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Abstract 
 

 

Objectives 

 

To estimate the relationship between moderate alcohol consumption and brain 

health, determining the threshold intake for harm and identifying whether 

population subgroups are at differential risk.  

 

Design 

 

Observational cohort study. Alcohol consumption was determined at baseline 

assessment visit using touchscreen questionnaire (2016-10). Multi-modal MRI 

brain and cognitive testing were performed subsequently (2014-20). Clinical 

data was extracted from linked Hospital Episode Statistics. 

 

Setting 

 

UK Biobank study. Brain imaging was performed on identical scanners with 

identical protocols at three UK centres (2014-20).   

 

Participants 

 

25,378 participants (mean age 54.9±7.4 years).  

 

Main outcome measures 

 

Brain health as defined by structural and functional MRI brain measures. 

 

Results 

  

Alcohol consumption was negatively linearly associated with global brain grey 

matter volume (beta= -0.1, 95%CI= -0.11 to -0.09, p<2x10-16). The association 

with alcohol was stronger than other modifiable factor tested and robust to 

unobserved confounding. Widespread negative associations were observed with 

white matter microstructure (beta= -0.08, 95%CI= -0.09 to -0.06, p<2x10-16) and 

positive correlations with functional connectivity. Higher blood pressure and 

body mass index increased risk of alcohol-related harm (SBP*alcohol: beta= -

0.01, 95%CI = -0.02 to -0.004, p=0.005; BMI*alcohol: beta= -0.01, 95%CI = -0.02 

to -0.002, p=0.02). Binging on alcohol had additive negative effects on brain 

structure on top of the absolute volume consumed (daily compared to never 

binging: beta= -0.19, 95%CI= -0.30 to -0.08, p<0.01). No evidence was found for 

differential effects of drinking wine, beer or spirits.  

 

Conclusions 

 

No safe dose of alcohol for the brain was found. Moderate consumption is 

associated with more widespread adverse effects on the brain than previously 

recognised. Individuals who binge drink or with high blood pressure and BMI 
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may be more susceptible. Detrimental effects of drinking appear to be greater 

than other modifiable factors. Current ‘low risk’ drinking guidelines should be 

revisited to take account of brain effects.  
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Introduction   
 

 

Moderate alcohol consumption is common [1] and often viewed as harmless to 

brain health [2, 3]. Without disease-modifying treatments for neurodegenerative 

disease, there is a necessary focus on modifiable risk factors such as alcohol. 

Thus even small adverse effects of moderate drinking on the brain have 

substantial public health relevance. Differing approaches have been used to 

ascertain brain health [4]. Advantages of using MRI to determine preservation of 

optimal brain integrity include the quantitative and sensitive measurement of 

changes detectable years before clinical symptoms. Finding robust associations 

with dementia-related imaging phenotypes would provide a biological pathway 

for a causal link between alcohol and neurodegenerative disease. Alcohol 

guidelines could be amended to reflect evidence about brain health rather than 

rely solely on that from current cardiovascular disease and cancer research as 

currently. There is a pressing need for stratified public health, with personalised 

risk predictions that would allow focused interventions to those at greatest need 

[5].   

 

Whilst chronic heavy alcohol intake damages brain health [6, 7], the impact of 

‘moderate’ consumption [defined variably] continues to be contentious. 

Epidemiological studies have produced conflicting results [8, 9]. A J-shaped 

curve has been suggested to link alcohol to brain outcomes. Our previous work 

found novel associations between moderate consumption of alcohol and multiple 

adverse brain outcomes [10]. Recent studies have supported these findings but 

were unable to fully examine the shape of the relationship, accounted for few 

potential confounders, or examined selected regions of interest rather than the 

whole brain [11, 12].  Further unanswered questions remain. The threshold of 

alcohol intake necessary for brain harm is unknown. The impact of moderate 

drinking on brain connectivity is unclear. Also uncertain is whether specific 

population subgroups are at particularly increased risk. The effect of alcohol on 

cardiovascular outcomes is reported to vary according to sex and age [13]. 

Whether age and sex affect the risk of brain harm remains unclear. 

Understanding how medical comorbidities, such as hypertension and liver 

disease, interplay is also limited. Whilst blood pressure and BMI are linked to 

brain harm, any interaction with alcohol is undetermined [14, 15]. ApoE4 

genotype is a well-established risk factor for Alzheimer’s disease [16], but it is 

unknown whether alcohol intake interacts. There are little substantiated claims 

that red wine has beneficial effects due to its concentration of polyphenols (in 

particular resveratrol) [17]. Conversely it is thought that certain drinking 

patterns, such as binging, may worsen the impact of drinking on the brain [18]. 

Imaging studies to date have been highly selected with insufficient power to 

answer these questions.  

 

For the first time, in UK Biobank, the world’s largest imaging sample, we have a 

sufficiently large sample to clarify these important public health issues. We 

estimated the relationship between alcohol consumption and brain health. 

Furthermore, we investigated whether certain population subgroups, defined by 

sociodemographic, clinical and drinking factors, demonstrated increased 
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susceptibility to alcohol-related brain effects. Our hypotheses were as follows: 1) 

the threshold intake for adverse brain outcomes is lower than currently defined 

as “low risk” drinking (<14 units weekly); 2) older age, female sex, vascular risk, 

liver dysfunction and ApoE4 genotype increase the risk of harm; 3) binge-

drinking is associated with worse outcomes; 4) type of beverage per se has little 

impact on outcomes.  

 

 

 

Methods 
 

Sample 

 

UKB is the world’s largest neuroimaging resource, with over 40,000 subjects 

imaged among the ~500,000 adults of the core study  (aged 40-69 years at initial 

recruitment in 2006-10). Data used in this study include: clinical data (alcohol 

consumption and confounders), linked Hospital Episode Statistics (electronic 

health records with clinician-coded diagnoses), brain imaging, cognitive testing 

and genotyping. Subjects with at least one brain MRI by 28.1.21 (n=43,572) were 

included in the study. Exclusions were due to missing imaging, alcohol or 

confounder data, or those with images of insufficient quality for analyses 

(supplementary Figure 1).  

 

 

Data 

 

Tabular variables were extracted from UKB files using FSL’s funpack [19]. 

 

Alcohol consumption measures 

 

Subjects were asked at baseline their alcohol intake in an average week for those 

drinking at least weekly, and average monthly intake for those drinking less 

frequently.  Numbers of glasses were asked for, and subjects were given 

guidance about how many glasses in the normal bottle. Glasses were converted 

to UK units as follows [20]: red or white wine = 1.7 units; fortified wine=1.2 

units; pint = 2.4 units; spirits = 1 unit; other (e.g. alcopops) =1.2 units. Amounts 

were also converted to grams pure ethanol (1 UK unit=8g) to aid international 

comprehension and comparison. For monthly intake, units were divided by 4.3 

to estimate a weekly amount. Amounts were summed across beverage types and 

weekly and monthly intakes to generate a total weekly alcohol unit intake used 

for further analyses. This weekly total was additionally divided into quantiles for 

selected analyses. Subjects who self-reported as “drinkers” but then reported 0 

units weekly (n=3760) were excluded from the analyses to avoid 

misclassification. Non-drinkers were subdivided into former and never drinkers 

based on a separate alcohol status question. Current drinkers reporting solely 

drinking wine, beer, or spirits (rather than a combination) were also sub-

classified by the beverage type they consumed. Subjects who had data on binge 

drinking (defined as greater than six units of alcohol consumed in one episode) 

frequency at baseline assessment were included in a pre-specified sensitivity 
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analysis to assess whether binging frequency, independently of alcohol volume, 

was associated with brain structure. Those who reported being current non-

drinkers but reported any frequency of binge drinking (n=22), and lowest 

quartile drinkers who reported daily binging (n=5), were assumed to have 

missing data and were excluded from the analysis.   

 

 

Medical diagnoses 

 

Selected medical conditions (heart disease, liver disease, depressive disorder, 

alcohol dependence) were defined using ICD 9 & 10 diagnoses in linked Hospital 

Episode Statistics (HES). Primary care records were not used as only half the 

UKB sample has linked records thus far. Specific diagnosis codes used and 

numbers of subjects with such codes are available in the supplementary 

materials. Diabetes diagnoses were generated by a UKB algorithm using self-

report, hospital care records, and death certificates. Subtypes of diabetes 

mellitus (insulin-dependent, noninsulin-dependent, unspecified were combined 

to generate a binary variable (diabetes present/absent). Depression cases were 

defined using ICD 9 & 10 codes for single or recurrent episodes of at least 

moderate severity.  

 

Cognitive measures 

 

Cognitive function was assessed at the time of imaging, for a subset of the 

sample, using the following tests:  

trail-making (numerical – ‘a’, and alpha-numeric – ‘b’), tower rearranging, digit 

span, digit substitution, pairs matching, matrix pattern completion, paired 

association.  

 

Genetics 

 

Genotypes for two SNPs of interest – ApoE4 (rs429358 & rs7412) were 

extracted from v3 imputed genotype data for UKB subjects using qctool (version 

2.0.7). ApoE4 is the strongest genetic risk factor for late-onset dementia [21]. 

Subjects were classified according to their number of E4 alleles (0-2) for ApoE.  

 

Other variables 

 

Covariates were chosen because of associations with brain imaging phenotypes 

in the literature [22-25]. On this basis they were included as potential 

confounders. Baseline data on age, sex, smoking status, educational 

qualifications, systolic (SBP) and diastolic (DBP) blood pressure, body mass 

index (BMI), Townsend Deprivation Index (TDI) and weekly exercise (MET 

minutes) were used. Gamma glutamyl transferase (GGT) and cholesterol levels 

were derived from a blood sample at baseline. In all analyses imaging-derived 

confounders included imaging site and head size (T1 scaling factor). In 

sensitivity analyses the following additional imaging-related factors were 

included: head motion (structural images), table positioning, acquisition 
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parameters (software version, head coil replacement, cold head replacement, 

service pack, minor protocol changes, other hardware events).  

 

MRI acquisition and pre-processing 

 

Participants were scanned at three imaging centres with identical Siemens Skyra 

3T scanners (software VD13) using a standard 32-channel head coil. T1-

weighted structural images, diffusion tensor and resting state functional images 

were utilized in this study. Full details of the image pre-processing and quality 

control pipeline are described in supplementary methods [26].  

 

 

Image-derived phenotypes (IDPs) 

 

IDPs were pre-specified on the basis of their previous association with alcohol 

[10] and their relation to clinical phenotypes: 1) hippocampal volume (left and 

right, determined by FIRST [27]), 2) corpus callosum fractional anisotropy (a 

tract-averaged marker of white matter microstructural integrity), 3) default 

mode network functional connectivity (determined by resting state functional 

MRI). Hippocampal atrophy is a validated biomarker of Alzheimer’s disease [28] 

and has been previously associated with alcohol [10]. Corpus callosum fractional 

anisotropy is a marker of white matter integrity and vascular damage, linked to 

vascular dementia [29]. Multiple changes of DMN connectivity have been 

reported in dementia [30]. 

 

Functional connectivity of the brain at rest was determined using node 

amplitudes (standard deviation of time courses; n=21 deemed “good” rather 

than noise), and ‘edges’ (partial correlations between nodes from rfMRI netmats; 

n=210) from d25 components were extracted from IDPs processed by the UKB 

imaging team. The following additional IDPs were used in post-hoc sensitivity 

analyses: lingual gyrus grey matter volume (from FAST [31], to explore voxel-

based morphometry results, right and left thalamus and putamen volumes 

(extracted using FIRST), and additional metrics from diffusion tensor imaging 

including NODDI [32](mean diffusivity, radial diffusivity, mode, intra- and extra-

cellular volume fractions, neurite orientation).  

 

 

MRI analyses 

 

Grey matter  

 

Relationships between alcohol use and grey matter were examined in a brain-

wide hypothesis-free manner using voxel-based morphometry, an objective 

method to compare grey matter density between individuals in each voxel 

(smallest distinguishable image volume) of the structural image. Structural data 

were analysed with FSL-VBM 

[33](http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM), an optimised VBM protocol 

[34] carried out with FSL tools [35]. First, structural images were brain-

extracted and grey matter-segmented before being registered to the MNI 152 
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standard space using non-linear registration [36]. The resulting images were 

averaged and flipped along the x-axis to create a left-right symmetric, study-

specific grey matter template. Second, all native grey matter images were non-

linearly registered to this study-specific template and "modulated" to correct for 

local expansion (or contraction) due to the non-linear component of the spatial 

transformation. The modulated grey matter images were then smoothed with an 

isotropic Gaussian kernel with a sigma of 2 mm.  

 

Alcohol intake and covariates were demeaned (to avoid the mean signal being 

shared amongst many covariates) for the design matrix. An explicit grey matter 

mask was created by thresholding (at 0.01) a mean image of unsmoothed T1 

images for included subjects.  

 

White matter microstructure 

 

Voxelwise statistical analysis of fractional anisotropy (FA), axial diffusivity (L1), 

radial diffusivity (L2, L3), mean diffusivity (MD) and mode (MO) data was 

carried out using Tract-Based Spatial Statistics (TBSS) [37]. This involves non-

linear registration followed by projection onto an alignment-invariant tract 

representation (the “mean FA skeleton”). This avoids alignment problems for 

multiple subjects and avoids arbitrariness of spatial smoothing extent, improving 

the sensitivity, objectivity and interpretability of analysis of multi-subject 

diffusion imaging studies [38]. Multiple diffusion indices were analysed to allow 

a richer investigation of localised connectivity related changes.  

 

Diffusion images were corrected for head movement and eddy currents 

(eddy_correct) and brain masks generated using BET. Fractional anisotropy, 

mean diffusivity, axial diffusivity and radial diffusivity maps were generated 

using DTIFit (http://fsl.fmrib.ox.ac.uk/fsl/fdt) that fits a diffusion tensor model 

at each voxel. Tract-based spatial statistics (TBSS) were used in a 4-stage 

process.  Pre-processing prepared images for registration to standard space. 

Mean FA, L2, L3, MD, MO, and corresponding skeletonized images were created, 

and thresholded. Lastly each image was projected onto the relevant skeleton. A 

sensitivity analyses excluded non-drinkers. 

 

 

 

Statistical analyses 

 

The sample was characterized using means and standard deviations for 

continuous variables, numbers and percentages for categorical variables, split by 

current alcohol intake status. We examined differences in sociodemographic and 

clinical factors between participants drinking category using one-way ANOVA 

(continuous variables) or χ2 tests of independence (categorical variables). 

Alcohol intake for the sample was visualized using cumulative distribution plots, 

separately by sex. These processes were repeated for sub-analyses by beverage 

type consumption.  

 

Mass univariate analyses 
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The Big Linear Model toolbox [39] was used to perform mass univariate OLS 

regression (parametric inference) voxelwise. A missingness threshold of 80% 

was employed (i.e. voxels with recorded data for less than 80% of subjects were 

discarded from the analysis), and two T contrasts (positive and negative 

correlation with alcohol) and an F contrast were computed. A p-value threshold 

that capped the False Discovery Rate (FDR) at 0.05 was generated using FSL’s 

FDR (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDR). This was used to threshold T 

statistic images. Sensitivity analyses excluded non-drinkers. 

 

Univariate analyses 

 

Regression models were fitted with the IDPs as dependent variables and alcohol 

intake as an independent variable. All variables were standardized (z scores) for 

comparability of estimates. Alcohol was fitted using linear and non-linear 

models. The latter comprised restricted cubic splines (RCS) being applied to 

alcohol intake (R package rms v.6.2-0). The latter models the effect of alcohol 

parametrized with a cubic spline with 5 knots at 5th, 25th, 50th, 75th and 95th 

percentiles (0.2, 1.9, 10.1, 20.3, 49.2 units) with the tails restricted to linearity 

(for stability). The knot number and position used are recommended in the 

literature and were empirically tested for this data using AIC criteria [40]. A 

spline model avoids the loss of power and arbitrary cut-points of categorization, 

and fits threshold effects better than polynomials. It offers a flexible approach to 

estimate the shape of the exposure-outcome curve which was of key interest in 

this study. Non-linearity was formally tested (H0:β2=β3=...=βk−1= 0) with an F-

test. The same confounders were included in all analyses. Polynomic terms for 

age (age2 and age3), and age x sex, age2 x sex interactions were also included [41]. 

Alcohol can impact blood pressure and cholesterol, and therefore to investigate 

the possibility that these covariates could be mediators rather than confounders 

in the alcohol-brain pathway, we examined regression models with and without 

these covariates. Interactions between alcohol intake (weekly units, continuous) 

and age, sex, diagnosis of heart disease, blood pressure, BMI and ApoE4 

genotype were also tested. Given how widespread the associations with alcohol 

were, total grey matter volume (normalized to head size) was used as the 

dependent variable in these analyses. There were insufficient numbers of 

subjects with liver disease or depressive disorder diagnoses to test interactions 

(see supplementary materials).  

 

We performed a sensitivity analysis to test how robust associations were to 

unobserved confounding, a concern in all observational studies. Partial R2 and 

robustness values were calculated using R’s sensemakr package, which estimate 

the necessary strength of an unobserved confounder required to fully account 

for the alcohol effect on brain health [42]. The impact of an unobserved 

confounder depends on two measures: its association with brain health (the 

outcome) and its association with alcohol (the exposure of interest). The 

strength of these associations can be measured in partial R2.  The robustness 

value is the level of outcome and exposure confounding (assumed to be equal for 

these purposes) required to zero-out the alcohol-brain health association if we 

actually could control for the unobserved confound. Plausible outcome and 
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exposure confounding partial R2’s can be computed for known confounds. This 

allows the impact of an unobserved confound to be calibrated by the severity of 

the strongest existing confounds.  We used age, sex and smoking (the strongest 

known confounders for grey matter volume and alcohol intake) for this purpose. 

 

In a sub-analysis, regression models were re-run amongst three separate groups 

of drinkers consuming solely wine, beer, or spirits. The association of binge 

drinking frequency (distinct from total alcohol intake volume) on grey matter 

volume was examined, by adding binging frequency as a categorical variable in 

the regression model, whilst controlling for alcohol units consumed weekly as a 

linear covariate. Associations between resting fMRI connectivity (node 

amplitude) and cognitive test performance at the time of scanning were 

examined using regression models, which included the same covariates as 

previously.  

 

Standardised regression coefficients (generated by converting outcomes to z 

scores) for were plotted using R’s jtools package (v2.1.3). Spline models were 

plotted graphically using R’s predict function to show how each brain IDP (z-

score) would be expected to change with alcohol consumption, keeping other 

independent variables at a fixed level. Manhattan plots (implemented in R’s 

qqman package v0.1.8) were used to display associations between ‘edges’ 

(functional connectivity between nodes) and alcohol intake. All analyses were 

completed in R (v3.6.0) unless otherwise stated.  

 

 

Patient involvement 

 

Participants are from the UK Biobank study. No patients were involved in setting 

the research question or the outcome measures, nor were they involved in the 

design, recruitment to, or conduct of the study. No patients were asked to advise 

on interpretation or writing up of results. Participants are thanked in the 

acknowledgements.  
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Results 
 
 
 
Baseline 

characteristic 

Never 

drinkers 
(N=691) 

Former 

drinkers 
(N=617) 

Current 

drinkers 
(N=24,069) 

Group 

differences3 

Age band, 

N(%) 

    

   40- <50 years 206 

(29.8) 

171 

(27.7) 

6083 (25.3) X2=16.1, 

df=4,p=0.003 

   50- <60 years 215 

(31.1) 

241 

(39.1) 

8892 (36.9)  

   60- <70 years 200 

(28.9) 

153 

(24.8) 

6756 (28.1)  

Sex, female  

N(%) 

457 

(66.1) 

320 

(51.9)  

11,477 

(47.7) 

X2=94.8, 

df=2,p<2.2x10-16 

Smoking 

status, N(%) 

    

             Never 603 

(87.3) 

315 

(51.1) 

14,119 

(58.7) 

X2=250.5, df=4, 

p<2.2x10-16 

             Previous 61 (8.8) 253 

(41.0) 

8428 (35.0)  

             Current 27 (3.9) 49 (2.9) 1522 (6.3)  

Qualifications4, 

N(%) 

    

             None 66     

(9.6) 

54     

(8.8) 

1264 (5.3) X2=55.9, df=12, 

p=1.24x10-7 

             A level 86 (12.5) 87 (14.1) 3145 (13.1)  

             Degree 301 

(43.6) 

263 

(42.6) 

11,813 

(49.1) 

 

Systolic BP2, 

mmHg 

134.28 

(18.8) 

134.02 

(17.8) 

137.3 (18.7) F(2,25374)=17.4, 

p=2.9x10-8 

Diastolic BP2, 
mmHg 

79.7 
(10.8) 

79.7 
(10.2) 

81.7 (10.5) F(2,25374)=21.5, 
p=4.9x10-10 

Body Mass 

Index2, kg/m2 

26.7 

(4.7) 

27.0 

(4.7) 

26.5 (4.0) F(2,25374)=5.7, 

p=0.003 

Total 

cholesterol2, 

mmol/L 

5.6 (1.2) 5.54 

(1.2) 

5.73 (1.1) F(2,25374)=13.1, 

p=2.2x10-6 

Non-high 

Density 
cholesterol2, 

mmol/L 

4.2 (1.0) 4.2 (1.1) 4.3(1.1) F(2,25374)=0.001, 

p=1.0 

Diabetes 

Mellitus5, 

N(%) 

57    

(8.3) 

40  

(6.5) 

1139 (4.7) X2=21.5, df=2, 

p=2.2x10-5 

Townsend 

Deprivation 

Index2 

-1.4 (3.0) -0.8 (3.2) -2.0 (2.6) F(2,25374)=72.7, 

p=2.0x10-16 

Exercise2, 

minutes 

weekly1 

120.8 

(103.2) 

125.7 

(93.8) 

121.8 (90.6) F(2,25374)=0.6, 

p=0.5 

     
1  Minutes of walking, moderate or vigorous activity. Derived from Metabolic Equivalent Task (MET) based on 

International Physical Activity Questionnaire guidelines.  
2 Mean (standard deviation). 
3 One-way ANOVA for continuous variables, chi-square test for categorical variables. 
4 Only selected qualification categories are presented for brevity. 
5 Defined using self-report, hospital care records, and death certificates.  

* N=1 subject included in the VBM analysis was excluded here due absence of alcohol status data.  

 
Table 1: Baseline characteristics for included sample (n=25,377*) by drinking status.  
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Baseline characteristics are given in Table 1. Alcohol consumption was very 

common amongst the sample. A small minority were non-drinkers (5.2%), who 

could be divided approximately equally into never drinkers (52.8%) and ex-

drinkers (47.2%; for cumulative distribution see supplementary Figure 2). The 

non-drinking groups comprised a higher percentage of females, reported lower 

rates of smoking, higher indices of deprivation, and lower educational 

qualifications than drinkers. Current drinkers had higher systolic and diastolic 

blood pressure and HDL levels but lower total cholesterol and BMI than non-

drinkers. 

 

Median alcohol intake was 13.5 units (102g) weekly (IQR=17.3). Almost half the 

sample (48.2%) were drinking above current UK ‘low risk’ guidelines (14 units 

(112g) weekly), but few subjects drank very heavily (>50 units (400g) weekly). 

31 subjects had an ICD 9 or 10 diagnosis of alcohol dependence in their linked 

HES records, although n=403 self-reported having previously been addicted to 

alcohol at the UKB baseline questionnaire. More frequent binge drinking was 

associated with younger age, male sex, more educational qualifications, higher 

deprivation score, and current smoking, independent of total alcohol consumed 

weekly (supplementary Table 1).  Of those who reported drinking solely one 

type of alcoholic beverage (n=6602), most drank wine (76.9%) (supplementary 

Figure 2). Wine drinkers were significantly older, better educated, had lower 

BMI, deprivation, and smoking levels (see supplementary Table 2).  

 

Alcohol and grey matter 

 

Higher volume of alcohol consumption per week was associated with lower grey 

matter density almost globally (Figure 1). These findings were adjusted for all 

known potential confounders and multiple comparisons. Results were 

unchanged in a sensitivity analyses (n=22,536 subjects) additionally adjusted for 

a further seven MRI acquisition, four table position parameters and head motion 

during the structural scan [41] (supplementary Figure 4). Similarly, excluding 

non-drinkers from the sample did not change the findings (supplementary 

Figure 5).  

 

Alcohol explained up to 0.8% of grey matter volume variance (change in 

adjusted R2). While this is a small effect size (supplementary Figure 6) in 

comparison to age (R2=27%), alcohol made a larger contribution than any other 

modifiable risk factor tested, including smoking (supplementary Table 3). 

Removing blood pressure and cholesterol from the models made no difference to 

estimates for alcohol (supplementary Table 5). In a sensitivity analysis, we 

estimated that to nullify the estimate of alcohol, an unobserved confounder 

would need to explain both >12% of grey matter and >12% of alcohol intake 

variation (robustness value=0.12). The presence of an unobserved confounder 

which achieves this seems implausible given examination of the strongest known 

confounders. For example, whilst age explains 54% of grey matter, it only 

explains 0.1% alcohol intake, and an unobserved confounder with such 

characteristics would be unable to explain-away the alcohol-brain relationship 
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(supplementary Figure 7). Similarly sex and smoking each explain only 0.2% of 

grey matter and 4% of alcohol intake. 

 

The VBM analysis highlighted some voxels with positive associations with 

alcohol consumption, but these were not replicated in post-hoc region-of-

interest analyses, so are likely artefactual. The spline model did not offer 

significant improved fit over a model with a linear effect of alcohol (grey matter 

volume: df=3, F=1.6, p=0.2) (Figure 2). The positive slopes between 0-5 alcohol 

units in Figure 2 for several subcortical regions flattened upon excluding 

previous drinkers (supplementary Figure 8) suggesting a “sick quitter” effect i.e. 

previous drinkers may have other health concerns or risk factors for poorer 

brain health. Of the subcortical regions tested, the strongest associations with 

alcohol consumption were found with bilateral thalami volume.  

 

 

Alcohol and white matter 
 

Widespread negative associations were also found between alcohol consumption 

and all the white matter integrity measures assessed (Figure 3 & supplementary 

Figures 9-13). Results were unchanged when additional image-related 

confounders were adjusted for (supplementary Figure 14) or only current 

drinkers included (supplementary Figure 15). A particularly vulnerable region 

appeared to be the anterior corpus callosum (genu). In a post-hoc analysis, the 

DTI metrics which were most tightly coupled to alcohol intake were measures of 

intra-cellular and extra-cellular water volume (isovf and icvf), markers of neurite 

density (supplementary Figure 9). Again, spline models provided no better fit for 

associations with white matter microstructure than linear models.  
 
 
 

Population subgroups at higher risk 
 

High blood pressure and BMI steepened the negative association between 

alcohol and brain health. This was determined by significant interactions with 

alcohol intake in predicting grey matter volume (SBP*alcohol: beta= -0.01, 95% 

CI = -0.02 to -0.004, p=0.005; DBP*alcohol: beta= -0.01, 95%CI = -0.02 to -0.004, 

p=0.006; BMI*alcohol: beta= -0.01, 95% CI = -0.02 to -0.002, p=0.02) (Figure 4). 

In contrast, there were no significant interactions between alcohol and age, sex, 

GGT, heart disease or ApoE4 genotype that would survive multiple testing 

correction.  
 

Those binging daily had a significantly lower total grey matter volume than 

never bingers, even after controlling for total alcohol volume consumed weekly 

(Figure 5). The impact of binging was apparent in those drinking greater than 18 

units (144g) weekly (quantiles 4 & 5). Amongst those subjects drinking 18-28 

units (144-224g) weekly (quartile 4), those binging at frequencies of less than 

monthly, monthly, or daily had significantly lower grey matter density compared 

to never bingers. Amongst the highest-level drinkers (quantile 5) only daily 

bingers had less grey matter than never bingers. Interactions between alcohol 

intake in units and binging frequency were not significant, suggesting additive 
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negative effects of alcohol amount and frequent binging on the brain. The 

association between alcohol intake and brain health was not significantly 

different when the weekly units were consumed as wine, beer, or spirits (see 

overlapping 95% CI in supplementary Figure 16). Hence, we found no evidence 

that risk of alcohol-related brain harm differs according to alcoholic beverage 

type. 

 

 
 

 

 

Alcohol and functional connectivity  
 

Alcohol consumption was significantly associated with resting state functional 

connectivity of seven ‘nodes’ (supplementary Figure 18) thought to represent 

within network connectivity. Six of the seven nodes, all within the default mode 

network, demonstrated increased connectivity with higher alcohol intake. In 

turn, increased connectivity in two of these nodes predicted higher cognitive 

performance on tests of executive function and working memory 

(supplementary Figure 19). Alcohol intake was additionally associated with 

multiple ‘edges’ thought to represent functional connectivity between resting 

state networks (supplementary Figure 20).  
 

 
 

 

Discussion  
 

Statement of principal findings 

 

Alcohol consumption was linearly and negatively associated with indices of brain 

health across most of the brain. There was a multiplicative interaction between 

alcohol and blood pressure and BMI in predicting grey matter volume. Additive 

harmful effects of alcohol volume and frequent binging were observed. In 

contrast there was no evidence that effects can be differentiated according to 

alcohol beverage type. Brain functional connectivity, related to cognitive 

function, was also associated with alcohol intake.  

 

 

Strengths and weaknesses of this study 

 

Our study represents one of the largest imaging investigations into the impact of 

alcohol consumption on brain health to date. The very large sample size 

provided great statistical power to detect associations across almost the whole 

cortex, subcortical structures and cerebellum that have previously been 

uncharacterized, as well as extensively explore interactions with clinical and 

drinking behaviours. It used state-of-the-art neuroimaging and results were 

stringently controlled for more potential confounders than ever before, as well 

as multiple testing which increases confidence in the findings. Furthermore, 

sensitivity analyses included exploration of the robustness of the findings 
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against unobserved confounders. Results were replicated using a voxel-wise 

whole brain approach as well as image-derived phenotypes. Medical diagnoses 

reflected real-world diagnoses made by clinicians. This also represents the first 

study to examine the relation of moderate drinking with functional connectivity 

in the brain.  

  

It is important to acknowledge some limitations. UKB was selective with 

invitations generating only a 5% response rate. The sample is healthier, better 

educated, less deprived with less ethnic diversity than the general population 

[43]. This is likely to be an issue with any study requiring the intense 

participation necessary to investigate our research question (brain imaging, 

blood samples, multitude of questions) but raises the possibility that collider 

bias could cause spurious associations between alcohol and MRI [44]. However, 

we have examined the distribution of alcohol intake from UKB and Health Survey 

England and found no statically significant differences in proportions of daily 

and never drinkers, lessening the possibility of collider bias. Use of HES ICD 

diagnoses to define medical comorbidities means some cases would not have 

been captured. These would be likely to be of milder severity. The low numbers 

with serious liver disease and clinically significant depression in the sample 

limited our power to detect interactions with alcohol.  

 

As with any observational study, we cannot infer causality from association. 

Traditional regression approaches assume no residual confounding (unverifiable 

for unmeasured variables) or reverse causality. Whilst we controlled analyses 

for all known confounders and were more thorough in this than any previously 

published study, we cannot exclude the possible of residual confounding. 

However, the sensitivity analyses estimated that unobserved confounding would 

need to be of a greater strength than any recognized observed confounder, 

including age and smoking, to obviate the association between alcohol and brain 

health, which seems implausible. The age when alcohol was self-reported limits 

the interpretation of the estimates to the impact of mid- to late-life consumption. 

Self-reported alcohol consumption may be liable to misclassification bias, but it 

remains the only realistic method of estimating intake on the large scale 

necessary for our research question. Blood measures are only sensitive to 

consistent heavy intake [45] and may reflect unrelated processes, and direct 

metabolites of alcohol such as phosphatidylethanol, ethyl glucuronide and ethyl 

sulphate are insensitive to moderate drinking and the cost would not justify use 

[46, 47]. Moreover, self-report is the method used in clinical practice, making 

findings from our study clinically translatable.  Furthermore, random 

measurement error would bias associations towards the null outcome. 

Neuroimaging was cross-sectional and therefore we cannot examine the impact 

of alcohol on changes in brain measures over time. However, longitudinal 

imaging of sufficient duration to observe the impact of moderate drinking is 

likely to ‘suffer’ from MRI progress making scans incomparable. Reverse 

causation is unlikely because the earliest detectable brain changes occur in the 

late 40’s, by which time there have usually been decades of alcohol exposure. 

Alcohol is vasoactive [48], therefore it can disrupt coupling between neuronal 

activity and cerebral blood flow [49] used to make inferences in functional MRI. 

Resting state fMRI may be less sensitive to effects of vasodilation, but we cannot 
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exclude such a phenomenon [50]. The proportion of participants who were 

drinking very heavily, or were alcohol dependent, was extremely low. Hence 

extrapolation of our results to this end of the intake spectrum is limited. 

Although there were substantial numbers binge-drinking to some extent, the 

middle- to older-aged UKB subjects may not be the ideal population in which to 

study binge-drinking, a more prevalent pattern of drinking in younger subjects. 

However, our primary focus was on more moderate alcohol intakes. When 

interpreting the results of our beverage type analysis, we are mindful that the 

group sizes were different, therefore giving greater power to detect associations 

amongst wine drinkers than amongst spirit drinkers. Additionally, whilst we 

controlled for multiple confounders, we cannot exclude the possibility that there 

were subtle differences between subjects drinking different alcoholic beverages 

that were not accounted for.  

 

Whilst our outcomes of interest were quantitative and objective MRI measures 

rather than clinical phenotypes, they were selected because of their known 

dementia associations [28, 29, 51]. This gave us much greater power to detect 

non-linear relationships and investigate interactions than would have been 

possible with the low numbers in UKB with dementia diagnoses so far. UKB has a 

very limited cognitive battery of non-standard tests that would not necessarily 

capture deficits expected in relation to alcohol damage. There are also concerns 

about re-test reliability and significant floor effects in some tests [52]. 

 

 

Strengths and weaknesses in relation to other studies  

 

In this study, alcohol intake was associated with poorer brain integrity over 

almost the whole brain. Perhaps this is not a surprise, given the lipophilic 

characteristics of ethanol that allow passive diffusion across brain endothelial 

cell membranes and astrocyte wraps. We replicated the inverse associations 

between alcohol and hippocampal size we found in the Whitehall II study [10]. 

Our findings are consistent with results in the cingulate cortex and subcortical 

volumes reported by two other UKB analyses [11, 12]. However, our voxel-wise 

analyses enabled us to examine and spatially localise effects on grey and white 

matter across the whole brain. The persistence of associations with alcohol, 

despite adjustment for a greater number of potential confounders and the more 

punitive multiple testing correction necessitated by our voxel-wise approach, 

gives more confidence in the robustness of the findings. Formally testing more 

flexible statistical models enabled us to fully examine alcohol-brain health 

relationships and ascertain that the effects were linear rather than J-shaped. 

Adjustment for cardiovascular risk factors did not make a material difference to 

the strength of the associations, suggesting in this particular study they were 

neither confounders nor on the causal pathway. Associations in areas of the 

brain not previously implicated at lower levels of alcohol, including the basal 

ganglia and cerebellum, mirror findings in chronic heavy alcohol intake [53]. We 

suspect the discovery of these new linear associations result from our greater 

power to detect small effects.  Similarly, the white matter associations we found 

replicated those we previously found in the corpus callosum [10], but extended 

to almost the whole white matter skeleton. In our case, analysis of different 
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diffusion metrics revealed that a reduction in intracellular water and an increase 

in extracellular water were driving the fractional anisotropy results. This implies 

that a reduction in neurite density explains the white matter microstructural 

findings.  

 

Higher blood pressure and BMI have been previously implicated in reducing grey 

matter volumes [25, 54]. To our knowledge their interaction with alcohol in 

predicting brain harm has not previously been explored. One mechanistic 

hypothesis for our findings is that hypertension may exacerbate alcohol-related 

brain harm by facilitating the diffusion of ethanol throughout brain tissue. 

Animal models have demonstrated increased cerebral blood flow (through 

arteriolar dilatation) and dysfunction of the blood brain barrier (BBB) in 

hypertension [55, 56]. Interestingly however, we found no significant interaction 

between alcohol and ApoE4 genotype, another factor which can break down the 

blood-brain barrier [57], although the relatively few E4 homozygotes may have 

limited our power to detect an effect. BMI may increase the adverse impact of 

alcohol via generation of toxic ceramides through a liver-brain axis [58]. Animal 

models have shown synergistic effects of obesity and alcohol on steatohepatitis 

[59]. 

 

Our findings that frequent binging has a negative impact on the brain additive to 

the effect of total alcohol consumed are in keeping with other health outcomes, 

including mortality [60], breast cancer [61], and cardiovascular disease [62]. We 

have two hypotheses to explain the findings. First, the peak ethanol (and its toxic 

breakdown product acetelaldehyde) level in the brain is likely to be higher 

during a binge. Since we found dose-dependent alcohol associations this would 

lead to more harm. Second, binging is often followed by a period of abstinence 

precipitating withdrawal. Alcohol withdrawal increases glutamate release, as 

well as activation of microglial cells and release of inflammatory cytokines. Both 

result in neuronal death. Repeated cycles of binging and withdrawal could 

heighten effects, as is postulated in the kindling theory [63]. Whilst most of our 

subjects were not alcohol-dependent, many did report binge drinking which 

could result in subclinical withdrawal with consequent neurochemical changes.  

 

Studies of a range of health outcomes, including mortality, have postulated that 

the protective effects of moderate drinking are strongest in wine compared to 

beer or spirits [64], perhaps due to higher levels of polyphenols, in particular 

resveratrol in grape skins [17]. We found no evidence to suggest alcoholic 

beverage type confers differences in risks to the brain. This supports the 

hypothesis that it is ethanol itself, rather than other compounds in the beverage, 

that is on the biological pathway to damage. The associations of wine-drinking 

with higher educational level and socioeconomic status may explain the 

apparent health benefits [65].  

 

This is the first study, to our knowledge, to find a relationship between alcohol 

consumption at the time of scanning and resting state functional connectivity in 

moderate drinkers. Resting state connectivity reflects current brain activity, 

which may be associated with contemporary alcohol consumption in a direct 

way, for instance by rebound from previous day, rather than chronic use. 
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Participants were unlikely to have been under the influence of alcohol during the 

resting scan, although alcohol levels were not measured. Higher weekly 

consumption while sober during the scan could theoretically be associated with 

intermittent mild or subclinical withdrawal symptoms or some more persistent 

“silent” change in brain metabolism that is reflected in changed activity patterns. 

Interpretation of the finding of increased DMN connectivity with alcohol 

consumption is difficult, particularly as it is in the opposite direction to that 

reported in aging and Alzheimer’s disease [66]. The positive association of DMN 

connectivity with performance on cognitive testing at the time of scanning raises 

the possibility of a compensatory effect. However, given the limited number of 

cognitive tests associated, we caution not to over-interpret these findings. Of the 

few studies in alcohol dependent individuals, several have reported reduced 

functional connectivity in a range of networks, including visual, executive [67], 

salience [68, 69] and default mode networks [50] [70].  

 

 

Meaning of study for clinicians/policymakers 

 

Our findings suggest that there is no safe level of alcohol consumption for brain 

health. Current low risk guidelines do not take account of the brain impact of 

drinking but should now be reviewed. Those with higher blood pressure and 

BMI, as well as those binge drinking, may be at increased risk of alcohol-related 

brain damage. Focusing interventions on these subgroups could represent a high 

yield strategy for harm reduction.  

 

Unanswered questions and future research 

 

What remains unclear is the duration of drinking needed to cause an effect on 

the brain. There may be particular life periods, such as adolescence and older 

age, where dynamic brain changes occur that may lead to heightened 

vulnerability [71]. Studies in alcohol-dependent drinkers suggest at least some 

damage is reversible upon abstinence [72]. We do not know whether the same 

follows for moderate intakes.  
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Figure 1: Association between weekly alcohol intake and grey matter density generated 
using voxel-based morphometry. Colours show FDR-adjusted T statistics from regression 
models with alcohol as independent variable. Adjusted for: age, sex, age2, age3, age x sex, 
age2 x sex, imaging site, SBP, DBP, cholesterol, HDL, Diabetes Mellitus, smoking, BMI, 
exercise, TDI, depression, qualifications, head size. N= 25,378. Voxel location: 45, 54, 45. 
Coordinates (anatomically aligned): 9.9x10-5, -18.0, 18.0. 
 

 

Figure 2: Predicted change in selected brain volumes according to weekly alcohol intake 
in units (grams conversion: 50u=400g, 100u=800g). Predictions are based on regression 

models with alcohol (spline fit with knots at 5th, 25th, 50th, 75th and 95th percentiles) as an 
independent variable and standardized brain volume as the dependent variable with 
n=22,254 subjects. Models are adjusted for: age, sex, age2, age3, age x sex, age2 x sex, SBP, 
DBP, TDI, smoking, BMI, non-HDL cholesterol, Diabetes Mellitus, head size, exercise. 95% 
confidence intervals are shaded. 

 

 

Figure 3: Negative associations between weekly alcohol intake and fractional anisotropy – 
a diffusion tensor imaging measure of white matter integrity. Red-yellow voxels indicate 
FDR-thresholded T statistics. Adjusted for: age, sex, age2, age3, age x sex, age2 x sex, imaging 
site, SBP, DBP, cholesterol, HDL, Diabetes Mellitus, smoking, BMI, exercise, TDI. N=24,030. 
Voxel location: 90, 108, 90. Anatomical coordinates: -0.5, -17.5, 18.5.  

 

 

Figure 4: Predicted change in grey matter volume according to alcohol intake at different 
blood pressure and BMI levels, when all other confounders are held constant. Predictions 
generated based on regression models with n=19,617 subjects adjusted for: age, age2, age3, 

sex, age x sex, age2 x sex, Diabetes Mellitus, SBP, DBP, BMI, cholesterol, HDL, imaging site, 
exercise, smoking status, qualifications, TDI, head size. 95% confidence intervals are 
shaded.  
 
 
 
Figure 5: Relation between binging frequency (>6 units/48g alcohol in one episode) and 
grey matter volume (normalized to head size), independent of alcohol consumption in 
units. N=12,812. Points show standardized regression coefficients (estimates and their 
95% confidence intervals) for binging frequency category compared to the reference 
category (never binging) generated from regression models with grey matter volume as 
the dependent variable. Results are shown separately according to subjects’ weekly 
alcohol intake (divided into quantiles): 1) 6.8-11.6 units (54.1-92.8g), 2) 11.6-17.8 units 
(92.8-142.4g), 3) 17.8-28.4 units (142.4-227.2g), 4) 28.4-163 units (227.2-1304g). 
N=14,685. Regression models were adjusted for: alcohol consumption in weekly units, 
age, age2, age3, sex, age x sex, age2 x sex, Diabetes Mellitus, SBP, DBP, BMI, non-HDL 
cholesterol, smoking status, imaging site, exercise minutes weekly, TDI, head size.  
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