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Abstract 

 

Governments worldwide are implementing mass vaccination programs in an effort to end the novel 

coronavirus (COVID-19) pandemic. Although the approved vaccines exhibited high efficacies in 

randomized controlled trials1,2, their population effectiveness in the real world remains less clear, 

thus casting uncertainty over the prospects for herd immunity. In this study, we evaluated the 

effectiveness of the COVID-19 vaccination program and predicted the path to herd immunity in 

the U.S. Using data from 12 October 2020 to 7 March 2021, we estimated that vaccination reduced 

the total number of new cases by 4.4 million (from 33.0 to 28.6 million), prevented approximately 

0.12 million hospitalizations (from 0.89 to 0.78 million), and decreased the population infection 

rate by 1.34 percentage points (from 10.10% to 8.76%). We then built a Susceptible-Infected-

Recovered (SIR) model with vaccination to predict herd immunity. Our model predicts that if the 

average vaccination pace between January and early March 2021 (2.08 doses per 100 people per 

week) is maintained, the U.S. can achieve herd immunity by the last week of July 2021, with a 

cumulative vaccination coverage of 60.2%. Herd immunity could be achieved earlier with a faster 

vaccination pace, lower vaccine hesitancy, or higher vaccine effectiveness. These findings 

improve our understanding of the impact of COVID-19 vaccines and can inform future public 

health policies regarding vaccination, especially in countries with ongoing vaccination programs.  
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MAIN  

The novel coronavirus (COVID-19) pandemic has had a devastating impact on health and well-

being, with more than 131 million cases and 2.8 million deaths across more than 200 countries3 as 

of early April 2021. Despite various regional and national non-pharmaceutical interventions4-6 

such as travel restrictions, social distancing measures, stay-at-home orders, and lockdowns, many 

countries continue to struggle with the growth of COVID-19 cases. It is obvious that a successful 

COVID-19 vaccination program is needed to end the pandemic and allow a return to normal life7,8. 

 

By the end of February 2021, two COVID-19 vaccines had been approved in the U.S.: BNT162b2 

(Pfizer/BioNTech) and mRNA-1273 (Moderna)9. In two large randomized controlled trials 

(RCTs), the Pfizer vaccine exhibited an efficacy of 95% (95% confidence interval [CI], 90.3% -

97.6%)1 in preventing COVID-19, and the Moderna vaccine showed an efficacy of 94.1% (95% 

CI, 89.3%-96.8%)2. Both are mRNA vaccines that require two doses to complete vaccination and 

received emergency use authorization by the U.S. Food and Drug Administration in December 

202010. Mass vaccination campaigns with these two vaccines have since begun. By early March 

2021, more than 121 million doses had been administered across the U.S., with over 43 million 

individuals (~13% of the population) fully vaccinated with two doses11. 

 

Although the efficacies of these two vaccines were shown to be high in RCTs, there is limited 

information on their potential population-level impact on the COVID-19 pandemic. One peer-

reviewed study that estimated vaccine effectiveness used data from nationwide mass vaccination 

in Israel and reported the effectiveness of the Pfizer vaccine to be 46% (95% CI, 40%-51%) after 

the first dose and 92% (95% CI, 88%-95%) after the second dose for documented infection12. 
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Another study that examined the effectiveness of the Pfizer vaccine among U.S. residents in skilled 

nursing facilities reported an estimation of 63% (95% CI, 33%-79%) after the first dose13. 

 

In this study, we employed well-established reduced-form econometric techniques14, commonly 

used to evaluate the effects of policies or events15,16, to assess the impact of vaccination during the 

ongoing outbreak using data from all 50 U.S. states and the District of Columbia (DC). Although 

the allocation of vaccines is roughly proportional to state population (Extended Data Fig. 1a), the 

actual proportion of the vaccinated population differs significantly across states over time 

(Extended Data Fig. 1b), which provides the key variation to identify the impact of vaccination. 

Effectively, the observations from each region in the weeks before the vaccination program served 

as the “control” for the observations after the vaccination program began (“treatment”), with 

variations in the vaccination rates leading to changes in the “treatment intensity.” By comparing 

the outcomes across states before and after the initiation of vaccination programs, we evaluated 

the impact of vaccination on the COVID-19 pandemic. 

 

Study Design 

We collected state-level daily infection and hospitalization data in the U.S. from 12 October 2020 

to 7 March 2021. Fig. 1 shows a timeline of COVID-19 developments during this period, including 

important events and vaccination timeline. We aggregated the data to a weekly level in our baseline 

estimation given the observed weekly cycle17,18 (see Extended Data Table 3 for results using daily 

data). The dependent variables used to assess the impact of vaccination on the pandemic are the 

growth rates of total cases and hospitalizations. Our key independent variables are vaccination 

rates, including the total number of vaccine doses administered per 100 people (at least one dose) 
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and the total number of second doses administered per 100 people. Without any control variables, 

Fig. 2 shows the negative correlation between the vaccination rate and the growth rates of total 

cases and hospitalizations. 

 

To make the individual states as comparable as possible, we first accounted for observable factors 

associated with the COVID-19 pandemic based on previous studies (see Extended Data Table 1). 

These time-varying control variables included non-pharmaceutical interventions5-7, election 

rallies19,20 and anti-racism protests21 that involved mass gatherings, and climate measures of snow 

depth and temperature22. To address the concern that changes in the number of total cases reflect 

the testing capacity of each state23, we also controlled for each state’s testing capacity. As the 

proportion of susceptible individuals declines, the infection rate may slow; therefore, we included 

the share of susceptible individuals in the regressions. We estimated the dependent variables of 

COVID-19 cases and hospitalizations with a one-week lag to account for the latency period of 

infection. Finally, we added state fixed effects and time fixed effects to capture spatial and 

temporal invariants to alleviate omitted-variable bias. 

 

Impact of Vaccination 

Our data show that the national average weekly growth rate of total cases was 7% (s.e.m. = 0.05) 

between 12 October 2020 and 7 March 2021. At the individual state level, the average growth rate 

was highest in Vermont (11%) and lowest in Hawaii (4%). The average growth rate of total 

hospitalizations across the 35 states that reported hospitalization data was 5% (s.e.m. = 0.04%); 

the highest growth rate was seen in Montana (8%) and the lowest in New Hampshire (2%). 
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Vaccination has significantly slowed the growth of total COVID-19 cases and hospitalizations in 

the U.S. Our baseline results (Fig. 3a and Extended Data Table 2) show that one additional 

vaccinated individual per 100 people (at least 1 dose) reduced the growth rate of total cases by 0.7% 

(s.e.m.= 0.2%) and the growth rate of total hospitalizations by 0.7% (s.e.m. = 0.2%). The effects 

of receiving full vaccination with two doses appear greater, with reductions of 1.1% (s.e.m. = 0.4%) 

in the growth rate of total cases and 1.1% (s.e.m. = 0.3%) in total hospitalizations. Based on these 

estimates, vaccination reduced the number of new cases during our study period by 4.4 million 

(from 33.0 to 28.6 million), which translates into a decrease of 1.34 percentage points in the 

population infection rate (from 10.10% to 8.76%). Vaccination further reduced the number of 

hospitalizations by approximately 0.12 million, from 0.89 to 0.78 million (Supplementary 

Methods). 

 

If systematic correlations existed between the pre-vaccination growth rates of infection and 

hospitalization and the rate of vaccination, our results would have been subject to selection bias. 

However, this was not the case. We demonstrated that the number of vaccines allocated to each 

state was proportional to its population size (Extended Data Fig. 1a). More importantly, we found 

that the pre-vaccination average growth rates of total cases and hospitalizations were not correlated 

with the average vaccination rate (Extended Data Fig. 2). 

 

Our baseline results focus on the average treatment effect of vaccination. This effect may be 

heterogeneous across states that have different characteristics. For example, some evidence shows 

that the prevalence of COVID-19 differs across age groups, with older adults bearing the highest 

risk24,25. Because older adults were given priority during the rollout of vaccination, it is intuitive 
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to ask whether this strategy made a difference. We separated the states into two groups according 

to their proportion of older adults (at least 65 years of age). Despite the slightly larger point 

estimate for the states with a share of older adults above the national median, the results do not 

differ significantly from those for the states below the median (Extended Data Fig. 3c). In addition 

to age, we conducted heterogeneity tests on political affiliation, nonpharmaceutical interventions, 

race, income, and vaccine brand. We found no significant heterogeneous effect of vaccination on 

any of these characteristics (Extended Data Fig. 3), implying that COVID-19 vaccines have similar 

effectiveness across these characteristics. 

 

We conducted a range of sensitivity tests. First, instead of using weekly data, we ran regressions 

with daily data and obtained results of similar magnitudes (Extended Data Table 3). Second, we 

used alternative measures to capture the development of the pandemic, including the logarithms 

of new cases and hospitalizations and the changes in logarithms of total cases and hospitalizations. 

Again, using these measures, we found that vaccination has significantly slowed the pandemic 

(Extended Data Fig. 4 and Extended Data Table 4). Although the vaccination rollout began on 14 

December 2020, our vaccination data begin 11 January 2021; we thus used linear extrapolation to 

impute the missing data. Our results with the inclusion of imputed data are very similar to the 

baseline results (Extended Data Fig. 5). Finally, we selected approximately the same number of 

weeks for the pre-treatment and post-treatment periods to balance the sample in our baseline results. 

To check the sensitivity of our results to the sample period, we ran our regressions with varying 

time windows, and our results remain remarkably stable. We obtained approximately the same 

coefficients for sample periods from 18 to 45 weeks (Extended Data Fig. 6). 
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Herd Immunity 

To predict how the pandemic will develop with vaccines, and especially when herd immunity 

might be achieved, we built a Susceptible–Infected–Recovered (SIR) model with vaccination and 

calibrated it to our data. Our model predictions of the infection rate during the study period showed 

99.69% correlation with the empirical data at the national level (Extended Data Fig. 7). Herd 

immunity is achieved in the model when the real-time basic reproduction number is less than one 

(Supplementary Methods). 

 

According to our model predictions, at the national average vaccination pace of 2.08 doses per 100 

people per week between January and early March of 2021, the U.S. will achieve herd immunity 

around the last week of July 2021, with a cumulative vaccination coverage rate of 60.2% and a 

cumulative infection rate of 13.3%. To understand how the speed of vaccination rollout would 

affect the time needed to reach herd immunity, we simulated herd immunity dates by varying 

vaccination pace (Fig. 4). We observed a general trend that a faster vaccination pace would allow 

the U.S. to achieve herd immunity sooner, but with a greater number of total vaccine doses 

administered and a lower cumulative infection rate. This result can be explained as more 

individuals gaining immunity from vaccines than from infections if the vaccination pace increases. 

If the vaccination pace increases to 4 doses per 100 people per week, herd immunity could be 

reached in early May 2021, but if it decreases to 1 dose, herd immunity would not be achieved 

until mid-October 2021. 

 

Our predictions of herd immunity assume a continuation of vaccine uptake. In reality, however, a 

few potential factors could affect uptake. A certain proportion of the population might not receive 
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the vaccination due to vaccine hesitancy. Studies have shown that vaccine hesitancy is a common 

phenomenon in the U.S.26,27, where some individuals are reluctant to receive vaccines due to the 

perceived risks versus benefits, certain religious beliefs, and a lack of trust in government27. 

Another issue is the effectiveness of vaccines against new coronavirus variants28. Only limited 

evidence is available regarding the efficacy or effectiveness of the Pfizer and Moderna vaccines 

against these new variants28. 

 

To examine how vaccine hesitancy and changes in vaccine effectiveness could affect our 

predictions for herd immunity, we incorporated in our model a range of potential vaccine hesitancy 

and vaccine effectiveness estimates. We assumed that if x% of the population is hesitant, then 

cumulative vaccination coverage in each state will stop when (1 − x%) of the population is 

vaccinated. Table 1 shows that a higher percentage of vaccine-hesitant individuals will lead to 

lower vaccination coverage with more individuals infected with COVID-19 at herd immunity. In 

particular, if vaccine hesitancy reaches 50%, herd immunity will be delayed until the end of August, 

with a cumulative infection rate of 14.9%; that is, 14.9% of the total population will have been 

infected with COVID-19 by then. This level of vaccine hesitancy is plausible, given that 

approximately 40% of U.S. Marines have declined vaccination29. In our baseline model, the 

effectiveness of the first dose of the vaccine was approximately 73% (Supplementary Methods). 

If the vaccine effectiveness increases, fewer individuals will require vaccination to reach herd 

immunity, resulting in fewer cumulative cases. However, if the vaccine effectiveness decreases to 

60%, herd immunity will not be reached until the week of August 16, 2021, with a cumulative 

vaccine coverage of 67.6% and a cumulative infection rate of 14.7%. 
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A few unanswered questions could still affect herd immunity. One key issue is how long the 

vaccine immunity will last. Definitive evidence regarding the duration of immunity protection is 

lacking30. Another issue is moral hazard, that is, whether vaccinated individuals will change their 

behaviors and undertake more social interaction31. This change could result in higher risks of 

infection and a delay in reaching herd immunity. 

 

Our study has a few limitations. We covered only the early periods of vaccination rollout, when 

the demand for vaccines was greater than the supply. As more individuals become vaccinated, the 

vaccination pace will likely slow due to the decrease in demand. In addition, our model predictions 

assume a continuation of the non-pharmaceutical interventions in place in early March. Relaxation 

of these policies would likely increase the time needed to reach herd immunity. Our SIR model 

assumes that only susceptible individuals undergo vaccination. However, in real life, many 

individuals who recovered from COVID later received vaccines. As a result, our model predictions 

are optimistic, and herd immunity will be achieved later based on this empirical fact. In addition, 

our study assessed the effects of vaccination in the U.S. using mRNA vaccines. More studies are 

needed to study vaccination in other countries using different types of vaccines. 

 

Our study provides strong evidence that vaccination has significantly decreased COVID-19 cases 

and hospitalizations in the U.S. At the average pace of vaccination between January and early 

March, our model predicts that herd immunity will be achieved around the last week of July 2021, 

with a cumulative vaccine coverage of 60.2% and a total infection rate of 13.3%. These findings 

provide grounds for optimism that the pandemic will end during 2021 in the U.S. However, a few 
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factors, such as moral hazard, vaccine hesitancy, and variants of the SARS-CoV-2 virus, could 

lead to changes and cast doubt as to whether herd immunity can be achieved after all. 
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Fig. 1| COVID-19 events and vaccination timeline in the U.S. from 12 October 2020 to 7 

March 2021. The red curve is the fraction of population infected over time (left y-axis). The solid 

blue curve is the cumulative vaccination coverage in the population with at least one dose of 

vaccine (right y-axis). The dashed blue curve is the cumulative vaccination coverage of fully 

vaccinated individuals in the population (right y-axis). 
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Fig. 2|COVID-19 infections (total cases and hospitalizations) and vaccination rate. 

Vaccination rate is the number of individuals vaccinated per hundred. The solid line in each figure 

is a fitted linear curve between the growth rate of total cases/hospitalizations and vaccination rate. 

a, Association between the growth rate of total cases and at least 1 dose of vaccination (coefficient 

= -0.006, R2 = 35.3%). b, Association between the growth rate of total cases and 2 doses of 

vaccination (coefficient = -0.013, R2 = 28.6%).  c, Association between the growth rate of total 

hospitalizations and at least 1 dose of vaccination (coefficient = -0.003, R2 = 20.8%). d, 

Association between the growth rate of total hospitalizations and 2 doses of vaccination 

(coefficient = -0.007, R2 = 16.6%). 
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Fig. 3| Estimated effects of vaccination on the COVID-19 pandemic. Blue markers are the 

estimated effects of at least 1 dose of vaccine, and red markers are the estimated effects of 2 doses 

of vaccine. a, Baseline effect of vaccination on the growth rates of total cases and hospitalizations. 

b, Estimated trajectories of total cases and hospitalizations without vaccines (dashed curves) 

versus actual trajectories of total cases and hospitalizations with vaccines (solid curves).  
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Fig. 4| Estimated herd immunity date, cumulative vaccination coverage, and cumulative 

infection rate with different vaccination pace. Herd immunity date is predicted using first-dose 

vaccine effectiveness and first-dose vaccination pace (see Methods). Vaccination pace is the 

number of vaccine doses administered per 100 people per week. Until the first week of March 

2021, the average pace over time is 2.08 doses per 100 people per week. The red curve is the 

predicted herd immunity date (left y-axis) in both Fig. 4a and Fig. 4b. The blue curve is the 

estimated cumulative vaccination coverage in the population (right y-axis) when herd immunity is 

achieved in Fig. 4a and the estimated cumulative infection rate (right y-axis) in Fig. 4b.  
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Table 1. Predicted herd immunity with different vaccination pace, vaccine hesitancy, and 

vaccine effectiveness estimates. 

 Herd Immunity Datea Vaccination Coverageb Fraction Infectedb 

Pace = 1.5 

  Vaccine Hesitancyc   

    10% 06 Sep 2021 53.6% 15.2% 

    30% 06 Sep 2021 53.3% 15.2% 

    50% 06 Sep 2021 48.4% 16.3% 

  Vaccine Effectivenessd   

    60% 27 Sep 2021 58.1% 16.7% 

    80% 23 Aug 2021 50.6% 14.6% 

    100% 26 Jul 2021 44.6% 13.3% 

Pace = 2.08 (national average pace between January and early March in 2021) 

  Vaccine Hesitancy   

    10% 26 Jul 2021 61.4% 13.4% 

    30% 26 Jul 2021 60.9% 13.9% 

    50% 30 Aug 2021 50.0% 14.9% 

Vaccine Effectiveness   

    60% 16 Aug 2021 67.6% 14.7% 

    80% 12 Jul 2021 57.2% 12.9% 

    100% 14 Jun 2021 48.9% 11.8% 

Pace = 2.5 

  Vaccine Hesitancy   

    10% 28 Jun 2021 63.6% 12.6% 

    30% 28 Jun 2021 63.1% 13.2% 

    50% 20 Sep 2021 50.0% 14.3% 

  Vaccine Effectiveness   

    60% 26 Jul 2021 73.5% 13.8% 

    80% 14 Jun 2021 58.6% 12.1% 

    100% 24 May 2021 51.1% 11.1% 

Notes.  
a Estimated week when herd immunity is achieved. The date mentioned in each row marks the 

first day of the week.  
b Cumulative values when herd immunity is achieved.  
c Percentage of the population who are hesitant to get the vaccine.  
d Population-level effectiveness of the first dose of COVID vaccines.  

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.08.21256892doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.08.21256892


 

 19 

METHODS 

Data Collection and Processing 

A summary is provided of the data used in our analysis. Our supplementary notes give further 

details, including a summary statistics table for all variables. 

 

Epidemiological and Vaccination Data We collected our state-level epidemiological data (total 

COVID-19 cases, hospitalization, and tests) from the COVID Tracking Project32, a commonly 

cited source33-35. The vaccination data across states were obtained from the U.S. Centers for 

Disease Control and Prevention’s (CDC) COVID data tracker36, where “people vaccinated” 

reflects the total number of people who have received at least one vaccine dose, and “people fully 

vaccinated” reflects the number who have received both doses prescribed by the vaccination 

protocol. We downloaded the CDC vaccination data from an open-source GitHub project by Our 

World in Data37. Both the BNT162b2 (Pfizer/BioNTech) vaccine and the mRNA-1273 (Moderna) 

vaccine require two doses9. In addition, the CDC shares data on COVID-19 vaccine distribution 

allocations by state for both the Pfizer38 and Moderna39 vaccines, as provided by the Office of the 

Assistant Secretary for Public Affairs under the U.S. Department of Health & Human Services. 

 

Nonpharmaceutical Interventions In addition to epidemiological data, we obtained information 

on nonpharmaceutical intervention policies. We adopted the policy stringency index constructed 

by the Oxford COVID-19 Government Response Tracker40, which systematically collects 

information on various policy responses implemented by various governments in response to the 

pandemic. We focused on the policy category of “containment and closure,” which covers eight 

policies: school closings, workplace closings, cancelation of public events, restrictions on 
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gathering sizes, cessation of public transportation, stay-at-home requirements, restrictions on 

internal movement, and restrictions on international travel. This stringency index is a weighted 

score across these eight containment and closure policies and is scaled between 0 and 100. A 

detailed explanation of these measures was given by Hale et al. (2021)41. We determined the 

stringency index for each state on a weekly basis by averaging the daily data. 

 

Meteorological Data Another set of important independent variables included in this study 

regarded the local climate. We obtained station-level hourly weather data provided by the National 

Centers for Environmental Information42. These station-level weather data were then matched with 

the station location and corresponding state provided by the Global Historical Climatology 

Network Daily43. We calculated the average values from these weather reports for each week 

across all stations within each state. Given the lack of humidity data, temperature and snow depth 

were used as our climate measures. 

 

Election Rallies and Black Lives Matter (BLM) Demonstrations Several large-scale mass 

gatherings for political campaigns and protests also occurred during our study period. We 

constructed binary measures for election rallies44. For states with a rally during week t, this binary 

measure takes the value of 1 for week t and for the week after (t+1). Our BLM data from Elephrame 

offered detailed information (date, location, etc.) about each demonstration from news reports45, 

which were extracted using a Web scraper. We then calculated the total number of demonstrations 

that occurred across all cities within each state for each week. 
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Sociodemographic Data We also collected the sociodemographic characteristics of each state’s 

population using 2019 estimates from the U.S. Census Bureau46,47. Specifically, we downloaded 

data on age, race, and income. We constructed each of our sociodemographic variables to be binary, 

above or below the national median. We derived the proportion of individuals 65 years of age and 

older in the population, the proportion of the white population, and the income for each state to 

calculate a national median. Finally, our data for the 2020 Electoral College results were obtained 

from the National Archives48. We classified the states into those won by Joe Biden and those by 

won by Donald Trump. 

 

Econometric Analysis 

Reduced-Form Analysis The following reduced-form empirical model was used to estimate the 

impact of vaccination on the pandemic:  

𝑦𝑖,𝑡 = 𝑎0 + 𝑎1𝑉𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1 + 𝑎2
𝑆𝑖,𝑡−1

𝐿𝑖
+𝑎3

𝑇𝑒𝑠𝑡𝑖,𝑡−1

𝐿𝑖
 +𝑎4𝑋𝑖,𝑡−1 + 𝑏𝑖 + 𝑐𝑡 + 𝜀𝑖,𝑡.  (1) 

Here, 𝑦𝑖𝑡  is the dependent variable that measures the growth of either total cases or total 

hospitalizations in state i at period t. Our baseline measure is the growth rate, which is defined as 

𝐶𝑖,𝑡−𝐶𝑖,𝑡−1

𝐶𝑖,𝑡−1
 for total cases and 

𝐻𝑖,𝑡−𝐻𝑖,𝑡−1

𝐻𝑖,𝑡−1
 for total hospitalizations, where 𝐶𝑖,𝑡  and 𝐻𝑖,𝑡  are the 

cumulative numbers of cases and hospitalizations. Alternative outcome measures were also used 

in the sensitivity analysis (Extended Data Fig. 4). 

 

Our key independent variable, 𝑉𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1, is the rate of vaccination of state i in period t-1, 

and 𝑎1 is the coefficient of interest. We used two measures of vaccination rate: the number of 

vaccinated people (i.e., those who had received at least one dose of vaccine) per hundred and the 

number of fully vaccinated people (i.e., those who had received two doses of vaccine) per hundred. 
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As the proportion of susceptible individuals in the total population decreases over time, the growth 

rate of infection may also decline. To deal with this intrinsic dynamic, 𝑆𝑖,𝑡−1/𝐿𝑖 was included in 

the regression model to control for the stock of susceptible individuals 𝑆𝑖,𝑡−1 in the total population 

𝐿𝑖 . We measured 𝑆𝑖,𝑡−1  as the difference between the population size and the total number of 

infections. To adjust for differences in testing intensity across states, we added 𝑇𝑒𝑠𝑡𝑖,𝑡−1/𝐿𝑖 to 

control for the number of tests relative to the total population. 

 

Our control variables contain a dummy variable 𝑟𝑎𝑙𝑙𝑦𝑖,𝑡, which equals 1 when an election rally 

occurred in state i at period t. We also added a variable 𝑝𝑟𝑜𝑡𝑒𝑠𝑡𝑖,𝑡, which is the number of protests 

held across all cities in state i at period t. To capture the influence of climate on the pandemic, we 

included measures of state-level meteorological conditions, including average temperature, 

temperature deviation from the state mean, and the logarithm of the average snow depth. Note that 

we included state fixed effects (𝑏𝑖) to capture state-specific unobserved factors, which are time-

invariant, such as location, geography, and culture. We also included week fixed effects (𝑐𝑡) to 

capture unobserved shocks, which are common across states, such as macroeconomic conditions. 

Finally, 𝜀𝑖,𝑡 is a random error term of the model, which has a mean of zero. 

 

We estimated equation (1) using the method of Ordinary Least Square with weekly data for 50 

states and DC in the baseline. Robust standard errors for the estimated coefficients with two-way 

clustering were calculated at the state and week levels49. Therefore, we allowed for within-state 

autocorrelation in the error term to capture the persistence of the pandemic within each state. We 

also allowed for spatial autocorrelation in the error term to capture common pandemic shocks or 

systematic misreporting across states. 
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Model Summary We modified a conventional SIR model with the addition of vaccination to 

simulate the development of the COVID-19 pandemic in the U.S. with vaccine rollout, including 

both state-level and national-level estimates. The theoretical SIR model with vaccination is as 

follows:  

𝑑𝑆𝑖,𝑡

𝑑𝑡
= −𝛽𝑖,𝑡𝑆𝑖,𝑡𝐼𝑖,𝑡 − 𝑒𝛿𝑖,𝑡,  

𝑑𝐼𝑖,𝑡

𝑑𝑡
= (𝛽𝑖,𝑡𝑆𝑖,𝑡 − 𝛾𝑖)𝐼𝑖,𝑡, (2) 

𝑑𝑅𝑖,𝑡

𝑑𝑡
= 𝛾𝑖𝐼𝑖,𝑡 + 𝑒𝛿𝑖,𝑡.  

Here, 𝑆𝑖,𝑡 is the state-specific (i) and time-varying (t) proportion of susceptible individuals in the 

population, 𝐼𝑖,𝑡 is the proportion of infected individuals, and 𝑅𝑖,𝑡 the proportion of recovered (plus 

dead) individuals. 𝛽𝑖,𝑡  is the infection rate, which determines the spread of the pandemic. 𝛾𝑖 

includes both recovered individuals and deaths and is referred to as the removal rate5. Here 𝛾𝑖 

varies only by state and not over time. 𝛿𝑖,𝑡 is the proportion of vaccinated individuals, and 𝑒 is the 

population-level vaccine effectiveness, which remains the same across states and time. 

 

We fit the SIR model above with state-level COVID-19 epidemiology data, from which we 

observed data on the cumulative number of cases, deaths, and vaccination doses administered. 

Only 29 of the 51 states (counting DC as a “state” for this purpose) reported valid recovery data. 

We imputed the missing data for the other 22 states with the median recovery and mortality rates 

from the known 29 states (see Supplementary Methods for details). We first estimated the infection 

rate ( 𝛽𝑖,𝑡 ) and vaccination coverage ( 𝛿𝑖,𝑡 ). To capture the impact of nonpharmaceutical 

interventions on the spread of COVID-194-6, we used the following equation to estimate the 

infection rate with state fixed effect (𝜌𝑖) and time fixed effect (𝜌𝑡):  
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βi,t = 𝜃0 + 𝜃1 ∙ 𝑝𝑜𝑙𝑖𝑐𝑦𝑖,𝑡 + 𝜌𝑖 + 𝜌𝑡 + 𝜀𝑖,𝑡
𝛽

. (3) 

Similarly, we estimated vaccination coverage using the following equations, controlling for state 

and time fixed effects. 

δi,t = 𝜂0 + 𝜄𝑖 + 𝜄𝑡 + 𝜀𝑖,𝑡
𝛿 . (4) 

We adopted two vaccination measures in our data: the total number of people who had received at 

least one vaccine dose and the total number of fully vaccinated people. No time trends were 

observed in the total doses administered for at least one dose of vaccine, but an apparent time trend 

was seen in the doses administered for the second dose. We therefore added a time trend in the 

estimation equation above when we conducted the sensitivity check using the total number of fully 

vaccinated people as our measure of vaccination. We used equations (3) and (4) to estimate the 

infection rate and vaccination coverage, combined with the initial epidemiological data of SIR in 

week 1 (12 October 2020), and our model estimates of the infection rate for the following 20 weeks 

are highly correlated with the empirical data. For each individual state, our model estimates 

reached a median correlation of 99.04% (range, 86.37% to 99.95%) (Extended Data Fig. 7). 

 

We assessed herd immunity based on our model estimates of the real-time basic reproduction 

number for each state, 𝑅′𝑖,𝑡 =
βi,t𝑆𝑖,𝑡

𝛾𝑖
; that is, the number of cases directly caused by an infected 

individual throughout his or her infectious period. The model achieves herd immunity when 𝑅′𝑖,𝑡 

falls below 1 in 49 states (except for Maryland and Kentucky; see Supplementary Methods for 

details). 

For each given vaccination pace, we ran the simulation forward and projected the future dynamic 

of the pandemic across the U.S., assuming that no changes are made in nonpharmaceutical 

interventions. We then computed the time required for every state to achieve herd immunity and 
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calculated the share of the U.S. population vaccinated when herd immunity is achieved. In addition, 

we conducted a sensitivity analysis regarding herd immunity with variations in vaccine 

effectiveness and with the addition of vaccine hesitancy. We incorporated vaccine hesitancy into 

our model by assuming that if x% of the population is hesitant, the cumulative vaccination 

coverage in each state will stop when (1 − x%) of the population is vaccinated. 
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Supplementary Information 

The supplementary information provides supplementary methods, figures, and tables. 

1. Supplementary Methods 

1.1 Estimating the impact of vaccination  

We used our reduced-form estimates to carry out back-of-the-envelope calculations to derive the 

number of new cases prevented by vaccination. For this purpose, we first calculated the 

counterfactual growth rate of total cases by 𝑦̂𝑖,𝑡 = 𝑦𝑖,𝑡 − 𝑎̂1𝑉𝑎𝑐𝑐𝑖𝑛𝑒𝑖,𝑡−1 with 𝑎̂1 and 𝑉𝑎𝑐𝑐𝑖𝑛𝑒𝑖,𝑡−1. 

𝑎̂1 is the estimated effect of vaccination on the growth rate of total cases, and 𝑉𝑎𝑐𝑐𝑖𝑛𝑒𝑖,𝑡−1 is the 

observed vaccination rate for the previous period. We know that the growth rate 𝑦𝑖𝑡 satisfies 𝐶𝑖,𝑡 =

𝐶𝑖,𝑡−1(1 + 𝑦𝑖,𝑡), where 𝐶𝑖,𝑡 is the observed number of total cases. With the series of counterfactual 

growth rates of total cases {𝑦̂𝑖,𝑡}𝑡=1
𝑇  (T is the last period of the sample) and a given initial value of 

total cases (𝐶𝑖,0) before vaccination began, we can infer a counterfactual (without vaccination) 

series of total cases {𝐶̂𝑖,𝑡}𝑡=1
𝑇  using  

𝐶̂𝑖,𝑡−1 = 𝐶𝑖,0, 

𝐶̂𝑖,𝑡 = 𝐶̂𝑖,𝑡−1(1 + 𝑦̂𝑖,𝑡). 

Summing across 50 states and DC, the impact of vaccination on the number of total cases (Δ𝐶) is 

given by 

Δ𝐶 = ∑ (𝐶̂𝑖,𝑇 − 𝐶𝑖,𝑇)51
𝑖=1 . 

Repeating this process with hospitalization data, we evaluated the impact of vaccination on the 

total number of hospitalizations during our sample period. 
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1.2 Estimation of Model Parameters 

Here we provide more details on parameter estimation for our SIR model with vaccination. We 

used state-level weekly epidemiological and vaccination data for the estimation during the period 

from 12 October 2020 to 7 March 2021. The data demonstrate the cumulative population share of 

infected individuals 𝐼𝑖,𝑡
𝑐𝑢𝑚 and COVID-19–related deaths 𝐷𝑖,𝑡

𝑐𝑢𝑚 for all 50 states and DC, and valid 

recovery data 𝑅𝑖,𝑡
𝑐𝑢𝑚 for 29 states1. For states with recovery data, we calculated the proportion of 

infected, susceptible, recovered, and dead individuals for the current period t using the following 

equations: 𝐼𝑖,𝑡
𝑐𝑢𝑟 =  𝐼𝑖,𝑡

𝑐𝑢𝑚 − 𝑅𝑖,𝑡
𝑐𝑢𝑚 −  𝐷𝑖,𝑡

𝑐𝑢𝑚 , 𝑆𝑖,𝑡
𝑐𝑢𝑟 = 1 −  𝐼𝑖,𝑡

𝑐𝑢𝑚 −  𝑒𝑉𝑖,𝑡
𝑐𝑢𝑚 , 𝑅𝑖,𝑡

𝑐𝑢𝑟 = 𝑅𝑖,𝑡
𝑐𝑢𝑚 − 𝑅𝑖,𝑡−1

𝑐𝑢𝑚  

and 𝐷𝑖,𝑡
𝑐𝑢𝑟 = 𝐷𝑖,𝑡

𝑐𝑢𝑚 − 𝐷𝑖,𝑡−1
𝑐𝑢𝑚 , respectively. 

Removal rate (𝛄𝐢) In equation (2), γi stands for the removal rate from the infection group. We 

calculated a state-specific but time-invariant γi  by considering both recovered individuals and 

deaths following Hsiang et al. (2020)2. We obtained complete death data over the study period, but 

valid recovery data are available for only 29 states. Therefore, we first calculated the average 

recovery and mortality rates in the 29 states for which we have valid recovery data as  

𝛾𝑖 =
1

𝑇
∑

𝐷𝑖,𝑡
𝑐𝑢𝑟 + 𝑅𝑖,𝑡

𝑐𝑢𝑟

𝐼𝑖,𝑡
𝑐𝑢𝑟

𝑇

𝑡=1

, 

where T is the number of weeks in the sample period. The removal rates in the remaining 22 states 

were assumed to be the median of the removal rates in the 29 states for which complete recovery 

data are available, that is, 30.15%3. 

 

 
1 The states with valid recovery data are AL, AR, DC, ID, KY, LA, ME, MD, MA, MI, MN, MS, MT, NE, NH, NM, ND, OH, 

OK, PA, SC, SD, TN, TX, UT, VT, WV, WI, and WY. Although IA also reported recovery, the number was higher than the 

cumulative number of infections. We therefore excluded IA as well. 
2 Hsiang (2020) 
3 We adopted the median instead of the mean to dampen the influence of outliers, similar to Hsiang (2020). 
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Infection rate (𝛃𝐢,𝐭) In our SIR model, βi,t determines the spread of the pandemic. According to 

equation (2), we have 

βi,t = max {
𝐼𝑖,𝑡+1

𝑐𝑢𝑟 /𝐼𝑖,𝑡
𝑐𝑢𝑟−1+𝛾𝑖 

𝑆𝑖,𝑡
𝑐𝑢𝑟 , 0}, 

which we used to calculate βi,t in the 29 states that we have recovery data to derive the removal 

rate 𝛾𝑖 directly. To estimate βi,t for the other 22 states with no recovery data, we first assumed that 

βi,t is determined by the stringency of nonpharmaceutical interventions and used the following 

reduced-form equation, 

βi,t = 𝜃0 + 𝜃1 ∙ 𝑝𝑜𝑙𝑖𝑐𝑦𝑖,𝑡 + 𝜌𝑖 + 𝜌𝑡 + 𝜀𝑖,𝑡
𝛽

, 

which estimates βi,t for the 29 states with recovery data using the observed nonpharmaceutical 

interventions, along with state fixed effects (𝜌𝑖) and time fixed effects (𝜌𝑡). We then inferred βi,t 

for the remaining 22 states4 based on the estimated 𝜃1 , the observed policies, and the median 

estimates of state and time fixed effects. We also assumed that future non-pharmaceutical 

interventions would remain at the same level as in the last week of our sample (i.e., the week of 

March 1, 2021) when generating model predictions. 

Vaccination rate (𝛅𝐢,𝐭) We calculated the population share of newly vaccinated people by δi,t =

(𝑉𝑖,𝑡
𝑐𝑢𝑚 − 𝑉𝑖,𝑡−1

𝑐𝑢𝑚)/𝐿𝑖, where Li is the total population size in state . We then estimated δi,t with 

state fixed effects and time fixed effects. Specifically, we used δi,t
(1)

= 𝜂0
(1)

+ 𝜄𝑖
(1)

+ 𝜄𝑡
(1)

+ 𝜀𝑖,𝑡
𝛿(1)

 to 

estimate the vaccination rate for the first dose and δi,t
(2)

= 𝜂0
(2)

+ 𝜂1
(2)

𝑡 + 𝜄𝑖
(2)

+ 𝜄𝑡
(2)

+ 𝜀𝑖,𝑡
𝛿(2)

 for the 

second dose. We predicted δi,t for each state in future periods based on the estimated constants 

 
4 See footnote 1 for details, in which we list all states with complete recovery data.  
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(𝜂0
(1)

, 𝜂0
(2)

), coefficient (𝜂1
(2)

), state fixed effects (𝜄𝑖
(1)

, 𝜄𝑖
(2)

), and the median of time fixed effects 

(𝜄𝑡
(1)

, 𝜄𝑡
(2)

).  

Vaccine efficacy (e) According to previous studies, the Pfizer vaccine has an efficacy of 52.0% 

after the first dose, and the Moderna vaccine has an efficacy of 92.1% after the first dose5. Pfizer 

occupied a share of 47.75% of U.S. vaccine distribution during our sample period, and Moderna 

occupied the rest. We thus calculated the overall efficacy as the weighted average of both vaccines, 

at 73.0%. 

Missing data imputation Due to the lack of recovery data, we only know the cumulative infection 

rate rather than the current infection rate in the 22 states for which recovery data are missing. To 

produce quantitative results as accurately as possible, we used our SIR model to impute missing 

data for these 22 states. We first estimated vaccination coverage 𝛿𝑖,𝑡 and the infection rate 𝛽̂𝑖,𝑡 for 

these 22 states. Then, given the current infection rate at the initial period 𝐼𝑖,1
𝑐𝑢𝑟, we calculated 𝑆̂𝑖,1

𝑐𝑢𝑟 

and generated the dynamics of cumulative infection rate {𝐼𝑖,𝑡
𝑐𝑢𝑚} using  

𝐼𝑖,𝑡+1
𝑐𝑢𝑟 = 𝐼𝑖,𝑡

𝑐𝑢𝑟(1 − 𝛾𝑖 + 𝛽̂𝑖,𝑡𝑆̂𝑖,𝑡
𝑐𝑢𝑟), 

𝑆̂𝑖,𝑡+1
𝑐𝑢𝑟 = 𝑆̂𝑖,𝑡

𝑐𝑢𝑟(1 − 𝛽̂𝑖,𝑡𝐼𝑖,𝑡
𝑐𝑢𝑟) − 𝑒𝛿̂𝑖,𝑡, 

𝐼𝑖,𝑡+1
𝑐𝑢𝑚 = 𝐼𝑖,𝑡

𝑐𝑢𝑚 + 𝛽̂𝑖,𝑡𝑆̂𝑖,𝑡
𝑐𝑢𝑟𝐼𝑖,𝑡

𝑐𝑢𝑟. 

We then matched the model generated {𝐼𝑖,𝑡
𝑐𝑢𝑚} from the equations above for each of the 22 states 

with observed data for cumulative infection {I𝑖,𝑡
𝑐𝑢𝑚} by minimizing the loss function below 

𝑚𝑖𝑛

{I𝑖,1
𝑐𝑢𝑟}

∑ (
𝐼𝑖,𝑡

𝑐𝑢𝑚

𝐼𝑖,𝑡
𝑐𝑢𝑚 − 1)

2𝑇

𝑡=1

. 

 
5 Creech et al, 2021 
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Supplementary Table 1 shows estimated region fixed effects. Supplementary Table 2 presents the 

estimated time fixed effects. Other model parameter input values can be found in Supplementary 

Table 3. 

 

1.3 Model Fit 

We examined how well our calibrated model fits the empirical data. The infection rates predicted 

by our model match the general trend in the U.S. and in most states quite well (see Supplementary 

Table 1 and Extended Data Fig. 7); the average correlation was 99.69% at the national level. Table 

1 compares the fitness of the model results with the empirical data for each state. There were two 

exceptions, Kentucky (KY) and Maryland (MD), for which our model predictions were off-target 

by relatively large margins. However, this was due to the estimated removal rates (𝛾𝑖) for these 

two states, which are outliers (Supplementary Fig. 1). 

 

1.4 Model Predictions and Herd Immunity 

The basic reproduction number, 𝑅′ =
𝛽

𝛾
, is the key measure used to assess the dynamics of the 

pandemic and to calculate the vaccination coverage to achieve herd immunity6,7. It is worthy of 

note that this formula only applies during the early stage of disease when the susceptible density 

approaches 1. However, at a later stage of the pandemic and with vaccines, a considerable share 

of the susceptible population has been vaccinated or has recovered, so the share of susceptible 

individuals can be significantly less than 1. According to the definition of the basic reproduction 

number, at period t, an infected person is expected to infect βt𝑆𝑡 people with an expected duration 

 
6 Sun, 2010  
7 Sun & Shi, 2011 
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infection time of 1/γ. Therefore, the time-varying reproduction number is 𝑅′𝑡 = βt𝑆𝑡/𝛾. At the 

beginning of the pandemic, we have 𝑡 = 0, 𝑆𝑡 = 1 and 𝑅0 = β0/𝛾, which is consistent with the 

conventional definition. To assess whether the U.S. as a whole has acquired herd immunity, we 

use the “Third Statistics” approach; that is, the third-worst state’s reproduction number is used to 

form the national level “reproduction number”: 

𝑅′𝑡 =
𝑚𝑎𝑥3

𝑖 = 1, … ,51
{𝑅′𝑖,𝑡}. 

We used this measure to rule out the impact of outliers.8 As Supplementary Fig. 1 indicates, two 

states (Kentucky and Maryland) reported unreasonably low recovery numbers, which greatly 

biased our calculations of the reproduction number.  

 

 

Supplementary Fig. 1| Boxplot for estimated state-level recovery rate. This figure plots the 

distribution of the estimated recovery rate for the 29 states with valid recovery data during our 

study period. According to the boxplot, Kentucky (KY) and Maryland (MD) appear as outliers. 

 

 
8 Eaton & Kortum, 2002 
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Supplementary Table 1. State fixed effects and model fitness across all 50 states and DC. (in 

attached Excel file due to table size) 

 

Supplementary Table 2. Time fixed effects across all 50 states and DC 

 Estimated with First-Dose Data Estimated with Second-Dose Data 

 

Time 

Infection Rate 

Fixed Effect 

 𝛒𝐭 (%) 

Vaccination Rate  

Fixed Effect 

𝛊𝐭
(𝟏)

 (%) 

Infection Rate  

Fixed Effect 

𝛒𝐭 (%) 

Vaccination Rate  

Fixed Effect 

𝛊𝐭
(𝟐)

 (%) 

Week 1     0.00  N/A    0.00  N/A 

Week 2     3.83  N/A    3.83  N/A 

Week 3     8.91  N/A    8.91  N/A 

Week 4   16.35  N/A  16.36  N/A 

Week 5     2.41  N/A    2.44  N/A 

Week 6   -7.23  N/A   -7.18  N/A 

Week 7   -5.49  N/A   -5.43  N/A 

Week 8   -7.32  N/A   -7.27  N/A 

Week 9 -12.08  N/A -12.02  N/A 

Week 10 -16.36  N/A -16.30  N/A 

Week 11 -11.68  N/A -11.62  N/A 

Week 12   -3.07  N/A   -3.01  N/A 

Week 13 -12.70  N/A -12.66  N/A 

Week 14 -18.39  0.00 -19.14  0.00 

Week 15 -21.14 -1.08 -22.20 -0.21 

Week 16 -22.29 -1.46 -23.50 -0.13 

Week 17 -24.19 -1.58 -25.41 -0.02 

Week 18 -24.66 -1.47 -25.95  0.10 

Week 19 -21.73 -0.83 -23.30  0.33 

Week 20 -15.15 -1.27 -17.04  0.23 

Week 21   N/A -0.63   N/A  0.00 
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Supplementary Table 3. Other model parameter values.  

 Notations Values 

Estimations with  

First Dose Data 

Constant of Infection Rate Estimation (θ0)  0.391 

Elasticity of Policy on Infection Rate Estimation (θ1)  0.00529 

Constant of Vaccination Rate Estimation (η0
(1)

)  0.0285 

Estimations with 

Second Dose Data 

Constant of Infection Rate Estimation (θ0)  0.397 

Elasticity of Policy on Infection Rate Estimation (θ1) -0.00542 

Constant of Vaccination Rate Estimation (η0
(2)

)  0.00142 

Trend of Vaccination Rate Estimation (η1
(2)

)  0.00185 
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Extended Data 

a. 

 
b. 

 
 

Extended Data Fig. 1| COVID-19 vaccination in all 50 U.S. states and DC. a, Share of vaccines 

allocated versus population share. b, Heat map of vaccines administered by states over time. The 

darker the color, the more doses of vaccines administered per 100 people.  
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Extended Data Fig. 2| COVID-19 infections (average total infection and hospitalization rates) 

before vaccination and average vaccination rate.  a, Association between the total infection rate 

before vaccination and at least 1 dose of vaccination (coefficient = 0.0002, R2 = 0.0%). b, 

Association between the total infection rate before vaccination and 2 doses of vaccination 

(coefficient = 0.0002, R2 = 0.0%). c, Association between the total hospitalization rate before 

vaccination and at least 1 dose of vaccination (coefficient = 0.0000, R2 = 1.0%). d, Association 

between the total hospitalization rate before vaccination and 2 doses of vaccination (coefficient = 

0.0001, R2 = 0.9%).  
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Extended Data Fig. 3| Heterogeneity tests on the effect of vaccination across various state 

characteristics. Blue markers are the estimated effects of at least 1 dose of vaccine, and red 

markers are the estimated effects of 2 doses of vaccine. a, Effect of vaccination in states where the 

2020 presidential election was won by Joe Biden versus Donald Trump. b, Effect of vaccination 

in states with non-pharmaceutical interventions more stringent than the national median (+) versus 

less stringent than the median (-). c, Effect of vaccination in states with the proportion of the elderly 

population (65+) greater than the national median (+) versus less than the median (-). d, Effect of 

vaccination in states with the proportion of the white population greater than the national median 

(+) versus less than the median (-). e, Effect of vaccination in states with per capita income greater 

than the national median (+) versus less than the median (-). f, Effect of vaccination in states with 

the share of Pfizer vaccine greater than the national median (+) versus less than the median (-). 
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Extended Data Fig. 4| Estimated effects of vaccination on the COVID-19 pandemic with 

alternative outcome measures. Blue markers are the estimated effects of at least 1 dose of vaccine, 

and red markers are the estimated effects of 2 doses of vaccine. a, Estimated effects of vaccination 

on logarithms of news cases and hospitalizations. b, Estimated effects of vaccination on changes 

in logarithms of total cases and hospitalizations.   
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Extended Data Fig. 5| Estimated effects of vaccination on the COVID-19 pandemic with 

imputed missing data on vaccination between 21 December 2020 and 10 January 2021. Blue 

markers are the estimated effects of at least 1 dose of vaccine, and red markers are the estimated 

effects of 2 doses of vaccine. 
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Extended Data Fig. 6| Estimated effects of vaccination on the COVID-19 pandemic with 

different sample periods. Our 21-week baseline period is from 12 October 2020 to 7 March 2021. 

18-week period is from 2 November 2020 to 7 March 2021; 24-week from 21 September 2020 to 

7 March 2021; 27-week from 31 August 2020 to 7 March 2021; 30-week from 10 August 2020 to 

7 March 2021; 33-week from 20 July 2020 to 7 March 2021; 36-week from 29 June 2020 to 7 

March 2021; 39 week from 8 June 2020 to 7 March 2021; 42-week from 18 May 2020 to 7 March 

2021; and 45-week from 27 April 2020 to 7 March 2021.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.08.21256892doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.08.21256892


 

 42 

 
Extended Data Fig. 7| Development of cumulative infection rate during our study period (12 

October 2020 to 7 March 2021). Red curves are model projections, and black curves are empirical 

data. a, National cumulative infection rate, model projections versus empirical data. Our model 

projections are 99.69% correlated with empirical data. b, Development of cumulative infection 

rate across all 50 U.S. states and DC, model projections versus empirical data. Our model 

estimations reached a median correlation of 99.04% with empirical data, with a minimum of 86.37% 

in Maryland and a maximum of 99.95% in Vermont.  
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Extended Data Table 1. Summary statistics.  

 

Variable N Mean SEa Median (Min, Max) 

Growth of total cases  1071  0.07  0.05   0.06  (0, 0.3) 

New cases 1071  19583.4  28962.1   10544 (72, 302690) 

Growth of total hospitalizations  735  0.05  0.04   0.04  (0, 0.5) 

New hospitalizations 735  629.4  798.8   417 (5, 13127) 

Stringency index 1071  46.3  13.4   46.3 (7.4, 75.9) 

People vaccinated per hundredb 1071  4.1  6.1   0 (0, 24.7) 

People fully vaccinated per hundredc 1071  1.7  3.0   0 (0, 15.6) 

Susceptible / population 1071  94.1  2.9   94.3  (86.8, 99.7) 

Testing / population 1071  80.1  41.9   71.6  (20.0, 295.4) 

Rally (dummy variable) 1071  0.03  0.2   0 (0, 1) 

Number of protests 1071  0.06  0.4   0 (0, 7) 

Snow depth 1071  19.5  34.0   4.5  (0, 243.3) 

Deviation from mean temperatured 1071 -0.9  0.7  -1.0  (-3.1, 0.7) 

Notes.  
a Standard error.  
b People who received at least 1 dose of the vaccine.  
c People who received 2 doses of the vaccine.  
d Deviation from mean temperature = (temperature at state i week t – mean temp of state i during 

12 Oct 2020 to 7 Mar 2021) / standard error of temperature of state i.  
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Extended Data Table 2. Baseline regression results. 

Notes.  

Standard errors (in parentheses) are two-way clustered at state and week level.   

Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
a People who received at least 1 dose of the vaccine.  
b People who received 2 doses of the vaccine.  
c 21 observations of DC temperature were missing, estimated using average temperature from 

neighboring states of Virginia and Maryland. 8 observations of Delaware temperature were 

missing, estimated using average temperature from the neighboring states of New Jersey and 

Maryland.  

 

 

 

 

 

 

 

 

 

Variables 

Growth rate of cases 

(N = 1,071) 

Growth rate of hospitalizations 

(N = 735) 

People vaccinated per 

hundreda 

-0.07***  -0.007***  

(0.002)  (0.002)  

     

People fully vaccinated 

per hundredb 

 -0.011***  -0.011*** 

 (0.004)  (0.003) 

     

Stringency index -0.000 -0.000  0.001  0.000 

 (0.001) (0.001) (0.000) (0.000) 

Susceptible rate  0.021***  0.021***  0.010***  0.010*** 

 (0.005) (0.005) (0.003) (0.003) 

Test rate  0.000  0.000  0.000  0.000 

 (0.000) (0.000) (0.000) (0.000) 

Rally -0.004 -0.004 -0.005 -0.005 

 (0.007) (0.007) (0.008) (0.008) 

Number of protests -0.001 -0.000  0.001  0.001 

 (0.003) (0.003) (0.006) (0.006) 

Log (snow depth)  0.001  0.001  0.000  0.001 

 (0.002) (0.002) (0.001) (0.001) 

Deviation from mean 

temperaturec 

-0.003 -0.003 -0.008 -0.008 

(0.006) (0.006) (0.006) (0.006) 

R-squared  71.4%  71.5%  48.2%  48.1% 
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Extended Data Table 3. Baseline regression results with data of daily frequency.  

Notes.  

Standard errors (in parentheses) are two-way clustered at state and week level.   

Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
a People who received at least 1 dose of the vaccine.  
b People who received 2 doses of the vaccine. 
c 21 observations of DC temperature were missing, estimated using average temperature from 

neighboring states of Virginia and Maryland. 8 observations of Delaware temperature were 

missing, estimated using average temperature from the neighboring states of New Jersey and 

Maryland. 

 

 

Variables Growth rate of cases 

(N = 7,497) 

Growth rate of hospitalizations 

(N = 5,145) 

People vaccinated per 

hundreda 

-0.0009***  -0.0009***  

(0.0002)  (0.0002)  

     

People fully vaccinated 

per hundredb 

 -0.0015***  -0.0015*** 

 (0.0003)  (0.0003) 

     

Stringency index  0.0001  0.0001  0.0001*  0.0001 

 (0.0001) (0.0001) (0.0001) (0.0001) 

Susceptible  rate  0.0027***  0.0027***  0.0012***  0.0013*** 

 (0.0005) (0.0005) (0.0003) (0.0003) 

Test rate  0.0000  0.0000  0.0000  0.0000 

 (0.0000) (0.0000) (0.0000) (0.0000) 

Rally -0.0002 -0.0002 -0.0007 -0.0007 

 (0.0013) (0.0013) (0.0016) (0.0016) 

Number of protests -0.0000  0.0000 -0.0007 -0.0007 

 (0.0009) (0.0010) (0.0008) (0.0008) 

Log (snow depth) -0.0002 -0.0002 -0.0000  0.0000 

 (0.0002) (0.0002) (0.0002) (0.0002) 

Deviation from mean 

  temperaturec 

-0.0007* -0.0007* -0.0004 -0.0004 

(0.0004) (0.0004) (0.0004) (0.0004) 

R-squared 51.7% 51.8% 16.4% 16.4% 
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