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Abstract: 

Providing proper timely treatment of asthma, self-monitoring can play a vital role in disease 

control. Existing methods (such as peak flow meter, smart spirometer) requires special 

equipment and are not always used by the patient. Using voice recording as surrogate 

measures of lung function can be used to assess asthma, which has good potential to self-

monitor asthma and could be integrated into telehealth platforms.  This study aims to apply 

machine learning approach to predict lung functions from recorded voice for asthma patients. 

A threshold-based mechanism was designed to separate speech and breathing from 

recordings (323 recordings from 26 participants) and features extracted from these were 

combined with biological attributes and lung function (percentage predicted forced expiratory 

volume in 1 second, FEV1%). Three predictive models were developed: (a) regression models 

to predict lung function, (b) multi-class classification models to predict the severity, and (c) 

binary classification models to predict abnormality. Random Forest (RF), Support Vector 

Machine (SVM), and Linear Regression (LR) algorithms were implemented to develop these 

predictive models. Training and test samples were separated (70%:30% using balanced 

portioning). Features were normalised and 10-fold cross-validation used to measure the 

model's training performances on the training samples. Models were then run on the test 

samples to measure the final performances.  

The RF based regression model performed better with lowest root mean square error = 10.86, 

and mean absolute score = 11.47, as compared to other models. In predicting the severity of 

lung function, the SVM based model performed better with 73.20% accuracy. The RF based 

model performed better in binary classification models for predicting abnormality of lung 

function (accuracy = 0.85, F1-score = 0.84, and area under the receiver operating 

characteristic curve = 0.88). 

The proposed machine learning approach can predict lung function (in terms of FEV1%), from 

the recorded voice files, better than other published approaches. These models can be 

extended to predict both the severity and abnormality of lung function with reasonable 

accuracies. This technique could be used to develop future telehealth solutions including 

smartphone-based applications which have potential to aid decision making and self-

monitoring in asthma. 
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1. Introduction: 

Asthma is a common respiratory condition that affects 235 million people worldwide.1 Around 

5.4 million people in the UK are currently receiving treatment for asthma, approximately 1 in 

11 children and 1 in 12 adults.2 Every 10 seconds, at least one person is facing a potentially 

life-threatening asthma attack in the UK, and on an average, three people die from it daily, 

regardless the effective treatments developed in recent years.3 Appropriate, effective 

management and treatment for asthma is therefore of vital importance. 

Many different techniques can monitor the complex nature of asthma, including subjective 

symptom assessments, lung function testing, and measurement of biomarkers. Regular 

monitoring of asthma can help patients receive appropriate treatment in time, which can help 

to reduce symptoms, frequency of exacerbation, and risks of hospitalisation. The ability to 

monitor asthma and modify treatment appropriately could help to reduce both disease 

morbidity and the economic cost of treatment. Identifying symptoms via questionnaire and 

lung function measurement via spirometry identifying of biomarkers (e.g. exhaled nitric oxide 

or sputum eosinophils) can all be used in regular monitoring of asthma.4  In practice, however, 

the combination of these is impractical in community-based care due to expense and/or 

complexity.  

Self-monitoring of asthma has the potential to play an important role in empowering the patient 

and maintaining disease control; such monitoring needs to be simple, convenient, and 

accurate. Equipment such as smart spirometers and, accompanying smartphone apps used 

to record peak expiratory flow rates (PEFR) and provide reminders to manage asthma more 

efficiently are currently available to simplify self-monitoring.5 However, smart spirometers are 

still expensive for personal use. As more people use smartphones, an application measuring 

lung function that could alert patients to modify their treatment without the need for a 

spirometer would be a convenient and inexpensive way to monitor asthma, particularly in 

Lower and Middle Income Country (LIMC) settings.  

At present, assessment of the ability to speak and the sounds associated with breathing are 

a recognised part of an assessment of asthma severity,  such as: “speaking full sentences” to 

“unable to speak at all” together with wheeze on auscultation.6–8 Although no standardised 

assessment or quantitative measures of these features have been developed, the effects on 

speech and breathing patterns and sounds due to increased airway resistance are noticeable 

in acute asthma.9 Thus, pitch from speech and quality of the breathing sound can potentially 

be utilised as surrogate measures of symptoms and/or to predict lung function, which can then 

be used to monitor asthma.  

Three kinds of sounds have been analysed to predict lung function using machine learning 

techniques: (1) lung and breathing sounds from the chest, (2) symptom-based sounds (such 

as a cough sound), and (3) voice sounds. Quantitative breath sound measurements, such as 

Vibration Response Imaging (VRI), have been used to predict postoperative lung function.10,11 

Cough and wheeze sound-based analyses have been shown to have potential in predicting 

spirometer readings.12–14  

In parallel to symptom-based sounds (such as a cough sound), there are a number of studies, 

which involve voice sounds only. A recent review identified 20 studies to date. It confirmed the 

idea of respiratory function correlating significantly to phonation sound. Some of these studies 

showed that voice evaluation might allow recognition of asthma contributing to voice 

dysfunction subjected to lung function.15 However, most of these studies required the use of 

specialised instruments and software to quantify specialised phonetic sounds. Using machine 
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learning techniques, one of these studies showed that sustained phonation of the vowel sound 

demonstrated potential utility in the diagnosis and classification of severity of asthma.16  

Assessing the quality of sound produced by an asthma patient, primarily via speech, is a 

common way to assess acute asthma. We have previously demonstrated that recorded 

speech correlates well with lung function during induced bronchoconstriction.17 To date, only 

two studies have utilised machine learning techniques to predict lung function from the 

recorded voice. Saleheen et al. proposed a convenient mobile-based approach that utilises a 

monosyllabic voice segment called A-vowel' sound or 'Aaaa...' sound from voice to estimate 

lung function.18 Chun et. al. proposed two algorithms for passive assessment of pulmonary 

conditions: one for detection of obstructive pulmonary disease and the other for estimation of 

the pulmonary function in terms of ratio of forced expiratory volume in 1 second (FEV1) and 

forced vital capacity (FVC) also denoted as FEV1/FVC and percentage predicted FEV1 

(FEV1%).19 However, these studies showed moderate performance and did include 

comparison with previous studies.  

This study proposes a new methodology to predict lung function from recorded speech using 

machine learning techniques to monitor asthma. Bronchoprovocation tests were given to 

participants to help diagnose asthma, and their voices were recorded for 1 min while the 

subjects read standard texts with lung function measured. This study aims to identify features 

from recorded speech files that correlate with measured lung function. We subsequently use 

those features to predict lung function, potentially enabling identification of deterioration of 

asthma control via a smartphone application in the future. 

 

2. Methods: 

2.1. Dataset 

Twenty-six non-smoking, clinically stable subjects, with physician-diagnosed mild atopic 

asthma, were recruited on step one of treatment according to 2012 GINA guidelines.20 The 

study was approved by the local ethics committee (number 12/EE/0545), by the Medicines 

and Healthcare Products Regulation Agency (MHRA) (MHRA number 11709/0246/001-

0001).21 The study was performed in compliance with the protocol and additional methodologic 

details provided in the supplementary material. All participants underwent a standardised 

inhaled methacholine challenge21  and after each challenge dose, the participant read a 

standardised text for 30s into a digital recorder fitted with an external microphone set at 10 cm 

from the mouth (Olympus DM450 Speech Recorder with Olympus ME34 Microphone, Tokyo, 

Japan).. After each dose of the bronchial challenge, the voice of each subject was recorded, 

and lung function was measured as FEV1% predicted. Spirometry was performed with a dry 

bellows spirometer (Vitalograph, UK) and the best of at least three successive readings within 

100 ml of each other was recorded as the FEV1 in accordance with established guidelines.22  

In total 323 voice recorded sound files with their associated FEV1% were recorded for these 

26 subjects. Details of the method is shown in the Supplementary Methods section. 

2.2. Separation of breathing and speech segments from sound files 

An exploratory analysis was carried out on a segment of speech and breathing separately in 

the frequency domain and considerable differences were noticed in the spectrograms 

generated by librosa23 (Supplementary Figure S1). The parts of the sound file containing 

breathing and speech were separated from five randomly selected sound files using Audacity 

software.24 Features (including roll-off at 85%/95%, spectral fitness, root mean square energy, 

zero crossing rate, spectral centroid, spectral bandwidth, spectral contrast, spectral flatness, 
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mean amplitude, and mean breath cycle duration) (described in Supplementary Methods) 

were extracted for individual breathing and speech segments, using the librosa tool. These 

features were analysed to explore differences between breathing and speech segments and 

determine the appropriate thresholds to separate breathing and speech segments.  

2.3. Feature extraction 

After analysing the values for individual speech and breathe segments, only five features 

(Spectral contrast, Roll-off at 95%, Root mean squared energy, Spectral bandwidth, and Mean 

amplitude) showed substantial differences between breathing and speech segments 

(Supplementary Figure S2). Based on the observed information, using a threshold, these 5 

features were defined (Supplementary Table S1), which separate the breathing and speech 

segments from all available sound files.  

All extracted features were Min-max normalised. As there was a low number of features, it 

was impossible to utilise a feature engineering method to identify informative features. The 

use of Pearson correlation coefficient calculated the correlation between the features and 

FEV1%. 

2.4. Predictive model development 

Training and testing samples were separated randomly at a ratio of 70%:30%, respectively 

(i.e., the training dataset contained 70% of the samples, whereas the testing dataset kept the 

remaining 30% of the samples). This defined the following three types of predictive models:  

Model1: A regression model to predict FEV1% predicted based on the features extracted from 

recorded sound data. The techniques and the feature set for which this model performs best 

were applied for the other following models. The performances of these models are reported 

in terms of Root Mean Square Error (RMSE) and mean absolute error (MAE). 

Model2: A multi-class classification model to predict the severity of abnormality of lung function 

according to American Thoracic Society (ATS) grades (as defined in Supplementary Table 

S2).25  

Model3: A binary classification model to predict FEV1% classified either as normal or abnormal 

based on ATS grades for the severity of abnormal lung function (Supplementary Table S2), 

where lung function is normal if FEV1% > 80%, otherwise lung function is abnormal. 

Three machine learning algorithms, including Random Forest (RF), Support Vector Machine 

(SVM) (using Radial Basis Function kernel), and Linear Regression (LR), were implemented 

to develop the predictive models. Training the models was undertaken on the "training set", 

and 10-fold cross-validation was used to measure the models training performances. The 

Models use Default values of hyperparameters, and tuning did not show any improvements 

over default parameters. Finally, the models were run on the testing samples to assess the 

final performances.  

Further basic biological attributes, including sex, height and weight of the subjects were added 

as features in addition to the features extracted from the sound file as mentioned above to 

develop three additional models (denoted as Model1P, Model2P, and Model3P, respectively for 

Model1, Model2, and Model3). 

Initially, we investigated the effect of features extracted from speech and breathing parts 

individually and combined on lung function using Model1. We also explored the problem with 

imbalances of distribution of lung function in random partitioning and performed balanced 

partitioning of training and test samples as follows: 
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1. Using intervals of 5% on the FEV1% values 15 groups were prepared. For example, 

groups are 51-55%, 56-60%, 61-65% etc. 

2. Based on the groups sample distribution was prepared. 

3. Based on the sample distribution in each group balanced training and test sets were 

prepared, such that training and test sets followed the same distribution. 

 

3. Results: 

Table 1 showed the severity of abnormal lung function among 323 data samples. It is evident 

that 72.14% of samples exhibited normal lung function during corresponding recording and 

the rest (27.86%) exhibited abnormal lung function. 

Table 1: Percentage of the samples in terms of severity of abnormality of the lung function 

 

 

 

 

 

3.1. Feature extraction from recorded voice files 

Fourteen breathing segments and nine speech segments were retrospectively extracted 

from the sound files. (Supplementary Table S3). Results show no correlation between the 

features and FEV1% (Supplementary Figure S3). 

3.2. Lung function prediction in terms of FEV1% (Model1) 

3.2.1. Effect of speech and breathing features on prediction 

Initially, we explored the ability to predict lung function from extracted features of speech and 

breath both individually and in combination.,. Regression models developed using the 

combined features from speech and breathing to predict FEV1%, showed lower mean absolute 

error (MAE) than that of models developed from features from speech and breathing 

separately (Figure 1A).  The RF model (Model1(RF)) performed better in comparison to all other 

algorithms (the lowest Root Mean Square Error, RMSE = 12.59) (Figure 1B). 

3.2.2. Effect of balanced partitioning of the training and the testing sets 

The samples were not uniformly distributed amongst the ranges of FEV1% (Figure 2). 

Frequency of the samples is the highest around 100 of the FEV1% values and no sample was found 

with the FEV1% ≤ 50. As a result, samples were not uniformly distributed among the ranges of FEV1% 

values. Therefore, when the training and test samples were divided randomly, the pattern in 

the training dataset may not follow the pattern in the test dataset (Supplementary Figure S4A). 

The balanced separation of training and test samples shows a similar pattern of the samples 

among each range of FEV1% (Supplementary Figure S4B). 

Balanced partitioning of the training and the test sets led to improved performance compared 

to random partitioning. This is evident for all regression models, where balanced partitioning 

Severity of lung function Percentage among 

samples 

Normal 72.14 % 

Mildly abnormal 15.78 % 

Moderately abnormal 9.29 % 

Moderate to severely 

abnormal 

2.79 % 
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shows lower RMSE and MAE scores in comparison to the random partition model (Figure 3). 

Again, the RF based model (Model1(RF),) performed better than other models (RMSE = 12.51 

and MAE = 9.83).  

3.2.3. Effects of the phenotypes on the predictive models 

The performance of the models when biological attributes were added are shown in Figure 4. 

The RF based algorithm performed better with MAE (%) score of 10.86 and RMSE score of 

11.47 as compared to other algorithms. Table 2 shows the comparison of the Model1(RF), and 

the Model1P(RF)) for predicting FEV1%. Model1P(RF)) showed better predictive performance than 

that of Model1(RF)). 

Table 2: Performances of the Model1 (without sex, weight & height) and Model1P (with sex, weight & 

height) based on Random Forest for predicting lung function in terms of FEV1% (regression) 

 

 

 

3.3. Severity of abnormality of lung function prediction (Model2) 

The performance of Model2 and Model2P in predicting lung function severity from the sound 

files, is shown in Table 3. Model2(SVC) predicted abnormal lung function with 71% accuracy, 

while Model2P(SVC) predicted this abnormality with 73.2% accuracy. 

Table 3: Comparison of the performances (accuracy) of Model2 (without sex, weight & height) and 

Model2P (with sex, weight & height) in predicting the severity of abnormality of lung function 

Algorithms Model2 Model2P 

Linear Regression  0.64 0.66 

Random Forest  0.68 0.71 

Support Vector Classifier  0.71 0.73 

3.4. Normal vs. abnormal lung function prediction (Model3) 

The performance of the models (without and with biological attributes) in predicting normal vs. 

abnormal lung function are shown in Tables 4 and 5 (detailed in Supplementary Tables S4 

and S5). The best performance (without adding physical attributes) was observed for the RF 

model, Model3(RF), with 80% accuracy and 79% F1-score. The RF based model clearly 

performs better (AUC = 0.84) than the other models (Figure 5A).  

Table 4: Comparison of the performances of Model3 (without sex, weight & height) in predicting the 

abnormality of lung function. Here, RF = Random Forest, SVC = Support Vector Classifier and LR = 

Linear Regression 

 Precision Recall F1-score Accuracy Sensitivity Specificity AUC 

LR 0.77 0.78 0.76 0.78 0.37 0.94 0.78 

RF 0.80 0.80 0.79 0.80 0.44 0.94 0.84 
SVC 0.80 0.78 0.74 0.78 0.26 0.99 0.78 

 

This held true when adding physical attributes, with the RF-based model again showing the 

best performance (accuracy = 85%, F1-score = 84%, and AUC = 88% AUC (Table 5 and 

Figure 5B). 

Models MAE RMSE 

Model1(RF)
 (without sex, weight & height) 9.83 12.51 

Model1P(RF) (with sex, weight & height) 8.96 11.48 
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Table 5: Comparison of the performances of Model3P (with sex, weight & height) in predicting the 

abnormality of lung function. Here, RF = Random Forest, SVC = Support Vector Classifier and LR = 

Linear Regression 

 Precision Recall F1-score Accuracy Sensitivity Specificity AUC 

LR 0.82 0.82 0.81 0.83 0.48 0.96 0.84 

RF 0.84 0.85 0.84 0.85 0.63 0.93 0.88 
SVC 0.81 0.80 0.78 0.80 0.37 0.97 0.79 

 

4. Discussion: 

This study focused on predicting lung function from recorded voice sounds in three ways and 

has developed a predictive model (for FEV1%), which can be applied in real-time applications 

for early intervention in asthma management. A model to predict the severity of abnormal lung 

function according to the ATS23 was also developed, as well as a model to predict normal vs 

abnormal lung function (i.e., FEV1% ≤ 80). By detecting abnormal lung function, this can 

prompt the patient to take appropriate action to manage their condition. 

A threshold-based mechanism was defined to separate the breathing and speech features 

from the recorded sound files. A suitable threshold to separate the breathing and speech 

chunks was devised by utilising this mechanism, extracted 23 features to develop the 

predictive models. The results indicated that using the breathing and speech features in 

combination. They improved the performance of the predictive model's performance model. 

This finding is consistent with standard clinical practice to identify acute asthma by listening to 

speech and breathing patterns. 

Handling partitioning of the training and the testing dataset is an important factor in developing 

the prediction model. Considering the American Thoracic Society Grades for the severity of a 

Pulmonary Function Test Abnormality26, this study proposed a balanced partitioning technique 

for predicting FEV1% for asthma patients and, consequently, the model's performance has 

improved comparing with random partitioning on handling imbalanced data. 

Initially, the RF based predictive models showed better performance as compared to other 

models except in the prediction of severity of abnormality of the lung function. The RF based 

models predicted FEV1% with lower RMSE and MAE, and abnormality in lung function with 

high accuracy whereas SVM predicted severity of lung function with higher accuracy 

compared with that of RF and LR based models. The feature space in this study is not high 

dimensional (with only 26 features in total). The results are consistent with other studies that 

have reported a better performance of RF based models when working with a limited number 

of features.14,19 Generally, SVM is applied on highly dimensional space for best results. In 

addition, the correlational matrix showed no strong correlation of any feature with FEV1%, and 

RF performs better with non-linear problems. 

Furthermore, due to their nature, RF models are less likely to overfit. While most of the scores 

of the RF-based models are quite reasonable, the sensitivity of the RF based classifier to 

predict abnormality of lung function was not high (sensitivity = 44%). This could be due to the 

irregular distribution of the samples to normal vs. abnormal lung function (approximately 3:1).  

Although RF based models (Model1 and Model3) showed better performance, the SVM based 

model performed well on predicting severity of lung function (Model2). This is possibly due to 

grouping samples (i.e., grouping of FEV1%) based on the severity of abnormality of the lung 

function and heterogeneous distribution of the samples into these groups (e.g., the samples 
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with normal and with moderate to severely abnormal lung functions are 72.14% and 2.79% 

respectively in the dataset). 

Adding biological attributes (sex, height and weight), to the model, along with the features 

extracted from speech and breathing, improved the performances of the models. This 

improvement was observed for all three methods (RF, SVM and LR) used in this study. 

The predictive models used many pulmonary features, such as Mean Breath Cycle Duration, 

Breath Number, which relate to the airway resistance of patients with pulmonary disease (e.g. 

asthma). Breathing becomes more difficult for people with obstructive pulmonary disease due 

to increased airway resistance. As their pulmonary symptoms worsen, they frequently notice 

increased breathlessness and may have higher respiratory rates.27 Therefore, the pulmonary 

features extracted in this study are believed to have greater capability in predicting lung 

function. Similarly, other features, such as Roll off 95%, Mean Amplitude, Spectral Bandwidth 

etc., are also believed to be important in prediction tasks in this context. An earlier study 

reported a higher rate of increase in the intensity of the sound for equal increments in flow rate 

in chronic bronchitis and asthma than in healthy subjects.28 The inclusion of these pulmonary 

features is an essential attribute of this research in this context. 

Only two recent studies have used voice sounds to predict lung function. Saleheen et al. 

extracted the “A-vowel” segments from the voice sound and then extracted features from the 

‘A-vowel’ sounds and predicted lung function in terms of the FEV1/FVC ratio.18 Due to the lack 

of the FVC values in this study, the results are not directly comparable. Chun et al. developed 

models to predict lung function in terms of the FEV1/FVC ratio and FEV1%.19 Their reported 

prediction efficiency in terms of MAE (%) score is 20.6%, which is quite large for any 

regression problem. The RF based regression model reported in this research work achieved 

a MAE (%) score of 10.86% which shows significant improvement over that of Chun et al. 

This pilot study has limitations, including the limited sample size and the range of machine 

learning algorithms utilised to develop the predictive models. To overcome this, the balanced 

partitioning technique was applied. The performance of the predictive regression model in 

estimating FEV1% values is reasonable, and this study presents a better performance 

compared with previous studies found in the literature, in addition to being able to predict 

normal vs abnormal lung function and the severity of abnormality of lung function.  Considering 

the generalization of the model to avoid overfitting      issue, 10-fold cross validation was 

applied during training of the model. Furthermore, no feature selection method was applied to 

identify important features among the 23 features. However, due to the limited number of 

features, this study did not consider feature engineering  

Future work with more samples and using an external dataset will allow the predictive model 

to be better generalised and allow validation. A recent study included Mel Frequency Cepstral 

Coefficient (MFCC) value as a feature to predict COVID-19 subjects from a forced-cough cell-

phone recording.29 In contrast, our study has used 23 features excluding MFCC due to the 

nature (breathing and speech) of pattern-finding for acute asthma prediction from sound files. 

MFCC represents a full signal at a time in the signal processing. On the other hand, 23 features 

extracted here present the micro-information of different parts of a signal (e.g., breathing 

chunks and speech chunks of a voice sound file). However, the application of MFCC along 

with these features may have the potential to improve the predictions. 
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5. Conclusion 

Asthma puts pressure on health services due to the associated cost and workforce required 

to treat and care for the people with the condition. Therefore, regular monitoring and early 

intervention can help control the disease, reducing hospital admissions and therefore cost. 

The predictive models developed in this study can be implemented in smartphone applications 

offering a convenient and straightforward way to predict lung function. Embedding the 

algorithm in an app for self-monitoring asthma will potentially enable patients to achieve 

improved symptom control, availing early and appropriate medication and reducing costs. 
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Figures 

  
Figure 1: Impact of speech and breathing features individually and combinedly on model development. 

(a) shows the performances of the models in terms of mean absolute error (MAE) and (b) presents the 

performances of the models in terms of root mean squared error (RMSE).  Here, LR = Linear 

Regression, RF = Random Forest, and SVR = Support Vector Regression. 

Figure 2: Histogram of FEV1% values of the samples. It represents the frequency distribution of FEV1% 

values of the samples. FEV1% values are represented in x-axis and frequency of the samples per 

FEV1% is shown in y-axis.  
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Figure 3: Effects of the balanced partitioning of the training and testing sets. The performances of the 

Model1(LR), Model1(RF) and Model1(SVM), with and without balanced partitioning, are shown in (a), (b) and 

(c) respectively here. Balanced split represents the training and the test sets were created based sample 

distribution shown in Table 1 and the random split represent training and the test sets were created 

based on random partitioning.  Here, MAE = Mean Absolute Error and RMSE = Root Mean Squared 

Error. 

 

Figure 4: The performance of the regression models (Model1P with sex, height and weight have been 

added with the features from the voice sounds). Here, LR = Linear Regression, RF = Random Forest, 

and SVR = Support  Vector Regression 
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Figure 5: Receiver operating characteristic (ROC) curve plots of Model3 and Model3P. These plots show 

the area under Receiver Operating Characteristic curve of model's showing performance for predicting 

normal vs. abnormal lung function. (a) showing the ROC curve for Model3 and (b) showing the ROC 

curve for Model3p. 
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