosis of type 2 diabetes during follow-up was obtained 

through linkage with the National Health System (NHS) medical records database. Diagnoses 

were mainly derived from hospital admissions data. More information related to the diagnosis 

of type 2 diabetes can be found on the websites of UK Biobank under data-field 130708 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=130708).  

 

Prospective analyses  

Participants without diabetes mellitus at baseline were followed until the occurrence 

of type 2 diabetes, mortality or loss of follow-up, whichever occurred first. The association 

between IGF-1 levels and incidence of type 2 diabetes in the UK Biobank cohort was 

https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=263
https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1227
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=130708
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assessed using Cox proportional hazard models. Participants were categorized into five 

groups based on quintiles of IGF-1 concentration. Quintile 1 (lowest 20%) and quintile 5 

(highest 20%) were used separately as reference groups to calculate the hazard ratio (HR), 

respectively. Potential confounders included sex, age at recruitment and baseline body mass 

index (BMI) based on height and weight measured at the assessment centers. The analyses 

were conducted in R using the survival package (version 3.2-7) [16]. The Kaplan Meier curve 

was plotted to visualize the difference of survival probability between IGF-1 quintiles and 

whether the proportionality assumption holds.  

 

Genome-wide association analyses  

Genome-wide association analyses (GWAS) on continuous IGF-1 concentrations and 

dichotomized IGF-1 blood levels (lowest 20% versus remaining 80% and highest 20% versus 

remaining 80%) were performed to provide a list of independent lead SNPs to be used as 

instrumental variables in the MR analyses. Analyses were performed using linear mixed 

models implemented in the program BOLT_LMM (version 2.3.2) [17]. We adjusted the 

analyses for age, sex and the first 10 principal components, and corrected for the Kinship 

matrix to correct for familial relationships in the UK Biobank population. Analyses were 

done on the autosomal chromosomes only. SNPs with a minor allele frequency <0.01 as well 

as SNPs with an imputation quality <0.3 were excluded. P-values of SNPs smaller than 5e-8 

were extracted and stored for the MR analyses. Visualization of the results was performed 

using the R-based packages ggplot2 [18] and EasyStrata [19] (www.genepi-

regensburg.de/easystrata).  

 

Mendelian randomization analyses  

Two-sample MR was performed with summary-based statistics of GWAS using the 

R-based statistical package Two Sample MR (available at:  

http://www.genepi-regensburg.de/easystrata
http://www.genepi-regensburg.de/easystrata
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http://github.com/MRCIEU/TwoSampleMR) [20]. This statistical package also connects to a 

large library of exposures from published GWAS to use as instrumental variables, which is 

aligned with the online GWAS catalogue.  

For the present study, we performed the clumping process (window size = 10,000 kb, 

R2 < 0.001) with the European samples from the 1000 genomes project which were used to 

estimate linkage disequilibrium (LD) between SNPs. Among those pairs of SNPs with R2 

above the specified threshold (R2 = 0.001), only the SNPs with the lowest P-value were 

retained to provide a list of independent lead SNPs from the MR analyses. Otherwise, the 

statistical power of MR analyses would be overestimated (e.g., underestimated standard 

errors of the summary estimates of the MR analyses). SNPs present in UK Biobank, but 

absent from the LD reference panel, were removed. On the basis of the significant 

independent lead SNPs (P-value<5e-8), we assessed their possible causal association with 

type 2 diabetes. For this analysis, we used publicly-available summary-statistics GWAS 

meta-analysis from 32 studies on 898,130 individuals (74,124 type 2 diabetes cases and 

824,006 controls) of European ancestry [21].  

Methods for MR analyses of summary-level data based on a two-sample design have 

been described in detail previously [22, 23]. Using inverse-variance-weighted (IVW) 

analyses, we combined the effects of the individual genetic instruments to obtain a 

genetically-determined association between exposure and outcome under the assumption of 

the absence of horizontal pleiotropy. However, given the large number of genetic instruments 

included in the present analyses, there is a high probability that at least some SNPs show 

pleiotropic effect. To test whether possible pleiotropic effects could bias the overall effect 

estimates (horizontal pleiotropy), we performed the sensitivity analyses MR Egger regression 

[24] and weighted median estimator (WME) analyses [25]. MR Egger does not force the 

regression line through the intercept and is, therefore, able to test for the presence of 

http://github.com/MRCIEU/TwoSampleMR
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directional pleiotropy, and WME estimator assumes at least 50% of the instruments included 

in the MR analyses were valid.  

 

Clustered Mendelian randomization analyses  

Clustered MR analyses were conducted to identify groups of genetic variants that 

have similar causal estimates of the exposure on the outcome. If the causal estimates of each 

genetic variant on the outcome were similar (e.g., their ratio-estimates were similar in 

direction, magnitude and precision), it was divided into different clusters in which the 

included genetic variants were more homogeneous concerning the causal estimates [9]. The 

inclusion probability of SNPs in each cluster was higher than 0.8. 

In order to identify distinct causal effects of genetic variants derived from GWAS of 

continuous IGF-1 levels on type 2 diabetes, we made use of the R-based MR-Clust package 

(https://github.com/cnfoley/mrclust). MR-Clust performs likelihood-based clustering on 

Wald ratio-estimates and accompanied standard errors. Genetic instruments within a cluster 

share similar causal estimates (e.g., Wald ratio-estimates are similar in direction, magnitude 

and precision) of the causal effect of the exposure on the outcome. MR analyses were 

repeated on all clusters to investigate the causal effects of each cluster on type 2 diabetes.  

 

Pathway analyses 

Based on the instruments that were part of a certain cluster, we performed pathway analyses 

to provide insights into biological pathways which could explain the heterogeneity between 

causal estimates of genetic variants in different clusters on type 2 diabetes. Genetic variants 

in each cluster were extracted and processed using the online tool FUMA to perform gene 

mapping where independent lead SNPs were determined at R2 < 0.1 using the 1000 Genome 

Project Phase 3 as a reference panel population [14, 26]. Based on derived genes, pathway 

analyses were conducted by using GENE2FUNC in the online tool FUMA, which is able to 

https://github.com/cnfoley/mrclust
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check pathways coded by related genetic variants [27]. The GENE2FUNC connects to 

massive pathway databases by using overrepresentation enrichment tests, among which 

KEGG and Reactome databases were used in the pathway analyses. More information can be 

found on the website of FUMA (https://fuma.ctglab.nl/)    

  

https://fuma.ctglab.nl/
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Results  

Characteristics of the study population 

In total, 451,232 European participants without diabetes mellitus at baseline were 

included in our study of whom 13,247 developed type 2 diabetes in up to 12 years of follow-

up (Table 1). Of the participants not developing type 2 diabetes, 55.7% were women, the 

mean age at recruitment was 56.5 (SD=8.1) years, the average BMI was 27.1 (SD=4.5) kg/m2 

and the mean IGF-1 levels were 21.5 (SD=5.6) nmol/L. Of the participants developing type 2 

diabetes during follow-up, women accounted for 41.9%, the mean age at recruitment was 

59.3 (SD=7.2) years, the average BMI was 31.7 (SD=5.6) kg/m2 and the mean IGF-1 level 

was 19.9 (SD=6.5) nmol/L. 

 

Prospective analyses  

Multivariable-adjusted Cox proportional hazard model analyses were performed to 

evaluate the association between quintiles of IGF-1 levels and incident type 2 diabetes. 

Kaplan Meier curve (Figure 1) illustrated that participants in the lower IGF-1 quintiles 

(quintile 1and 2) had proportionally lower risk of type 2 diabetes compared to participants in 

the higher quintiles (quintile 3, 4 and 5). 

More specifically, individuals in quintile 2 had a lower risk of type 2 diabetes (HR: 

0.77; CI: 0.73-0.81) than individuals in quintile 1 (Table 2), as did those in quintile 3 (HR: 

0.70; CI: 0.66-0.74), quintile 4 (HR: 0.68; CI: 0.64-0.72) and quintile 5 (HR: 0.76; CI: 0.72-

0.81). Taking participants in quintile 5 as the reference group, a higher risk was observed in 

quintile 1 (HR: 1.31; CI: 1.23-1.39), and those in quintile 3 (HR: 0.92; CI: 0.86-0.98) and 4 

(HR: 0.89; CI: 0.83-0.95) had a lower risk of developing type 2 diabetes.  
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Mendelian Randomization analyses  

There were 95,877 significant SNPs (P<5e-8) identified in the GWAS of continuous 

IGF-1 (Supplementary Figure 1) of which we derived 387 independent lead SNPs to be 

used in the MR analyses. The MR estimates of assessing the causal effect of IGF-1 on type 2 

diabetes showed that a 1 nmol/L increase in IGF-1 was associated with a 1% higher risk of 

type 2 diabetes in the IVW analyses (OR: 1.01; CI: 1.00-1.02). Similar results were obtained 

from MR Egger (OR: 1.02; CI: 1.00-1.05) and WME analyses (OR: 1.01; CI: 1.00-1.02). 

The GWAS on dichotomized IGF-1 for lowest or highest 20% versus the remaining 

80% resulted in 154 and 184 independent lead SNPs, respectively. MR analyses showed that 

low IGF-1 was associated with a lower risk of type 2 diabetes in the IVW analyses (OR: 

0.70; CI: 0.53-0.94) and high IGF-1 was associated with a higher risk of type 2 diabetes in 

the IVW analyses (OR: 1.66; CI: 1.28-2.15) (Supplementary Table 1, Supplementary 

Table 2; Supplementary Figure 2). Results remained similar in the MR-Egger and WME 

analyses. 

 

Clustered Mendelian randomization analyses  

We observed large heterogeneity in the individual causal estimates (Figure 2) as was 

also evidenced by the Q statistic (P=4.03e-145). The individual causal estimates were clustered 

into a total of 6 clusters with an inclusion probability of SNPs higher than 0.8 (Figure 3). MR 

estimates from different methods of assessing the causal effect of 6 clusters on type 2 

diabetes are presented in Table 3 and Supplementary Figure 3. In cluster 1 (IVW: OR:1.54, 

CI:1.43-1.65), cluster 2 (IVW: OR:1.03, CI:1.02-1.04) and cluster 5 (IVW: OR:1.20, CI:1.18-

1.22), higher levels of IGF-1 level were associated with a higher risk of type 2 diabetes. On 

the other hand, cluster 3 (IVW: OR:0.92, CI:0.91-0.94), cluster 4 (IVW: OR:0.62, CI:0.58-

0.67) and cluster 6 (IVW: OR:0.80, CI:0.76-0.85) showed that higher levels of IGF-1 were 

associated with lower risk of type 2 diabetes. The results from sensitivity analyses by using 
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weighted median estimator and MR-Egger did not materially differ from the result of the 

IWV method.  

 

Pathway analyses  

After mapping the SNPs to genes, an overrepresentation analysis was performed 

using the KEGG and Reactome databases. We found that cluster 2, cluster 3 and cluster 4 

mapped to specific pathways. Cluster 2 mapped to pathways related to systemic lupus 

erythematosus, metabolism of xenobiotics by cytochrome P450 and DNA/molecular integrity 

pathways (Supplementary Figure 4). Cluster 3 mapped to the pathways related to Janus 

kinase/signal transducers and activators of transcription (JAK/SAT), prolactin receptor 

signaling and GH receptor signaling (Supplementary Figure 5). Cluster 4 mapped to the 

pathways related to glycine, serine and threonine metabolism, choline catabolism and sulfur 

amino acid metabolism (Supplementary Figure 6). Clusters 1, 5 and 6 did not map to any 

specific pathway.   
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Discussion and conclusion  

In this study, we investigated the association of IGF-1 and type 2 diabetes using 

prospective multivariable-adjusted survival analyses followed by MR and clustered MR 

analyses in the UK Biobank. The results from the MR analyses showed that a genetically-

influenced higher level of IGF-1 was associated with a higher risk of type 2 diabetes, which 

was in contrast to the result from the prospective analyses showing that a higher 

concentration of IGF-1 was associated with a lower risk of type 2 diabetes. Since the 

underlying individual genetic instruments showed a heterogeneous distribution of causal 

effect estimates, clustered MR identified 6 clusters of genetic instruments for IGF-1 with 

different associations with type 2 diabetes, which mapped to distinct molecular pathways. 

Collectively, our results indicate that the association between IGF-1 and the risk of 

developing type 2 diabetes is context-dependent.    

Findings from other prospective studies regarding the association between IGF-1 and 

type 2 diabetes have been inconsistent. Our results from the prospective analyses were in line 

with another cohort study showing high levels of IGF-1 were associated with a lower risk of 

type 2 diabetes mellitus risk during 4.5 years of follow-up [5]. However, some nested case-

cohort studies suggested there was no association between total IGF-1 levels and the risk of 

type 2 diabetes [28, 29]. In addition, a cohort study found that the association between free 

IGF-1 and type 2 diabetes was dependent on the level of insulin in women [30]. The 

inconsistency of these findings reinforces the notion that the association between IGF-1 and 

type 2 diabetes is context-dependent which is in line with the distinct biological mechanisms 

identified by the clustered MR analyses in our study.  

Many studies found a J- or U- shaped association between IGF-1 and type 2 diabetes 

[5, 31] or insulin resistance [32]. For example, one study showed that individuals with both 

low- or high- IGF-1 levels were at increased risk of developing diabetes in a prospective 
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cohort study [31]. Similarly, a U-shaped association between IGF-1 and measures of insulin 

resistance was found in a cross-sectional study in Danish adults [32]. Partly in line with these 

results, we observed a J-shaped relationship between IGF-1 and type 2 diabetes with 

particularly low levels of IGF-1 to be associated with an increased risk of developing type 2 

diabetes. However, in the MR analyses of highest/lowest 20% IGF-1 and type 2 diabetes, we 

did not find indications that the association between genetically-influenced IGF-1 levels and 

type 2 diabetes was non-linear, as can be specifically observed in MR analyses in continuous 

IGF-1 where genetically-influenced low IGF-1 was associated with a lower risk of T2D and 

where genetically-influenced high IGF-1 was associated with a higher risk of T2D; effect 

sizes were similar from these analyses, but in opposite direction.  

The result of MR analyses of continuous IGF-1 and type 2 diabetes in our study was 

supported by a recent publication showing higher levels of IGF-1 were causally associated 

with increased risk of developing type 2 diabetes [7]. However, we observed large between-

SNP heterogeneity, and the causal estimates were not proportional to each other. We 

identified 6 main clusters of IGF-1 genetic instruments with distinct effects on type 2 

diabetes by using clustered MR. After mapping the genetic instruments to genes and 

overrepresentation analysis using the KEGG and Reactome databases, several clusters were 

mapped to specific pathways. 

Cluster 2 (in which higher genetically-influenced IGF-1 was associated with a higher 

risk of type 2 diabetes) mapped to multiple pathways all related to DNA/molecular integrity 

pathways. The association between the GH/IGF-1 axis and DNA damage and aging has long 

been observed [33]. For example, low IGF-1 expression was observed in the Ercc1-/- mouse 

model, which also exhibits accelerated aging due to a genetic defect in DNA repair [34]. It 

has also been reported that developmental GH/IGF-1 deficiency is associated with increased 

cellular DNA repair capacity and upregulation of DNA repair-related genes [35]. These latter 
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observations are consistent with genetically influenced and thus life-long higher IGF-1 levels 

and decreased DNA repair capacity. The association between the DNA damage response and 

type 2 diabetes is well described, yet poorly understood [36].  

Cluster 3 (in which higher levels of genetically-influenced IGF-1 was associated with 

a lower risk of type 2 diabetes) was mapped to pathways related to GH receptor signaling. 

Dysregulation of GH receptor signaling and the GH-IGF-1 axis can lead to multiple diseases 

such as type 2 diabetes [37, 38]. Mice with liver IGF-1 deficiency had a fourfold increase in 

GH levels. Upon treatment with a GH antagonist these mice had decreased blood glucose and 

insulin levels and increased peripheral insulin sensitivity compared with mice with liver IGF-

1 deficiency. These data indicate that the GH/IGF-1 axis plays a balancing role in insulin 

sensitivity and thus type 2 diabetes [39]. In addition, an epidemiological cross-sectional study 

showed that IGF-1 was associated with type 2 diabetes risk, but this association varied 

depending on the insulin levels: in individuals with low levels of insulin IGF-1 decreased 

type 2 diabetes risk and in individuals with high levels of insulin it increased type 2 diabetes 

risk [30].  

Cluster 4 (in which high genetically-influenced IGF-1 levels were associated with a 

lower risk of type 2 diabetes) was mapped to pathways related to the metabolism of amino 

acids. Branched-chain amino acids have been associated with a higher risk of type 2 diabetes 

in several prospective studies [40, 41]. In addition, IGF-1 was able to affect protein 

metabolism by activating the mechanistic target of rapamycin (mTOR) pathway through 

phosphoinositide 3-kinase (PI3K) [42]. It was also found that muscle protein turnover was 

regulated by IGF-1 signaling via suppression of FoxO-regulated, autophagy-mediated protein 

degradation [43].  

The main strength of our study is the extremely large sample size allowing 

stratification of the genetic instruments with ample statistical power. One limitation of the 
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present study is that the IGF-1 level used was total IGF-1 concentration and not free IGF-1 

(e.g., relative to the concentration of IGF binding proteins). Furthermore, the study was 

performed in a study of European-ancestry participants. Translation of the results to 

participants of non-European ancestry should be done with caution.  

In conclusion, we found that a higher level of IGF-1 was causally associated with 

both a higher and a lower risk of development of type 2 diabetes and these inverse 

associations seem to be regulated by distinct biological mechanisms. Therefore, the total 

concentration of IGF-1 does not provide insight into the risk of developing type 2 diabetes.   
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Figure 1 Kaplan Meier survival curves displaying the time to develop incident type 2 

diabetes by IGF-1 quintile. The x-axis presents days of follow-up and y-axis presents overall 

survival probability. Censoring is indicated by vertical marks. 
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Figure 2 Scatter plots of the causal effect of continuous IGF-1 on type 2 diabetes for 

different MR tests. The x-axis is genetic association between SNPs and IGF-1 and the y-axis 

is genetic association between SNPs and type 2 diabetes. Analyses were conducted using the 

inverse variance weighed, weighted median and MR Egger methods. The slope of each line 

presents the estimated MR effect for each method.  
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Figure 3 Scatter plots of the causal effect of continuous IGF-1 on type 2 diabetes for 

clustered MR analyses. The x-axis is genetic association between SNPs and IGF-1 and the y-

axis is genetic association between SNPs and type 2 diabetes. 



30 
 

Table 1 Characteristics of the UK Biobank study population for prospective analyses 

 Controls Cases Total 

N 437985 13247 451232 

Age at recruitment, in years 56.5 (8.1) 59.3 (7.2) 56.6 (8.0) 

Time to diagnosis, in years - 5.3 (2.5) - 

% of women 55.7 41.9 55.3 

BMI, in kg/m2 27.1 (4.5) 31.7 (5.6) 27.2 (4.6) 

IGF-1 levels in nmol/L 21.5 (5.6) 19.9 (6.5) 21.5 (5.6) 

Data presented as means with standard deviation (SD) or as stated otherwise. Information on BMI was missing 

for 7599 controls and 417 cases. Information on age at diagnosis was missing for 1228 cases.  Information on 

IGF-1 levels is missing for 29889 controls and 990 cases.
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Table 2 Hazard ratio (HR) with 95% CI of incident type 2 diabetes by IGF-1 concentration in quintiles  

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Ranges of IGF1 (nmol/L) 1.44-16.73 16.73-19.93 19.93-22.63 22.63-25.77 25.77-126.77 

Hazard ratio (CI) Reference  0.77 (0.73-0.81) 0.70 (0.66-0.74) 0.68 (0.64-0.72) 0.76 (0.72-0.81) 

Hazard ratio (CI) 1.31 (1.23-1.39) 1.01 (0.94-1.07) 0.92 (0.86-0.98) 0.89 (0.83-0.95) Reference 

*This table presents the hazard ratio (HR) and 95% confidence interval (CI) of incident type 2 diabetes by IGF-1 concentration in quintiles. The second row showed hazard 

ratios of incident type 2 diabetes using quintile 1 as reference group. The third row showed hazard ratios of incident type 2 diabetes using quintile 5 as reference group. 
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Table 3 MR estimates from different methods of assessing the causal effect of 6 clusters on 

type 2 diabetes 

Clusters 
Number 

of SNPs 

Inverse variance 

weighted  
Weighted median MR Egger 

OR(CI) OR(CI) OR(CI) 

Cluster 

1 
3 1.54 (1.43-1.65) 1.54 (1.38-1.72) 1.60 (1.00-2.57) 

Cluster 

2 
41 1.03 (1.02-1.04) 1.02 (1.01-1.04) 1.01 (0.99-1.04) 

Cluster 

3 
17 0.92 (0.91-0.94) 0.93 (0.91-0.95) 0.93 (0.90-0.96) 

Cluster 

4 
4 0.62 (0.58-0.67) 0.64 (0.56-0.73) 0.52 (0.38-0.72) 

Cluster 

5 
18 1.20 (1.18-1.22) 1.21 (1.18-1.24) 1.19 (1.14-1.23) 

Cluster 

6 
3 0.80 (0.76-0.85) 0.80 (0.75-0.86) 0.91 (0.70-1.17) 

*This table presents the odds ratio (OR) and 95% confidence interval (CI) of causal associations between 6 

clusters and type 2 diabetes 


