Title: Association of Obesity with COVID-19 Severity and Mortality: A Systemic Review and Meta-Regression

Authors: Romil Singh^{*1}, Sawai Singh Rathore^{*2}, Hira Khan³, Smruti Karale⁴, Abhishek Bhurwal⁵, Aysun Tekin¹, Nirpeksh Jain⁶, Ishita Mehra⁷, Sohini Anand⁸, Sanjana Reddy⁹, Guneet Singh Sidhu¹⁰, Anastasios Panagopoulos¹¹, Vishwanath Pattan¹², Rahul Kashyap¹, Vikas Bansal¹³

¹Department of Anesthesiology and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA

 ²Medical Student, Dr. Sampurnanand Medical College, Jodhpur, Rajasthan, India
 ³Department of Internal Medicine, Islamic International Medical College, Rawalpindi, Pakistan
 ⁴Department of Internal Medicine, Government Medical College-Kolhapur, Kolhapur, Maharashtra, India

⁵Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey, USA

⁶Department of Emergency Medicine, Marshfield Clinic, Marshfield, Wisconsin, USA

⁷Department of Internal Medicine, North Alabama Medical Center, Florence, Alabama, USA

⁸ Medical Graduate, Patliputra Medical College and Hospital, Dhanbad, Jharkhand, India
⁹ Medical Student, Gandhi Medical College, Secunderabad, India

¹⁰ Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA

¹¹ Department of Cardiology, University of Nebraska Medical Center, Omaha, NE, USA

¹² Division of Endocrinology, Wyoming Medical center, Casper, WY, USA

¹³ Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA

Corresponding Author:

Vishwanath Pattan, MD Division of Endocrinology Wyoming Medical Center 419 S Washington St Suite 201 Casper, WY-82601 Email: vpattan@wyomingmedicalcenter.org Phone: (307) 577-2592

Word count: 3237 Tables: 2 Figures: 8, multi panel

Conflict of Interest: None of the co-authors have anything to declare.

Financial Support: There is no financial disclosure related to this study. Author Contribution: *Authors 1(RS) and 2(SSR) contributed equally in defining the study outline and manuscript writing. Data review and collection were done by AT, GSS, HK, NJ, RS, SK, AP, and SSR; statistical analysis was done by AB, SK, and VB; risk of bias was done by AT, SA and SSR. Study design, Distribution of Articles for critical review done by IM, VP, RK, and VB. Final approval received by all authors. RS, SSR , VB and VP is the guarantor of the paper, taking responsibility for the integrity of the work as a whole, from inception to published article. All authors contributed to the article and approved the submitted version.

Abstract

Objective: To estimate the association of obesity with severity (defined as use of invasive mechanical ventilation or intensive care unit admission) and all-cause mortality in coronavirus disease 2019 (COVID-19) patients.

Patients and Methods: A systematic search was conducted from inception of COVID-19 pandemic through January 31st, 2021 for full-length articles focusing on the association of increased BMI/ Obesity and outcome in COVID-19 patients with help of various databases including Medline (PubMed), Embase, Science Web, and Cochrane Central Controlled Trials Registry. Preprint servers such as BioRxiv, MedRxiv, ChemRxiv, and SSRN were also scanned. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were used for study selection and data extraction. The severity in hospitalized COVID-19 patients, such as requirement of invasive mechanical ventilation and intensive care unit admission with high BMI/ Obesity was the chief outcome. While all-cause mortality in COVID-19 hospitalized patients with high BMI/ Obesity was the secondary outcome.

Results: A total of 576,784 patients from 100 studies were included in this meta-analysis. Being obese was associated with increased risk of severe disease (RR=1.46, 95% CI 1.34-1.60, p<0.001, $I^2 = 92$ %). Similarly, high mortality was observed in obese patients with COVID-19 disease (RR=1.12, 95% CI 1.06-1.19, p<0.001, $I^2 = 88\%$). In a multivariate meta-regression on severity outcome, the covariate of female gender, pulmonary disease, diabetes, older age, cardiovascular diseases, and hypertension was found to be significant and explained $R^2 = 50\%$ of the between-study heterogeneity for severity. Similarly, for mortality outcome, covariate of female gender, pulmonary disease, diabetes, not cardiovascular disease of pulmonary disease, diabetes, hypertension, and cardiovascular

diseases were significant, these covariates collectively explained $R^2=53\%$ of the between-study variability for mortality.

Conclusions:

Our findings suggest that obesity is significantly associated with increased severity and higher mortality among COVID-19 patients. Therefore, the inclusion of obesity or its surrogate body mass index in prognostic scores and streamlining the management strategy and treatment guidelines to account for the impact of obesity in patient care management is recommended.

1 Introduction:

2 The entire world is enduring the effects of the global coronavirus disease 2019 (COVID-19) pandemic since its inception in December 2019 when pneumonia of unknown origin was 3 diagnosed in Hubei province, Wuhan, China^{1,2}. It was later in January 2020 that the novel 4 coronavirus strand was isolated and subsequently named severe acute respiratory syndrome 5 coronavirus 2 (SARS-CoV-2) in February 2020^{3,4}. As of now, till 4th April, 2021, the Covid-19 6 pandemic has affected 131,129,824 individuals and has led to 2,850,174 global deaths⁵. Despite 7 8 the fact that many treatments have been proposed to combat COVID-19, there is currently no uniformly successful therapy $^{6-12}$. Although it is a widespread disease affecting multiple systems, 9 obesity has been identified as one of the major comorbid factors in patients suffering from 10 COVID-19¹³⁻²². 11

Overweight (BMI 25 kg/m²-29.9 kg/m²) and obesity (BMI 30 kg/m² or more) are a major public 12 health problem, especially during the COVID-19 pandemic, because of their association with 13 increased morbidity and mortality^{23,24}. Berrington de Gonzalez et al. (2010) studied the 14 association of overweight and obesity on overall mortality in 1.46 million white adults over a 15 median follow-up period of 10 years. They found approximately linear relationship in the hazard 16 ratios for the BMI. The hazard ratio for every 5-unit increment of BMI was 1.31 in the BMI 17 range of 25 kg/m² to 49.9 kg/m².²⁵. According to the 2017-2018 National Health and Nutrition 18 Examination Survey (NHANES), about 42.5% of U.S. adults aged 20 or more are obese and 19 approximately 9% have class 3 obesity or severe obesity (BMI 40 kg/m² or more) 26 . The 20 prevalence of obesity has been increasing rapidly in the last decade. 21

According to WHO, the prevalence of obesity has nearly tripled in the last four decades amounting to 13% of the entire world's adult population²⁷. This exponential rise in the obesity rates in the midst of the pandemic is a cause for concern. The interplay between obesity and diabetes mellitus, cardiovascular disease, stroke, dyslipidemia, influenza has been established for a long time. The presence of these comorbid determinants has been related to increased predisposition and severity of COVID-19²⁸⁻³¹. Many studies have reported increased rates of hospitalization, mechanical ventilation, and mortality in patients with higher BMI³²⁻³⁶.

To mitigate the impact of heightened morbidity and mortality associated with COVID-19 infection in patients with obesity, it is vital to be cognizant of the implications of increased BMI and its dynamic interaction with other comorbid components. Hence, we evaluated obesity as a paramount risk factor for mortality and severity in COVID-19 infection, independent of potential confounders via systematic review and meta-regression.

34 Methods:

35 Search method and Strategy

For documentation, we adopted the Preferred Systematic Analyses and Meta-Analysis Reporting 36 Items recommendations³⁷. A systematic search was conducted from COVID-19 databases from 37 the pandemic inception through January 31st, 2021 for full-length articles focusing on the 38 association of increased BMI/ Obesity in COVID-19 using a pre-specified data extraction 39 protocol including bibliographic information (year of publication, first author), study 40 information (country, sample size), patient characteristics (age, baseline comorbidities, gender), 41 42 treatment information and outcome data. The search strategy consisted of keywords "SARS-CoV-2", "COVID-19", "CORONAVIRUS", "OBESITY", "BMI", "OVERWEIGHT" across the 43

COVID-19 database which included articles from Medline (PubMed), Embase, Science Web, 44 and Cochrane Central Controlled Trials Registry. Studies were included from all over the world, 45 there were no language barriers. Other literature sources such as the BioRxiv (preprints), 46 MedRxiv (preprints), ChemRxiv (preprints), and SSRN (preprints) were searched as well. After 47 following a thorough search, full-length articles meeting the inclusion criteria were evaluated. In 48 49 an attempt to discover further eligible studies, we manually searched the reference lists of the included studies, and previously published meta-analysis, systematic review, and the relevant 50 51 literature. We also scanned the clinicaltrials.gov registry for completed, as well as in-progress 52 randomized controlled trials (RCTs).

53 Eligibility Criteria:

54 The inclusion criteria for the systematic review are as follows:

55 1. Studies reporting outcomes such as severity or mortality events, at least one functional
56 endpoint of COVID-19 hospitalized patients with increased BMI.

57 2. Full text, peer-reviewed articles (Case-studies and case series, randomized controlled trials)
58 were included.

59 Study selection

60 The authors (HK and SSR) downloaded all articles from electronic search to EndNote $X9^{38}$ and

61 duplicates were eliminated. Based on the preset eligibility criteria, each study was reviewed by

- two reviewers (AT, GSS, HK, NJ, RS, SK and SSR) independently, and disagreements were
- 63 discussed amongst all author-reviewers and resolved via a consensus. The cases included obese
- 64 Covid-19 positive hospitalized patients and the controls included the non-obese Covid-19

positive hospitalized patients. Unadjusted and adjusted impact measurements were also extracted 65 where appropriate. From each study, various details including first author name, study type, 66 67 hospitalized total covid-19 positive patients, the definition of COVID-19 severity, definition of obesity, total obese & non-obese COVID-19 positive patients, patients with high severity and 68 mortality, median age, gender (female sex proportion), hypertension proportion, pulmonary 69 70 disease proportion, cardiovascular disease proportion, diabetes proportion, dyslipidemia proportion, liver disease proportion were mentioned in a tabulated format in excel sheet. These 71 72 details are exhibited in Table 1. The included data was checked for accuracy by all authors. 73 Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were used. Figure 1. 74

75 Outcomes

All-cause severity in hospitalized COVID-19 patients with high BMI/ Obesity was the primary
outcome. The severity rate was evaluated in comparison to the control group (non-obese
COVID-19 hospitalized patients). While all-cause mortality in COVID-19 hospitalized patients
with high BMI/ obesity was the secondary outcome.

80 Statistical analysis

81 The meta-analysis specifically included case-control and cohort studies comparing the effects of

high BMI/Obesity in COVID-19 hospitalized patients comparing them to the non-obese COVID-

- 83 19 hospitalized patients. All outcomes were analyzed using the Mantel-Haenszel method for
- 84 dichotomous data to estimate pooled risk ratio (RR) utilizing the Review Manager (RevMan)-
- 85 Version 5.4, The Cochrane Collaboration, 2020. Meta-analysis was performed first for studies
- reporting severity of patients in both groups followed by that for studies reporting severity of

disease assuming independence of results for studies that reported both. Due to anticipated
heterogeneity, summary statistics were calculated using a random-effects model. This model
accounts for variability between studies as well as within studies. Statistical heterogeneity was
assessed using Q value and I² statistics.

To explore differences between studies that might be expected to influence the effect size, we 91 performed random effects (maximum likelihood method) univariate and multivariate meta-92 regression analyses. The potential sources of variability hypothesized were the gender of the 93 study sample, the proportion of subjects with diabetes, pulmonary disease, cardiovascular 94 disease, and hypertension. Covariates were selected for further modeling if they significantly 95 (P < 0.05) modified the association between mortality or severity in the COVID-19 hospitalized 96 patients with high BMI/Obesity. Two models were created, one for severity and the other for 97 mortality of disease as outcomes. Subsequently, preselected covariates were included in a 98 manual backward and stepwise multiple meta-regression analysis with P = 0.05 as a cutoff point 99 for removal. P < 0.05. (P < 0.10 for heterogeneity) was considered statistically significant. All 100 meta-analysis and meta-regression tests were 2-tailed. The meta-regression was done with the 101 Comprehensive Meta-Analysis software package (Biostat, Englewood, NJ, USA)14³⁹. 102

We conducted sensitivity analysis with BMI categories (BMI <18 kg/m², BMI 18 kg/m²-25 kg/m²,
BMI 25 kg/m²-29.9 kg/m², BMI >30 kg/m², and BMI>40 kg/m²) to decrease inherent selection
bias in observational studies⁴⁰.

106 Risk of Bias

107 Risk of Bias assessment- The Newcastle-Ottawa (NOS) scale12 was used for measuring the risk108 of bias in case-control studies and cohort studies. The following classes were rated per study:

low bias risk (9 points), moderate bias risk (5-7 points), and high bias risk (0-4 items. For a
cross-sectional study, we used the modified version of NOS, assigning the study in the following
groups: Low risk of bias (8-10), moderate risk (5-7), high risk of bias (0-4))⁴¹. Three reviewers
(AT, SA, and SSR) evaluated the likelihood of bias independently, and any conflict was resolved
by consensus (Table 2A and 2B).

114 **Results**

115 Study characteristics of included studies

For the primary endpoint, severity, a total of 100 studies, consisting of 576,784 patients were
included in the meta-analysis. The median age for included patients was 61.4 (55.3-65) with

average 42.9% females (Table 1). Of the comorbidities considered, 29.4% were diabetics, 37.9%

had heart diseases overall. Similarly, for the primary endpoint, i.e. disease severity, a total of

seventy reports were included in the meta-analysis ^{32,42-110}. These had a combined sample size of

121 292,165 with 40,272 patients reaching the endpoint of high disease severity (Table 1). Similarly,

a total of 51 studies were included for meta-analysis for the secondary outcome i.e.

123 mortality 42,45,46,48-52,55,63,66,75,79,80,82,85,88,89,92,101,109,111-140. These had a combined sample size of

124 380,130 with 118,351 patients reaching the endpoint of mortality.

125 **Meta-analysis for severity outcome:** Findings from the meta-analysis showed that being obese 126 was correlated with increased severity of COVID 19 infections in comparison to non-obese 127 patients (RR=1.46, 95% CI 1.34-1.60, p<0.001). Heterogeneity was high with $I^2 = 92$ % (Figure 128 2).

Meta-analysis for mortality outcome: Meta-analysis findings showed that obesity was
associated with increased risk of mortality from COVID 19 infections in comparison to non-

obese patient population (RR=1.12, 95% CI 1.06-1.19, p<0.001). Heterogeneity was high with I² = 88% (Figure 3).

Multivariate meta-regression model for severity outcome: Multivariate meta-regression was performed to explain variations in the association between COVID-19 severity and obesity. We found female gender, pulmonary disease, diabetes, age, cardiovascular diseases, and hypertension covariates to be significant and this explained R^2 = 50% of the between-study heterogeneity in severity. The proportion of hypertension did not significantly affect the between-study variations and were therefore not included in the final equation. Figure 4 shows the resulting equation and individual covariate effect graphs.

Multivariate meta-regression model for mortality outcome: Multivariate meta-regression performed to explain variations in the association between mortality and obesity revealed that female gender, proportion of pulmonary disease, diabetes, hypertension, and cardiovascular diseases to be significant together. Overall, these covariates together explained R^2 =53% of the between-study heterogeneity in mortality. Figure 5 shows the resulting equation and individual covariate effect graphs.

Publication Bias: Visual inspection of the standard error plots for the severity analysis also (Figure 7A) suggests symmetry without an underrepresentation of studies of any precision. However, in Egger's regression test the null hypothesis of no small study effects was rejected at p<0.05 (estimated bias coefficient = -0.13 ± 0.42 SE).

Similarly, visual inspection of the standard error plots for the mortality analysis (Figure 7B)suggests symmetry without an underrepresentation of studies of any precision. Corroborating

inspection findings, Egger's regression test, the null hypothesis of no small study effects, was rejected at p<0.05 (estimated bias coefficient = -0.17 ± 0.42 SE).

Sensitivity analysis: We did not find any statistical significance for risk of mortality as well as 154 the risk for severity with COVID-19 when analyzed by BMI categories. However, we observed 155 that underweight status (BMI<18 kg/m²) is associated with increased risk of mortality in COVID-156 19 (OR 1.52, 95% CI 1.19-1.94, p = <0.001; $I^2 = 0\%$) but not statistical significant to severity of 157 COVID-19 (OR 1.10, 95% CI 0.81-1.48, p=0.54; $I^2=0\%$) as compared to normal BMI category of 158 18 kg/m²-25 kg/m². We also did not observe any statistically significant changes while comparing 159 BMI category 25 kg/m² to 29.9 kg/m² with respect to others in terms of mortality and severity of 160 161 COVID-19 (Figure 6A-H).

162 **Discussion**

163 In this large meta-analysis with 100 studies, we found that obesity has a strong association with increased mortality & severity of COVID-19 infection. In addition, our meta-regression analysis 164 suggests that obesity significantly increases the severity and mortality in COVID-19 patients. 165 Using a random effects model, we found that obese patients showed higher odds for mortality 166 and severity i.e. ICU admissions or mechanical ventilation. Our results suggest that obese 167 individuals are 1.5 times more likely to experience severe outcomes and 1.12 times more likely 168 to die when compared to non-obese individuals with COVID-19 disease. Our meta-regression 169 severity model suggested that 50% of the heterogeneity could be explained by age, gender, 170 171 diabetes, hypertension, pulmonary and cardiovascular diseases. The mortality meta-regression model suggested that 53% of the heterogeneity could be accounted for by gender, diabetes, 172

hypertension, pulmonary and cardiovascular diseases. Through these regression models, we wereable to address major amount of heterogeneity seen in our meta-analysis.

In the existing literature, we found four meta-analysis (studies n=6, 17, 40, 76)¹⁴¹⁻¹⁴⁴ that explored the association of obesity and worse outcomes in COVID-19 and found a similar association. On the contrary, one study refuted the possibility of this association. Owing to their small sample population (Studies n=2), it is likely that they were underpowered to tease out the true difference or association¹⁴⁵. With a much larger sample size (n=100) our study provides a more robust evidence to establish this association.

181 Five meta-regression studies have evaluated the direct relationship between obesity and COVID-19 over the last year. Yang et al (studies n=41) concluded that, in COVID-19 patients, obesity is 182 associated with increased mortality, increased rates of hospitalization, ICU admissions and the 183 need for mechanical ventilation. However, they found no confounding factors causing 184 heterogeneity in regards to hospitalization, ICU admission, and in-hospital mortality of COVID-185 19 patients¹⁴⁶. In another such study, Mesas et al (studies n=60) described that obesity was linked 186 to increased mortality only in studies with fewer chronic or critical patients and reported mean 187 age of patients as the most important source of heterogeneity, followed by sex and health 188 condition¹⁴⁷. Soereto et al (studies n=16) reported that patients with higher BMI were at 189 190 increased risk of developing 'poor outcomes' - defined as mortality, ICU admission, ARDS 191 incidence, severe COVID-19, need for mechanical ventilation and hospitalization. In their meta regression, the heterogeneity in poor outcomes was explained by age, type 2 diabetes mellitus, 192 hypertension, and gender¹⁴⁸. Du et al and Chu et al (studies n=16 and 22) found that the 193 194 association between obesity and COVID-19 severity and that with mortality was significantly influenced by age, but not with gender or other co morbidities^{149,150}. Our meta-regression 195

identified the likely confounders to be age, gender, and co-morbidities such as diabetes, 196 hypertension, pulmonary and cardiovascular diseases. Through this model, we were able to 197 explain high heterogeneity with highest number of confounders, which other meta regression in 198 the recent literature were not able to reach and define¹⁴⁶⁻¹⁵⁰. Thus, we were able to establish a 199 strong association that obesity plays a remarkable role in worsening these outcomes in patients 200 201 with COVID-19 infection. In the sensitivity analyses, we were only able to find statistically significant results for increased mortality in BMI<18 kg/m² as compared to BMI 18 kg/m²-25 202 kg/m^2 , however, such significance was not noted in any other BMI categories with severity and 203 204 mortality in COVID-19. This could be due to BMI being a very crude estimate of adiposity, may not be sensitive enough to tease out the real difference. Visceral adiposity would probably be a 205 more reliable estimate to study these differences. However, in their study, Anderson et al. found 206 207 that patients with obesity have a greater chance of intubation or mortality, with people with class 3 obesity having the greatest risk compared to overweight patients⁴⁵. 208

Obesity is known to be associated with many adverse comorbid conditions¹⁵¹ including 209 hypertension, atherogenic dyslipidemia, cardiovascular disease, insulin resistance or type 2 210 diabetes, altered cortisol metabolism, etc¹⁵². Obesity is associated with overexpression of ACE2 211 receptors and higher ACE2 receptors may aid infection and serve as viral reservoir ¹⁵³ Moreover, 212 obesity is known to be associated with endothelial dysfunction¹⁵⁴, the key pathogenic event in 213 COVID-19 infection leading to mortality and morbidity^{155,156}. Obesity or increased adiposity 214 plays a key role in endothelial dysfunction by activating several cascade of pathological events 215 namely- activation of renin-angiotensin system¹⁵⁷, activation of procoagulant/hypercoagulation 216 pathway ¹⁵⁸, activation of proinflammatory mediators ¹⁵⁹, insulin resistance ¹⁶⁰, oxidative stress 217

¹⁶¹, platelet dysfunction ¹⁶² and immune dysregulation ¹⁶³. These events are summarized in
Figure 8.

In the study by Danzinger et al. obesity was found to be associated with increased incidence of 220 acute kidney injury and increase in short- and long-term mortality¹⁶⁴. Various meta-analyses 221 were conducted to evaluate the association of obesity with mortality and severity of critically ill 222 patients. The results were not universal, despite a wide variety of observations. In a total of 223 62,045 critically ill patients, Akinnusi et al compared the ICU mortality between obese and non-224 obese patients and found no dissimilarities¹⁶⁵. Hogue et al. (n=22) conducted a meta-analysis of 225 88,051 patients and found that obesity did not impact ICU mortality¹⁶⁶. However, Oliveros and 226 227 Villamor et al. found that ICU mortality was increased only in underweight patients and reduced in overweight and obese patients¹⁶⁷. In another study Zhao et al. observed that having a high 228 BMI is related to longer duration on mechanical ventilation but lower mortality¹⁶⁸. Therefore, it 229 230 is unclear how obesity affects clinical outcomes in critically ill patients and more prospective studies are required to study the association between obesity and adverse outcomes in critical 231 232 care.

The prime strength of this study is the large sample size. With an exhaustive search strategy, we 233 compiled 100 studies conducted globally. We also added the most recent studies to our meta-234 analysis and meta-regression model including the studies that reported contradictory information. 235 236 It enabled us to arrive at a more definitive conclusion about the risk associations. To define the 237 heterogeneity in the meta-analysis, we also conducted a meta-regression analysis. For moderators, we used the most probable confounders based on the available evidence. This 238 239 enabled us to delineate the impact of obesity as an independent risk factor for mortality and 240 severity in COVID-19. However, our study is also subject to few limitations. We included five

studies from preprint databases^{71,76,83,96,101} that may not be comparable to peer-reviewed articles 241 in terms of their quality of methodology. However, in view of the time-sensitive nature of this 242 pandemic, benefit of early dissemination of critical information and its inclusion in various 243 analyses outweighs the risk from minor methodological flaws. Second factor was the 244 heterogeneity in the studies in terms of the study design and methodology, patient sample and 245 246 treatment received. There was a lack of uniformity in the type of outcomes evaluated for severity and their definitions in different studies. For the same reason, it was not possible to deduce the 247 248 effect of obesity on the individual outcomes- ICU admission and mechanical ventilation. Third 249 limitation is that the analysis was done with hospitalized patients only; hence we cannot generalize our results for patients seen in the outpatient clinic or treated at home. Analyzing 250 outpatient data as well may help us to get the complete picture of the impact of obesity on the 251 252 overall COVID-19 outcomes. Fourth limitation is that our analysis did not compare the outcomes 253 with respect to visceral obesity and only BMI was used. However, it was beyond the scope of 254 this analysis because of the lack of those details in most of the included studies. We suggest that prospective studies should obtain and report this information about their sample population. 255 Lastly, it is possible that some confounders which could have otherwise accounted for the 256 257 residual heterogeneity were not evaluated in the meta-regression analysis due to limited information. 258

Conclusion: In summary, our findings suggest that obesity significantly increases the risk of severity and mortality in hospitalized COVID-19 patients. Therefore, the inclusion of obesity or surrogate body mass index or visceral obesity in prognostic scores and streamlining the management strategy and treatment guidelines to account for the impact of obesity would be vital to improve patient outcomes in hospitalized COVID-19 patients. Our finding also serves as

264	a call for the scientific community to further delve into its pathophysiology and identify potential
265	pharmacological targets, since COVID-19 is an ever-evolving disease. Finally, this information
266	must be disseminated to the general public to intensify the primary prevention of obesity.
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	

282 **References:**

283 Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with 1. 284 COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. 285 2. Shah A, Kashyap R, Tosh P, Sampathkumar P, O'Horo JC. Guide to Understanding the 2019 Novel 286 Coronavirus. Mayo Clin Proc. 2020;95(4):646-652. 287 3. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. 288 Lancet. 2020;395(10223):470-473. 289 Organization WH. Naming the coronavirus disease (COVID-19) and the virus that causes it. 4. 290 World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-291 2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-292 causes-it. Published 2020. Accessed March 17, 2021. 293 5. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. 294 Lancet Infect Dis. 2020;20(5):533-534. 295 Bansal V, Mahapure K, Bhurwal A, et al. Mortality Benefit of Remdesivir in COVID-19: A 6. 296 Systematic Review and Meta-analysis. Frontiers in Medicine. 2020;7:1124. 297 7. Jain R, Javeri Y, Nasa P, et al. Consensus Statement for Pharmacological Management of 298 Coronavirus Disease 2019 (COVID-19): A Pragmatic Approach. Asploro Journal of Biomedical and 299 *Clinical Case Reports.* 2020;3(3):241. 300 8. R Singh LS, I Mehra, R Kashyap, S Surani. Novel and Controversial Therapies in COVID-19. The 301 Open Respiratory Medicine Journal. 2020;14. 9. 302 Bansal V, Mahapure K, Mehra I, et al. Mortality Benefit of Convalescent Plasma in COVID-19: A 303 Systematic Review and Meta-analysis. Frontiers in Medicine. 2021;8:250. 304 10. Singh R, Rathore SS, Khan H, et al. Mortality and Severity in COVID-19 Patients on ACEIs & amp; 305 ARBs - A Meta-Regression Analysis. medRxiv. 2021:2021.2003.2014.21253557. 306 Singh R, Rathore SS, Khan H, et al. Mortality and Severity in COVID-19 Patients on ACEIs & ARBs-11. 307 A Meta-Regression Analysis. medRxiv. 2021. 308 12. Karale S, Bansal V, Makadia J, et al. A Meta-analysis of Mortality, Need for ICU admission, Use of 309 Mechanical Ventilation and Adverse Effects with Ivermectin Use in COVID-19 Patients. medRxiv. 310 2021:2021.2004.2030.21256415. 311 13. Prevention CfDCa. People with Certain Medical Conditions. CDC. 312 https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-313 conditions.html. Published 2021. Updated March 15, 2021. Accessed March 17, 2021. 314 14. Rathore SS, Rojas GA, Sondhi M, et al. Myocarditis associated with Covid-19 disease: a systematic review of published Case reports and Case series. Authorea Preprints. 2021. 315 316 15. Sheraton M, Deo N, Kashyap R, Surani S. A Review of Neurological Complications of COVID-19. 317 Cureus. 2020;12(5):e8192. 318 16. Singh R, Kashyap R, Hutton A, Sharma M, Surani S. A Review of Cardiac Complications in 319 Coronavirus Disease 2019. Cureus. 2020;12(5):e8034. 320 17. Shah K, Bedi S, Onyeaka H, Singh R, Chaudhari G. The Role of Psychological First Aid to Support 321 Public Mental Health in the COVID-19 Pandemic. Cureus. 2020;12(6):e8821. 322 18. Shah K, Mann S, Singh R, Bangar R, Kulkarni R. Impact of COVID-19 on the Mental Health of 323 Children and Adolescents. Cureus. 2020;12(8):e10051. 324 19. Menon T, Sharma R, Kataria S, et al. The Association of Acute Kidney Injury With Disease 325 Severity and Mortality in COVID-19: A Systematic Review and Meta-Analysis. Cureus. 2021;13(3). 326 20. Singh R, Shiza ST, Saadat R, Dawe M, Rehman U. Association of Guillain-Barre Syndrome With 327 COVID-19: A Case Report and Literature Review. *Cureus.* 2021;13(3).

328	21.	Menon T, Sharma R, Earthineni G, et al. Association of Gastrointestinal System With Severity and
329		Mortality of COVID-19: A Systematic Review and Meta-Analysis. Cureus. 2021;13(2):e13317.
330	22.	Menon T, Gandhi SAQ, Tariq W, et al. Impact of Chronic Kidney Disease on Severity and
331		Mortality in COVID-19 Patients: A Systematic Review and Meta-analysis. Cureus.
332		2021;13(4):e14279.
333	23.	Whitlock G, Lewington S, Sherliker P, et al. Body-mass index and cause-specific mortality in 900
334		000 adults: collaborative analyses of 57 prospective studies. <i>Lancet.</i> 2009;373(9669):1083-1096.
335	24.	Goyal P, Ringel JB, Rajan M, et al. Obesity and COVID-19 in New York City: A Retrospective
336		Cohort Study. Annals of Internal Medicine. 2020;173(10):855-858.
337	25.	Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46
338		million white adults. N Engl J Med. 2010;363(23):2211-2219.
339	26.	Fryar CD, Carroll MD, Afful J. Prevalence of Overweight, Obesity, and Severe Obesity Among
340		Adults Aged 20 and Over: United States, 1960–1962 Through 2017–2018. Centers for Disease
341		Control and Prevention; December 2020 2020.
342	27.	Organization WH. Obesity and overweight. WHO. https://www.who.int/news-room/fact-
343		sheets/detail/obesity-and-overweight. Published 2020. Accessed March 17, 2021.
344	28.	Barnes AS. The epidemic of obesity and diabetes: trends and treatments. <i>Tex Heart Inst J.</i>
345		2011;38(2):142-144.
346	29.	Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets.
347		Nutrients. 2013;5(4):1218-1240.
348	30.	Fifi JT, Mocco J. COVID-19 related stroke in young individuals. <i>Lancet Neurol.</i> 2020;19(9):713-
349		715.
350	31.	Jain S, Chaves SS. Obesity and Influenza. Clinical Infectious Diseases. 2011;53(5):422-424.
351	32.	Kalligeros M, Shehadeh F, Mylona EK, et al. Association of Obesity with Disease Severity Among
352		Patients with Coronavirus Disease 2019. Obesity. 2020;28(7):1200-1204.
353	33.	Prevention CfDCa. Obesity, Race/Ethnicity, and COVID-19. CDC.
354		https://www.cdc.gov/obesity/data/obesity-and-covid-19.html. Published 2020. Accessed March
355		17, 2021.
356	34.	Hendren NS, Lemos JAd, Avers C, et al. Association of Body Mass Index and Age With Morbidity
357		and Mortality in Patients Hospitalized With COVID-19. Circulation. 2021;143(2):135-144.
358	35.	Domecg JP, Lal A, Sheldrick CR, et al. Outcomes of Patients With Coronavirus Disease 2019
359		Receiving Organ Support Therapies: The International Viral Infection and Respiratory Illness
360		Universal Study Registry. Critical Care Medicine. 9000;Online First.
361	36.	Walkey AJ, Kumar VK, Harhay MO, et al. The Viral Infection and Respiratory Illness Universal
362		Study (VIRUS): An International Registry of Coronavirus 2019-Related Critical Illness. Critical Care
363		Explorations. 2020;2(4).
364	37.	Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews
365		and meta-analyses of studies that evaluate healthcare interventions: explanation and
366		elaboration. <i>BMJ.</i> 2009;339:b2700.
367	38.	Hupe M. EndNote X9. Journal of Electronic Resources in Medical Libraries. 2019;16(3-4):117-119.
368	39.	Borenstein M, Hedges L, Higgins J, Rothstein H. Comprehensive Meta-Analysis Version 3. Biostat,
369		Englewood, NJ 2013. https://www.meta-analysis.com/index.php?cart=BBFA4702757. Published
370		2013 Undated 03/11/2021 Accessed 03/11/2021
371		
	40.	Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of
372	40.	Higgins JPT, Thomas J, Chandler J, et al. <i>Cochrane handbook for systematic reviews of interventions.</i> John Wiley & Sons; 2019.
372 373	40. 41.	Higgins JPT, Thomas J, Chandler J, et al. <i>Cochrane handbook for systematic reviews of interventions.</i> John Wiley & Sons; 2019. Wells GA SB, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale

375		http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Published 2009. Accessed
376		August 20, 2020.
377	42.	Al Heialy S, Hachim MY, Hachim IY, et al. Combination of obesity and co-morbidities leads to
378		unfavorable outcomes in COVID-19 patients. Saudi J Biol Sci. 2021;28(2):1445-1450.
379	43.	Al-Sabah S, Al-Haddad M, Al-Youha S, Jamal M, Almazeedi S. COVID-19: Impact of Obesity and
380		Diabetes in Disease Severity. Clin Obes. 2020;10(6):e12414.
381	44.	Alkhatib AL, Kreniske J, Zifodya JS, et al. BMI is Associated with Coronavirus Disease 2019
382		Intensive Care Unit Admission in African Americans. Obesity. 2020;28(10):1798-1801.
383	45.	Anderson MR, Geleris J, Anderson DR, et al. Body Mass Index and Risk for Intubation or Death in
384		SARS-CoV-2 Infection : A Retrospective Cohort Study. Ann Intern Med. 2020;173(10):782-790.
385	46.	Arjun S, Farraj K, Yeroushalmi K, et al. EVALUATING OBESITY PARADOX IN COVID 19: INSIGHTS
386		FROM A SAFETY-NET HOSPITAL IN NEW YORK. Chest. 2020;158(4, Supplement):A302.
387	47.	Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically III Patients in the Seattle
388		Region — Case Series. New England Journal of Medicine. 2020;382(21):2012-2022.
389	48.	Biscarini S, Colaneri M, Ludovisi S, et al. The obesity paradox: Analysis from the SMAtteo COvid-
390		19 REgistry (SMACORE) cohort. Nutrition, Metabolism and Cardiovascular Diseases.
391		2020;30(11):1920-1925.
392	49.	Burrell AJ, Pellegrini B, Salimi F, et al. Outcomes for patients with COVID-19 admitted to
393		Australian intensive care units during the first four months of the pandemic. <i>Medical Journal of</i>
394		Australia. 2021;214(1):23-30.
395	50.	Busetto L, Bettini S, Fabris R, et al. Obesity and COVID-19: An Italian Snapshot. Obesity.
396		2020;28(9):1600-1605.
397	51.	Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 Severity in a Designated Hospital in
398		Shenzhen, China. <i>Diabetes Care</i> . 2020;43(7):1392-1398.
399	52.	Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with
400		COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63(8):1500-1515.
401	53.	Caussy C, Wallet F, Laville M, Disse E. Obesity is Associated with Severe Forms of COVID-19.
402		Obesity. 2020;28(7):1175-1175.
403	54.	Chao JY, Derespina KR, Herold BC, et al. Clinical Characteristics and Outcomes of Hospitalized
404		and Critically III Children and Adolescents with Coronavirus Disease 2019 at a Tertiary Care
405		Medical Center in New York City. J Pediatr. 2020;223:14-19.e12.
406	55.	Czernichow S, Beeker N, Rives-Lange C, et al. Obesity Doubles Mortality in Patients Hospitalized
407		for Severe Acute Respiratory Syndrome Coronavirus 2 in Paris Hospitals, France: A Cohort Study
408		on 5,795 Patients. Obesity. 2020;28(12):2282-2289.
409	56.	Dreher M, Kersten A, Bickenbach J, et al. The Characteristics of 50 Hospitalized COVID-19
410		Patients With and Without ARDS. Dtsch Arztebl Int. 2020;117(16):271-278.
411	57.	Ebinger JE, Achamallah N, Ji H, et al. Pre-existing traits associated with Covid-19 illness severity.
412		PLoS One. 2020;15(7):e0236240.
413	58.	Feuth T, Saaresranta T, Karlsson A, et al. Is sleep apnea a risk factor for Covid-19? findings from a
414		retrospective cohort study. Sleep Medicine and Disorders: International Journal. 2020;4(3).
415	59.	Gao F, Zheng KI, Wang X-B, et al. Obesity Is a Risk Factor for Greater COVID-19 Severity. Diabetes
416		<i>Care.</i> 2020;43(7):e72-e74.
417	60.	Gerotziafas GT, Sergentanis TN, Voiriot G, et al. Derivation and Validation of a Predictive Score
418		for Disease Worsening in Patients with COVID-19. Thromb Haemost. 2020;120(12):1680-1690.
419	61.	Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid-19 in New York City. New
420		England Journal of Medicine. 2020;382(24):2372-2374.

421 422	62.	Guner R, Hasanoglu I, Kayaaslan B, et al. COVID-19 experience of the major pandemic response center in the capital: results of the pandemic's first month in Turkey. <i>Turk J Med Sci.</i>
423		2020;50(8):1801-1809.
424	63.	Hajifathalian K, Kumar S, Newberry C, et al. Obesity is Associated with Worse Outcomes in
425		COVID-19: Analysis of Early Data from New York City. Obesity. 2020;28(9):1606-1612.
426	64.	Hur K, Price CPE, Gray EL, et al. Factors Associated With Intubation and Prolonged Intubation in
427		Hospitalized Patients With COVID-19. Otolaryngology-Head and Neck Surgery. 2020;163(1):170-
428		178.
429	65.	laccarino G, Grassi G, Borghi C, et al. Gender differences in predictors of intensive care units
430		admission among COVID-19 patients: The results of the SARS-RAS study of the Italian Society of
431		Hypertension. PLoS One. 2020;15(10):e0237297.
432	66.	Ioannou GN, Locke E, Green P, et al. Risk Factors for Hospitalization, Mechanical Ventilation, or
433		Death Among 10 131 US Veterans With SARS-CoV-2 Infection. JAMA Netw Open.
434		2020;3(9):e2022310.
435	67.	Kaeuffer C, Le Hyaric C, Fabacher T, et al. Clinical characteristics and risk factors associated with
436		severe COVID-19: prospective analysis of 1,045 hospitalised cases in North-Eastern France,
437		March 2020. Euro Surveill. 2020;25(48).
438	68.	Lighter J, Phillips M, Hochman S, et al. Obesity in Patients Younger Than 60 Years Is a Risk Factor
439		for COVID-19 Hospital Admission. Clinical Infectious Diseases. 2020;71(15):896-897.
440	69.	Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in
441		COVID-19 patients admitted to an academic hospital in Milan, Italy. <i>Thromb Res.</i> 2020;191:9-14.
442	70.	Mejía-Vilet JM, Córdova-Sánchez BM, Fernández-Camargo DA, Méndez-Pérez RA, Morales
443		Buenrostro LE, Hernández-Gilsoul T. A risk score to predict admission to the intensive care unit
444		in patients with Covid-19: the ABC-GOALS score. Salud Publica Mex.
445		2020:2020.2005.2012.20099416.
446	71.	Mendy A, Apewokin S, Wells AA, Morrow AL. Factors Associated with Hospitalization and
447		Disease Severity in a Racially and Ethnically Diverse Population of COVID-19 Patients. <i>medRxiv</i> .
448		2020:2020.2006.2025.20137323.
449	72.	Monteiro AC, Suri R, Emeruwa IO, et al. Obesity and smoking as risk factors for invasive
450		mechanical ventilation in COVID-19: A retrospective, observational cohort study. PLoS One.
451		2020;15(12):e0238552.
452	73.	Mughal MS, Kaur IP, Jaffery AR, et al. COVID-19 patients in a tertiary US hospital: Assessment of
453		clinical course and predictors of the disease severity. <i>Respir Med.</i> 2020;172:106130.
454	74.	Nachega JB, Ishoso DK, Otokove JO, et al. Clinical Characteristics and Outcomes of Patients
455		Hospitalized for COVID-19 in Africa: Early Insights from the Democratic Republic of the Congo.
456		The American Journal of Tropical Medicine and Hygiene. 2020;103(6):2419-2428.
457	75.	Nakeshbandi M, Maini R, Daniel P, et al. The impact of obesity on COVID-19 complications: a
458		retrospective cohort study. Int J Obes (Lond). 2020;44(9):1832-1837.
459	76.	Newton S, Zollinger B, Freeman J, et al. Factors associated with clinical severity in Emergency
460		Department patients presenting with symptomatic SARS-CoV-2 infection. <i>medRxiv</i> .
461		2020:2020.2012.2008.20246017.
462	77.	Ortiz-Brizuela E, Villanueva-Reza M, Gonzalez-Lara MF, et al. Clinical and Epidemiological
463		Characteristics of Patients Diagnosed with Covid-19 in a Tertiary Care Center in Mexico City: A
464		Prospective Cohort Study. Rev Invest Clin. 2020;72(3):165-177.
465	78.	Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are
466		independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a
467		cohort of patients with COVID-19 in the Bronx, New York. <i>Metabolism.</i> 2020;108:154262.

468	79.	Pepe M, Maroun-Eid C, Romero R, et al. Clinical presentation, therapeutic approach, and
469		outcome of young patients admitted for COVID-19, with respect to the elderly counterpart.
470	00	Clinical and Experimental Medicine. 2021.
4/1	80.	Petersen A, Bressem K, Albrecht J, et al. The role of visceral adiposity in the severity of COVID-
472		19: Highlights from a unicenter cross-sectional pilot study in Germany. <i>Metabolism.</i>
473	01	2020;110:154317.
474	81.	Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness
475		among 5279 people with coronavirus disease 2019 in New York City: prospective conort study.
476	00	BIVIJ. 2020;369:1111966.
477	82.	Petitit NN, Mackenzie EL, Ridgway JP, et al. Obesity is Associated with Increased Risk for Martality Among Legnitalized Datients with COVID 10, Chapity (Silver Spring), 2020;28(10):180C
478		Mortality Among Hospitalized Patients with COVID-19. Obesity (Silver Spring). 2020;28(10):1806-
479	02	1010. Dhilingso 7. Smoti N. Mang CSL Asnov K. Mandall M. Obasity, ald aga, and frailty are the true
480	85.	rick factors for COVID 10 mortality and not abrania disassa or athrisity. MadByiy, 2020
481	01	Dengenical WA Wite and hold and hold chronic disease of elimicity. <i>Medical</i> 2020.
40Z 102	04.	factors for pnoumonia of adult nations with Coronavirus Disease 2010 (COVID 10): A
405 101		ractors for priedmonia of addit patients with coronavirus Disease 2019 (COVID-19). A
404		Diseases 2020:14/10/:00008806
485	85	Bamlall V. Thangarai PM. Meydan C. et al. Immune complement and coagulation dysfunction in
487	05.	adverse outcomes of SARS-CoV-2 infection Nat Med 2020.26(10):1609-1615
488	86	Rao X Wu C Wang S et al. The importance of overweight in COVID-19: A retrospective analysis
489	00.	in a single center of Wuhan. China. <i>Medicine</i> , 2020;99(43)
490	87.	Reiley M. Kristensen KB. Pottegård A. et al. Characteristics and predictors of hospitalization and
491		death in the first 11 122 cases with a positive RT-PCR test for SARS-CoV-2 in Denmark: a
492		nationwide cohort. International Journal of Epidemiology. 2020;49(5):1468-1481.
493	88.	Rodríguez-Molinero A, Gálvez-Barrón C, Miñarro A, et al. Association between COVID-19
494		prognosis and disease presentation, comorbidities and chronic treatment of hospitalized
495		patients. PLoS One. 2020;15(10):e0239571.
496	89.	Rottoli M, Bernante P, Belvedere A, et al. How important is obesity as a risk factor for
497		respiratory failure, intensive care admission and death in hospitalised COVID-19 patients?
498		Results from a single Italian centre. Eur J Endocrinol. 2020;183(4):389-397.
499	90.	Shekhar R, Upadhyay S, Sheikh A, Atencio J, Kapuria D. Early experience with COVID-19 patients
500		at academic hospital in Southwestern United States. Infect Dis (Lond). 2020;52(8):596-599.
501	91.	Simonnet A, Chetboun M, Poissy J, et al. High Prevalence of Obesity in Severe Acute Respiratory
502		Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity.
503		2020;28(7):1195-1199.
504	92.	Steinberg E, Wright E, Kushner B. In Young Adults with COVID-19, Obesity Is Associated with
505		Adverse Outcomes. West J Emerg Med. 2020;21(4):752-755.
506	93.	Suleyman G, Fadel RA, Malette KM, et al. Clinical Characteristics and Morbidity Associated With
507		Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open.
508		2020;3(6):e2012270.
509	94.	Tonetti T, Grasselli G, Zanella A, et al. Use of critical care resources during the first 2 weeks
510		(February 24–March 8, 2020) of the Covid-19 outbreak in Italy. <i>Annals of Intensive Care</i> .
511	~-	2020;10(1):133.
512	95.	Urra JM, Cabrera CM, Porras L, Rodenas I. Selective CD8 cell reduction by SARS-CoV-2 is
513		associated with a worse prognosis and systemic inflammation in COVID-19 patients. <i>Clin</i>
514		Immunol. 2020;217:108486.

515	96.	Vaquero-Roncero LM, Sánchez-Barrado E, Escobar-Macias D, et al. C-Reactive protein and SOFA
516		score as early predictors of critical care requirement in patients with COVID-19 pneumonia in
517		Spain. <i>medRxiv</i> . 2020:2020.2005.2022.20110429.
518	97.	Wang R, Xie L, Du P, Fan H, Song M. Clinical characteristics of 96 hospitalized patients with
519		coronavirus disease 2019. Chinese Journal of Respiratory and Critical Care Medicine.
520		2020;19(2):144-147.
521	98.	Zheng KI, Gao F, Wang XB, et al. Letter to the Editor: Obesity as a risk factor for greater severity
522		of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism.
523		2020;108:154244.
524	99.	Gregoriano C, Koch D, Haubitz S, et al. Characteristics, predictors and outcomes among 99
525		patients hospitalised with COVID-19 in a tertiary care centre in Switzerland: an observational
526		analysis. Swiss Med Wkly. 2020;150:w20316.
527	100.	Di Fusco M, Shea KM, Lin J, et al. Health outcomes and economic burden of hospitalized COVID-
528		19 patients in the United States. J Med Econ. 2021;24(1):308-317.
529	101.	Carrillo G, Méndez-Domínguez N, Santos-Zaldivar KD, et al. Clinical course and severity outcome
530		indicators among COVID-19 hospitalized patients in relation to comorbidities distribution:
531		Mexican cohort. <i>medRxiv</i> . 2020:2020.2007.2031.20165480.
532	102.	Hu L, Chen S, Fu Y, et al. Risk Factors Associated With Clinical Outcomes in 323 Coronavirus
533		Disease 2019 (COVID-19) Hospitalized Patients in Wuhan, China. Clinical Infectious Diseases.
534		2020;71(16):2089-2098.
535	103.	Frank RC, Mendez SR, Stevenson EK, Guseh JS, Chung M, Silverman MG. Obesity and the Risk of
536		Intubation or Death in Patients With Coronavirus Disease 2019. Critical Care Medicine.
537		2020;48(11).
538	104.	Wang J, Zhu L, Liu L, et al. Overweight and Obesity are Risk Factors of Severe Illness in Patients
539		with COVID-19. Obesity. 2020;28(11):2049-2055.
540	105.	Ong SWX, Young BE, Leo Y-S, Lye DC. Association of Higher Body Mass Index With Severe
541		Coronavirus Disease 2019 (COVID-19) in Younger Patients. Clinical Infectious Diseases.
542		2020;71(16):2300-2302.
543	106.	Xie J, Zu Y, Alkhatib A, et al. Metabolic Syndrome and COVID-19 Mortality Among Adult Black
544		Patients in New Orleans. <i>Diabetes Care</i> . 2021;44(1):188-193.
545	107.	Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients
546		with coronavirus disease 2019 in New York: retrospective case series. Bmj. 2020;369:m1996.
547	108.	Hsu HE, Ashe EM, Silverstein M, et al. Race/Ethnicity, Underlying Medical Conditions,
548		Homelessness, and Hospitalization Status of Adult Patients with COVID-19 at an Urban Safety-
549		Net Medical Center — Boston, Massachusetts, 2020. Centers for Disease Control and
550		Prevention. Morbidity and Mortality Weekly Report (MMWR) Web site.
551		https://www.cdc.gov/mmwr/volumes/69/wr/mm6927a3.htm?s_cid=mm6927a3_w. Published
552		2020. Updated July 10, 2020. Accessed March 17, 2021.
553	109.	Min W, Fang Y, Xinxin Z, et al. Clinical characteristics and outcomes of patients with new
554		coronavirus pneumonia with different body mass indexes. Chinese Journal of Endocrinology and
555		Metabolism. 2020;36.
556	110.	Motaib I, Zbiri S, Elamari S, Dini N, Chadli A, El Kettani C. Obesity and Disease Severity Among
557		Patients With COVID-19. Cureus. 2021;13(2):e13165.
558	111.	Chand S, Kapoor S, Orsi D, et al. COVID-19-Associated Critical Illness—Report of the First 300
559		Patients Admitted to Intensive Care Units at a New York City Medical Center. Journal of Intensive
560		Care Medicine. 2020;35(10):963-970.
561	112.	Ciceri F, Castagna A, Rovere-Querini P, et al. Early predictors of clinical outcomes of COVID-19
562		outbreak in Milan, Italy. Clin Immunol. 2020;217:108509.

563	113.	Cravedi P, Mothi SS, Azzi Y, et al. COVID-19 and kidney transplantation: Results from the TANGO
564		International Transplant Consortium. Am J Transplant. 2020;20(11):3140-3148.
565	114.	de Andrade CLT, de Aguiar Pereira CC, Martins M, Lima SML, Portela MC. COVID-19
566		hospitalizations in Brazil's Unified Health System (SUS). PLoS One. 2020;15(12):e0243126.
567	115.	Bellan M, Patti G, Hayden E, et al. Fatality rate and predictors of mortality in an Italian cohort of
568		hospitalized COVID-19 patients. Sci Rep. 2020;10(1):20731.
569	116.	Rossi AP, Gottin L, Donadello K, et al. Obesity as a risk factor for unfavourable outcomes in
570		critically ill patients affected by Covid 19. Nutr Metab Cardiovasc Dis. 2021;31(3):762-768.
571	117.	Carrillo-Vega MF, Salinas-Escudero G, García-Peña C, Gutiérrez-Robledo LM, Parra-Rodríguez L.
572		Early estimation of the risk factors for hospitalization and mortality by COVID-19 in Mexico. PLoS
573		One. 2020;15(9):e0238905.
574	118.	Cedano J, Fabian Corona E, Gonzalez-Lara M, et al. Characteristics and outcomes of patients
575		with COVID-19 in an intensive care unit of a community hospital; retrospective cohort study. J
576		Community Hosp Intern Med Perspect. 2021;11(1):27-32.
577	119.	Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with
578		covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational
579		cohort study. <i>Bmj.</i> 2020;369:m1985.
580	120.	de Souza FSH, Hojo-Souza NS, de Oliveira Batista BD, da Silva CM, Guidoni DL. On the analysis of
581		mortality risk factors for hospitalized COVID-19 patients: A data-driven study using the major
582		Brazilian database. PLoS One. 2021;16(3):e0248580.
583	121.	Giacomelli A, Ridolfo AL, Milazzo L, et al. 30-day mortality in patients hospitalized with COVID-19
584		during the first wave of the Italian epidemic: A prospective cohort study. Pharmacol Res.
585		2020;158:104931.
586	122.	Giorgi Rossi P, Marino M, Formisano D, et al. Characteristics and outcomes of a cohort of COVID-
587		19 patients in the Province of Reggio Emilia, Italy. <i>PloS one</i> . 2020;15(8):e0238281.
588		doi:10.1371/journal.pone.0238281. Accessed 2020.
589	123.	Halasz G, Leoni ML, Villani GQ, Nolli M, Villani M. Obesity, overweight and survival in critically ill
590		patients with SARS-CoV-2 pneumonia: is there an obesity paradox? Preliminary results from
591		Italy. European Journal of Preventive Cardiology. 2020.
592	124.	Kates OS, Haydel BM, Florman SS, et al. Coronavirus Disease 2019 in Solid Organ Transplant: A
593		Multicenter Cohort Study. Clinical Infectious Diseases. 2020.
594	125.	Klang E, Kassim G, Soffer S, Freeman R, Levin MA, Reich DL. Severe Obesity as an Independent
595		Risk Factor for COVID-19 Mortality in Hospitalized Patients Younger than 50. Obesity.
596		2020;28(9):1595-1599.
597	126.	Murillo-Zamora E, Hernandez-Suarez CM. Survival in adult inpatients with COVID-19. Public
598		Health. 2021;190:1-3.
599	127.	Olivas-Martínez A, Cárdenas-Fragoso JL, Jiménez JV, et al. In-hospital mortality from severe
600		COVID-19 in a tertiary care center in Mexico City; causes of death, risk factors and the impact of
601		hospital saturation. PLOS ONE. 2021;16(2):e0245772.
602	128.	Parker A, Koegelenberg CFN, Moolla MS, et al. High HIV prevalence in an early cohort of hospital
603		admissions with COVID-19 in Cape Town, South Africa. S Afr Med J. 2020;110(10):982-987.
604	129.	Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE. Clinical characteristics and risk
605		factors for mortality of patients with COVID-19 in a large data set from Mexico. Ann Epidemiol.
606		2020;52:93-98.e92.
607	130.	Rodriguez A, Moreno G, Gómez J, et al. Severe infection due to the SARS-CoV-2 coronavirus:
608		Experience of a tertiary hospital with COVID-19 patients during the 2020 pandemic. <i>Med</i>
609		Intensiva. 2020;44(9):525-533.

610 611	131.	Salacup G, Lo KB, Gul F, et al. Characteristics and clinical outcomes of COVID-19 patients in an underserved-inner city population: A single tertiary center cohort. <i>J Med Virol</i> . 2021;93(1):416-
612 612	100	423. Shah D. Owans I. Franklin I. et al. Domographics, comorbiditios and outcomes in hospitalized
614	152.	Shall P, Owens J, Franklin J, et al. Demographics, comorbidities and outcomes in hospitalized
615	122	Di Castelnuovo A. Bonaccio M. Costanzo S. et al. Common cardiovascular risk factors and in-
616	155.	bosnital mortality in 3 894 patients with COVID-19: survival analysis and machine learning-based
617		findings from the multicentre Italian CORIST Study. Nutr Metab Cardiovasc Dis.
618		2020;30(11):1899-1913.
619	134.	Fava A, Cucchiari D, Montero N, et al. Clinical characteristics and risk factors for severe COVID-
620		19 in hospitalized kidney transplant recipients: A multicentric cohort study. American Journal of
621	425	Transplantation. 2020;20(11):3030-3041.
622	135.	Kalyanaraman Marcello R, Dolle J, Grami S, et al. Characteristics and outcomes of COVID-19
623	120	patients in New York City's public hospital system. <i>PLOS ONE</i> . 2020;15(12):e0243027.
624 625	136.	19 in Espírito Santo State, Brazil. <i>Am J Trop Med Hyg.</i> 2020;103(3):1184-1190.
626	137.	Mikami T, Miyashita H, Yamada T, et al. Risk Factors for Mortality in Patients with COVID-19 in
627		New York City. J Gen Intern Med. 2021;36(1):17-26.
628	138.	Yudong P, Kai M, Liang L, et al. Clinical characteristics and outcome of 112 patients with
629		cardiovascular disease infected with novel coronavirus pneumonia. Chinese Journal of
630		Cardiovascular Diseases. 2020;48(6):450-455.
631	139.	Halvatsiotis P, Kotanidou A, Tzannis K, et al. Demographic and clinical features of critically ill
632		patients with COVID-19 in Greece: The burden of diabetes and obesity. Diabetes Res Clin Pract.
633		2020;166:108331.
634	140.	Borobia AM, Carcas AJ, Arnalich F, et al. A Cohort of Patients with COVID-19 in a Major Teaching
635		Hospital in Europe. J Clin Med. 2020;9(6).
636 637	141.	19: A Systematic Review and Meta-Analysis. <i>Obesity (Silver Spring).</i> 2021;29(3):521-528.
638	142.	Poly TN, Islam MM, Yang HC, et al. Obesity and Mortality Among Patients Diagnosed With
639		COVID-19: A Systematic Review and Meta-Analysis. Frontiers in Medicine. 2021;8(28):620044.
640	143.	Aghili SMM, Ebrahimpur M, Arjmand B, et al. Obesity in COVID-19 era, implications for
641		mechanisms, comorbidities, and prognosis: a review and meta-analysis. Int J Obes (Lond).
642		2021:1-19.
643	144.	Booth A, Reed AB, Ponzo S, et al. Population risk factors for severe disease and mortality in
644		COVID-19: A global systematic review and meta-analysis. <i>PLoS One</i> . 2021;16(3):e0247461.
645	145.	Ng WH, Tipih T, Makoah NA, et al. Comorbidities in SARS-CoV-2 Patients: a Systematic Review
646		and Meta-Analysis. <i>mBio</i> . 2021;12(1).
647	146.	Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: An updated systematic
648		review and meta-analysis. J Med Virol. 2020.
649	147.	Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, et al. Predictors of in-hospital COVID-19
650		mortality: A comprehensive systematic review and meta-analysis exploring differences by age,
651		sex and health conditions. PLoS One. 2020;15(11):e0241742.
652	148.	Soeroto AY, Soetedjo NN, Purwiga A, et al. Effect of increased BMI and obesity on the outcome
653		of COVID-19 adult patients: A systematic review and meta-analysis. <i>Diabetes Metab Syndr.</i>
654		2020;14(6):1897-1904.
655	149.	Du Y, Lv Y, Zha W, Zhou N, Hong X. Association of body mass index (BMI) with critical COVID-19
656		and in-hospital mortality: A dose-response meta-analysis. <i>Metabolism</i> . 2021;117:154373.

657	150.	Chu Y, Yang J, Shi J, Zhang P, Wang X. Obesity is associated with increased severity of disease in
658		COVID-19 pneumonia: a systematic review and meta-analysis. Eur J Med Res. 2020;25(1):64.
659	151.	Khaodhiar L, McCowen KC, Blackburn GL. Obesity and its comorbid conditions. <i>Clin Cornerstone</i> .
660		1999;2(3):17-31.
661	152.	Dube S, Norby BJ, Pattan V, Carter RE, Basu A, Basu R. 11β-hydroxysteroid dehydrogenase types
662		1 and 2 activity in subcutaneous adipose tissue in humans: implications in obesity and diabetes.
663		J Clin Endocrinol Metab. 2015;100(1):E70-76.
664	153.	Kruglikov IL, Scherer PE. The Role of Adipocytes and Adipocyte-Like Cells in the Severity of
665		COVID-19 Infections. Obesity (Silver Spring). 2020;28(7):1187-1190.
666	154.	Tounian P, Aggoun Y, Dubern B, et al. Presence of increased stiffness of the common carotid
667		artery and endothelial dysfunction in severely obese children: a prospective study. <i>Lancet</i> .
668		2001:358(9291):1400-1404.
669	155.	Jin Y. Ji W. Yang H. Chen S. Zhang W. Duan G. Endothelial activation and dysfunction in COVID-
670		19: from basic mechanisms to potential therapeutic approaches. <i>Signal Transduction and</i>
671		Taraeted Therapy, 2020:5(1):293.
672	156.	Gavrijlaki E. Anvfanti P. Gavrijlaki M. Lazaridis A. Douma S. Gkaliagkousi E. Endothelial
673		Dysfunction in COVID-19: Lessons Learned from Coronaviruses. <i>Curr Hypertens Rep.</i>
674		2020:22(9):63.
675	157.	Cabandugama PK. Gardner MJ. Sowers JR. The Renin Angiotensin Aldosterone System in Obesity
676	-	and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. <i>Med Clin North Am.</i>
677		2017:101(1):129-137.
678	158.	Blokhin IO. Lentz SR. Mechanisms of thrombosis in obesity. <i>Curr Opin Hematol.</i> 2013:20(5):437-
679		444.
680	159.	Kwaifa IK. Bahari H. Yong YK. Noor SM. Endothelial Dysfunction in Obesity-Induced
681		Inflammation: Molecular Mechanisms and Clinical Implications. <i>Biomolecules</i> . 2020;10(2).
682	160.	Prieto D, Contreras C, Sánchez A. Endothelial dysfunction, obesity and insulin resistance. Curr
683		Vasc Pharmacol. 2014;12(3):412-426.
684	161.	Virdis A. Endothelial Dysfunction in Obesity: Role of Inflammation. <i>High Blood Press Cardiovasc</i>
685		Prev. 2016;23(2):83-85.
686	162.	Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity. <i>Nutr Metab Cardiovasc Dis.</i>
687		2009;19(6):440-449.
688	163.	Daryabor G, Kabelitz D, Kalantar K. An update on immune dysregulation in obesity-related
689		insulin resistance. Scand J Immunol. 2019;89(4):e12747.
690	164.	Danziger J, Chen KP, Lee J, et al. Obesity, Acute Kidney Injury, and Mortality in Critical Illness.
691		Critical care medicine. 2016;44(2):328-334.
692	165.	Akinnusi ME, Pineda LA, El Solh AA. Effect of obesity on intensive care morbidity and mortality: a
693		meta-analysis. Crit Care Med. 2008;36(1):151-158.
694	166.	Hogue CW, Jr., Stearns JD, Colantuoni E, et al. The impact of obesity on outcomes after critical
695		illness: a meta-analysis. Intensive Care Med. 2009;35(7):1152-1170.
696	167.	Oliveros H, Villamor E. Obesity and mortality in critically ill adults: a systematic review and meta-
697		analysis. Obesity (Silver Spring). 2008;16(3):515-521.
698	168.	Zhao Y, Li Z, Yang T, Wang M, Xi X. Is body mass index associated with outcomes of mechanically
699		ventilated adult patients in intensive critical units? A systematic review and meta-analysis. PLoS
700		One. 2018;13(6):e0198669.
701	169.	Motaib I, Zbiri S, Elamari S, Dini N, Chadli A, El Kettani C. Obesity and Disease Severity Among
702		Patients With COVID-19. Cureus Journal of Medical Science. 2021;13(2):e13165.

703170.National Heart L, and Blood Institute,. Development and Use of Study Quality Assessment Tools.704<u>https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools</u>. Updated 04/14/2021.705Accessed 04/14/2021, 2020.

708 Legends:

709 **Figure 1:** Prisma flow diagram

710 **Figure 2:** Forest plot for severity analysis

- 711 **Figure 3:** Forest plot for mortality analysis
- 712 **Figure 4:** Severity meta-regression analysis
- 713 **Figure 5:** Mortality meta-regression analysis
- **Figure 6: 6A:** Sensitivity analysis for mortality for BMI 18 kg/m²-25 kg/m² vs BMI 30 kg/m²-40
- kg/m^2 , **6B:** Sensitivity analysis for mortality for BMI 18 kg/m²-25 kg/m² vs BMI >40 kg/m², **6C:**
- Sensitivity analysis for mortality for BMI <18 kg/m²vs BMI 18 kg/m²-25 kg/m², **6D:** Sensitivity
- analysis for mortality for BMI 18 kg/m²-24.9 kg/m² vs BMI 25 kg/m²-29.9 kg/m², **6E:**
- Sensitivity analysis for severity of COVID-19 BMI $< 18 \text{ kg/m}^2 \text{ vs BMI } 18 \text{ kg/m}^2 25 \text{ kg/m}^2$, **6F**:
- Sensitivity analysis for severity of COVID-19 BMI 18 kg/m² 25 kg/m² vs BMI 30 kg/m² 40
- kg/m², **6G:** Sensitivity analysis for severity of COVID-19 BMI 18 kg/m² -25 kg/m² vs BMI >40
- kg/m^2 , **6H:** Sensitivity analysis for severity of COVID-19 BMI 18 kg/m²-25 kg/m² vs BMI 25
- 722 kg/m²-29.9 kg/m².
- Figure 7. 7A: Standard error plot for severity analysis, 7B: Standard error plot for mortality
 analysis.
- Figure 8: Several mechanisms of obesity's role in endothelial dysfunction: A central event inpathogenicity of COVID-19 infection
- 727 **Table 1:** Study characteristics

Table 2: Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies, **2a**:

729 Cohort studies, **2b:** Case control studies

	Obe	se	Non-o	bese		Risk Ratio	Risk	Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rande	om, 95% Cl	Dandom 05% Cl
Al Heialy et al	15	102	15	184	0.9%	1.80 [0.92, 3.54]	-		kandom, 95% Ci
Alkhatib et al	35	96	11	62	1.1%	2.05 [1.13, 3.73]			
Al-Sabah et al	24	157	80	1001	1.4%	1.91 [1.25, 2.92]			
Anderson et al	259	785	484	1327	2.0%	0.90 [0.80, 1.02]	-		
Argenziano et al	107	352	127	489	1.9%	1.17 [0.94, 1.46]	-		
Ariun S et al.	27	54	24	88	1.4%	1.83 [1.19, 2.83]		<u> </u>	
Bhatraiu et al	11	13	7	10	1.3%	1.21 [0.76, 1.93]			
Biscarin et al	26	80	48	252	1.5%	1 71 [1 14 2 56]			
Burrell et al	52	80	67	124	1.8%	1 20 0 96 1 511	-		
Busetto er al	7	29	q	63	0.7%	1 69 [0.70 4 09]			
Caletal	16	41	75	342	1 4 %	1 78 [1 16 2 74]			
Cariou et al	140	478	242	689	2.0%	0.93 [0.79, 1.10]		_	
causey et al	64	920	107	195	1 9 %	1 21 [1 00 1 47]			
Chan et al	2	12	10	34	0.5%	0.85 (0.28, 2.68)			
Claudia et al	12	27	22	72	1 296	1 30 [0.20, 2.30]	_		
Cramichow Set al	501	1264	1666	4621	2.1%	1.35 [0.01, 2.35]		-	-
Drobor of al	11	1204	1000	4001	1.70	1.50 [1.27, 1.40]	_		
Ehinger et al	17	44	60	173	1.2.70	1 11 [0 73 1 70]			
Epiliger et al		44	00	1/3	1.4 20	1.11 [0.73, 1.70]			<u> </u>
Federecal	0550	46066	4 1 2 0 7 4	106077	0.4 %	1.33 [0.37, 4.00]			
Coolotal	0000	40900	13074	120377	2.170	1.77 [1.73, 1.01]			
Gaueral Commu Comillo stol	4004	40070	1015	70	1.0%	2.27 [1.21, 4.20]			
Gerniy Camilo et al	1091	10272	4815	33062	2.170	1.28 [1.22, 1.39]			
Geruizialas et al	42	100	91	303	1.8%	2.50 [1.93, 3.23]			-
Goyaletal	56	136	(4	244	1.7%	1.36 [1.03, 1.79]			
Guneretal	20		30	145	1.3%	1.26 [0.77, 2.06]			-
Hajifathalian et al	92	277	104	493	1.8%	1.57 [1.24, 2.00]			
Hsuetal	100	565	89	523	1.8%	1.04 [0.80, 1.35]			
Huretal	83	259	55	227	1.7%	1.32 [0.99, 1.77]			
loannou et al	322	1412	356	5589	2.0%	3.58 [3.12, 4.11]			T
John Xie et al	94	187	90	100	2.0%	0.56 [0.48, 0.65]			
Kaeuffer et al	164	351	260	694	2.0%	1.25 [1.08, 1.45]			
Kalligeros et al	25	49	19	54	1.4%	1.45 [0.92, 2.28]	-		
Laccarino et al	49	157	346	2221	1.8%	2.00 [1.56, 2.58]			
Lighter et al	202	1370	229	2245	1.9%	1.45 [1.21, 1.73]			
Ling Hu et al	5	13	140	210	0.9%	0.58 [0.29, 1.16]		_	
Lodigiani et al	17	87	40	274	1.2%	1.34 [0.80, 2.24]	_		•
Mejla-Vilet et al	59	132	55	197	1.7%	1.57 [1.17, 2.11]			-
Mendy et al	24	53	67	163	1.0%	1.10 [0.78, 1.56]			
Monteiro et al		40	20	82	1.0%	3.17 [1.04, 0.11]			
Mugal at al.	14	10	20	03	1.470	2.24 [1.10, 2.72]			
Nugareran Nashaga atal	22	20	160	726	1.0%	2.24 [1.13, 4.24]			-
Nakachbandi at al	22 60	215	62	200	1.6%	2.42 [1.70, 3.23]			
Newton et al	20	102	50	203	1.0%	1.02 [1.10, 2.11]			T
Ortiz-Prizuela et al	20	50	14	207	1.3%	1.00[0.00, 1.07]			
Palaindimos et al	11	46	21	154	1.0%	1 75 [0 91 3 36]	-		+
Pone et al	67	440	162	1774	1.0%	1.67 [1.29.2.17]			
Potercen Aetal	10	10	102	11	0.6%	1.07 [1.20, 2.17]			-
notrilli ot al	274	1001	616	1600	2.0%	n on in on in on	-		
Pottiti et al	30	146	27	1300	2.070	0.03 [0.00, 0.30]			
Philippee et al	45	125	102	242	1.9%	0.05 [0.50, 1.55]		_	
Pongnirul of al	4J 6	23	20	171	0.0%	2 22 [1 05 5 17]			
	66	107	62	170	1 0 %	2.33 [1.03, 3.17]			
Ramial et al	79	921	409	6662	1.0%	1.99[1.02 1.61]			
Pao et al	70	114	400	126	1.0%	1 72 [1 22 2 24]			
Poilov ot al	12	50	70	400	1.0.0	1.72 [1.32, 2.24]			
Relievet al Redríguez Melinere et al	F1	74	170	244	1.2.70	1.33 [0.70, 2.20]			
Rounguez-wonnero et al	10	104	21	270	1.370	1.33 [1.11, 1.00]			⊢ ⊷
Shokhar at al	15	20	12	10	1.4.0	4.22 [2.75, 0.40]			
cimmonet et al	19	59	37	65	1.9%	1 / 3 [1 1 2 1 92]			
Steinherg et al	20	100	7	110	0.0%	A 66 [2 00 0 04]			
suleyman et al	87	210	54	1/5	1.8%	1 11 [0.85 1.45]	_		
Tonetti et al	136	176	304	524	2.0%	1 33 [1 20 1 48]			
Urra et al	7	17	20	155	0.9%	3 19 1 58 6 4 3			
Vaquero-Roncero et el	24	46	47	100	1.6%	1 11 /0 79 1 571	_		
Wang Jian et al	4	40	14	257	0.5%	1.84 /0.64 5 301			
Wang min et	17	60	68	481	1.3%	2.00 [1.27. 3.17]			
Wang Retal	22	44	18	52	1.3%	1.44 [0.90, 2.33]	-		
Xiang ong et al	 6	40		51	0,3%	3,83 [0.82, 17,95]	_		→ 🔺
Zheng et al	17	45	2	21	0.3%	3.97 [1.01, 15.62]		· · · · ·	+ [*]
			-						
Total (95% CI)		76715		218183	100.0%	1.46 [1.34, 1.60]		♦	
Total events	14682		25590						intall Eavours (control)
Heterogeneity: Tau ² = 0.10); Chi² = 8	83.84, df	'= 69 (P	< 0.00001)); I² = 92%			2 5 1	_ smag ravours (control) N
Test for overall effect: Z = 3	8.48 (P < 0).00001)					Favours [experimental]	Favours (control)	-
							*		

Figure 2: Forest plot for severity analysis.

	Obese		Non-ol	oese		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Al Heialy et al	6	102	4	184	0.2%	2.71 [0.78, 9.37]		
Anderson et al	140	785	324	1327	3.2%	0.73 [0.61, 0.87]		
Andrea Rossi et al	9	35	9	60	0.5%	1.71 [0.75, 3.91]		
Arjun S et al.	23	54	32	88	1.4%	1.17 [0.77, 1.77]		
Bellan et al.	21	60	101	247	1.6%	0.86 [0.59, 1.25]		
Biscarin et al	26	80	89	252	1.7%	0.92 [0.64, 1.32]		
Borobia et al	66	242	394	1984	2.7%	1.37 [1.10, 1.72]		
Burrell et al	8	80	22	124	0.5%	0.56 (0.26, 1.20)		
Busetto er al	2	29	10	63	0.2%	0.43 [0.10, 1.86]		
Caletal	1	40	2	342	0.1%		_	
Cariou et al	38	478	102	689	1 7%	0.60 (0.42, 0.85)		
Carrillo-Vena	289	987	674	2935	3.8%	1 28 [1 13 1 43]	+	
Cartelnuova et al	203 60	376	410	2333	2,7%	0.07 [0.77, 1.22]		
Castelliuova et al	47	50	410	2173	2.7.0	0.37 [0.77, 1.22] 1 70 [1 03 1 61]		
Chandietal	4/ 07	162	40	127	2.0%	1.29[1.03, 1.01]		
Citariu et al	07	70	/0	137	2.070			
Cicen et al	10	70	49	202	0.770	0.09 [0.30, 1.29]		
Craveuretar Oraveiahaus Olatal	20	4064	20	13	1.1%	1.34 [0.82, 2.17]		
Czemicnow, Siet al	244	1204	047	4531	3.7%	1.35 [1.18, 1.54]		
de Andrade et al	224	000	21583	88750	3.9%	1.41 [1.26, 1.56]	-	
Docnentyetai	417	1685	3/68	14396	4.1%	0.95 [0.87, 1.03]	7	
Fava et al	11	28	17	76	0.8%	1.76 [0.94, 3.27]		
Genny Carrillo et al	6080	16272	18690	53062	4.4%	1.06 [1.04, 1.09]		
Giacomelli et al	13	38	35	195	1.0%	1.91 [1.12, 3.25]		
Giorgi rossi	8	34	209	1041	0.8%	1.17 [0.63, 2.17]		
Hajifathalian et al	22	277	66	493	1.2%	0.59 [0.37, 0.94]		
Halasz et al	19	48	43	194	1.3%	1.79 [1.15, 2.77]		
Halvatsiotis et al	12	31	14	59	0.7%	1.63 [0.86, 3.08]		
Hojo de Souza et al	1514	3633	18580	40495	4.4%	0.91 [0.87, 0.95]	•	
loannou et al	356	1412	739	5589	3.9%	1.91 [1.70, 2.13]	-	
Kates et al	41	166	49	316	1.6%	1.59 [1.10, 2.31]		
Klang et al	384	1231	752	2175	4.0%	0.90 [0.82, 1.00]	+	
Marcello et al	601	2278	1123	3970	4.1%	0.93 [0.86, 1.02]	+	
Menezes Soares et al	50	111	406	1041	2.8%	1.15 [0.93, 1.44]	+	
Mikami et al	57	288	749	3420	2.6%	0.90 [0.71, 1.15]		
Murillo-Zamora et al	458	1197	1277	4196	4.1%	1.26 [1.15, 1.37]	+	
Nakeshbandi et al	87	215	132	289	2.9%	0.89 [0.72, 1.09]	+	
Olivas-Martı´nez et al	112	357	103	443	2.7%	1.35 [1.07, 1.70]		
Parker et al	9	32	19	81	0.7%	1.20 [0.61, 2.37]		
Parra-Bracamonte et al	8347	22390	25743	73068	4.5%	1.06 [1.04, 1.08]		
Peng et al	15	33	2	79	0.2%	17.95 [4.35, 74,16]	→	
Pepe et al	51	440	113	1774	2.0%	1.82 [1.33, 2.49]		
Petersen. A et al	0	19	2	11	0.0%	0.12 [0.01, 2.29]	←	
Pettit et al	14	146	10	92	0.5%	0.88 (0.41, 1.90)		
Ramiali et al	115	831	620	5562	3.1%	1 24 [1 03 1 49]	_ . _	
Rodriguez et al	4	11	6	32	0.3%	1 94 [0 67 5 62]		
Rodríguez-Molinero et al	15	74	64	344	1 1 96	1 09 0 66 1 80		
Rotoli et al	31	104	63	379	1.6%	1 70 [1 73 7 50]		
Rolon et al	31 04	104	21	1/16	1.070	1.75 [1.25, 2.58]		
Chab at al	21	37 104	17	140	1.170	0.001 [0.02, 1.00]		
Chainera at cl	10	401	2	41	1.470 0.20/	0.00 [0.20, 0.07] 5 50 [1 64 - 10 44]	_	
otempergiet al Wong minist	15	100	3	110	0.2%	0.00 [1.04, 18.44]		
wang min et	б	60	23	481	0.4%	2.09 [0.89, 4.93]		
Total (95% CI)		59707		317942	100.0%	1.12 [1.06, 1.19]	◆	
Total events	20296		98055					
Heterogeneity: Tau ² = 0.02	2; Chi ≃ = 4	10.32, df	= 50 (P <	0.00001); I ^z = 889	6		
Test for overall effect: Z = 3.82 (P = 0.0001) 0.1 0.2 0.5 1 2 5 10 Favours [experimental] Favours [control]								

Figure 3: Forest plot for mortality analysis.

Regression of Log odds ratio on Female

Regression of Log odds ratio on Cardiovascular disease

Regression of Log odds ratio on Pulmonary Disease

Regression of Log odds ratio on Age

Regression of Log odds ratio on Diabetes

Regression of Log odds ratio on HTN

Figure 4: Severity meta-regression analysis

Pulmonary diseas

Regression of Log odds ratio on Cardiovascular disease

33

100.0

	BMI 18-25		BMI 30-40		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Al Heialy et al	0	50	6	84	5.3%	0.12 [0.01, 2.17]	• • •
Anderson et al	154	542	114	643	27.1%	1.84 [1.40, 2.43]	-
Burrell et al	11	0	0	0		Not estimable	
Chand et al	16	41	87	296	22.8%	1.54 [0.78, 3.02]	+ - -
Czernichow et al	33	329	87	488	25.7%	0.51 [0.33, 0.79]	
Halasz et al	11	38	14	38	19.1%	0.70 [0.27, 1.83]	
Total (95% CI)		1000		1549	100.0%	0.91 [0.44, 1.92]	+
Total events	225		308				
Heterogeneity: Tau² = 0.51; Chi² = 28.59, df = 4 (P < 0.00001); I² = 86%							
Test for overall effect: Z = 0.24 (P = 0.81)						BMI 18-25 BMI 30-40	

Figure 6A: Sensitivity analysis for mortality for BMI 18 kg/m²-25 kg/m² vs BMI 30 kg/m²-40

kg/m²

	BMI 18	-25	BMI >	40		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	I M-H, Fixed, 95% Cl			
Al Heialy et al	4	134	0	18	1.4%	1.28 [0.07, 24.67]	ı — — — — — — — — — — — — — — — — — — —			
Anderson et al	154	542	26	142	49.8%	1.77 [1.11, 2.82]	·] –			
Czernichow et al	33	329	17	104	39.3%	0.57 [0.30, 1.07]	ng → ■→			
Halasz et al	11	38	5	10	9.5%	0.41 [0.10, 1.69]	ı			
Total (95% CI)		1043		274	100.0%	1.16 [0.82, 1.65]	ı 🔶			
Total events	202		48							
Heterogeneity: Chi ² =	10.11, df	= 3 (P =	= 0.02); l ^a	= 70%	I.			H		
Test for overall effect:	Z = 0.84 (P = 0.4	10)				BMI 18-25 BMI >40	U		

Figure 6B: Sensitivity analys	s for mortality for BMI	$18 \text{ kg/m}^2 - 25 \text{ kg/m}^2$	vs BMI >40 kg/m ²
-------------------------------	-------------------------	---	------------------------------

	BMI <	18	BMI 18	-25		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl			
Anderson et al	26	68	154	542	21.8%	1.56 [0.92, 2.63]			+		
Burrell et al	0	2	11	52	0.6%	0.72 [0.03, 16.11]	_				
Chand et al	0	1	16	41	0.6%	0.52 [0.02, 13.42]					
Ciceri et al	1	5	15	85	1.2%	1.17 [0.12, 11.19]					
Czernichow et al	11	71	33	329	11.0%	1.64 [0.79, 3.44]			+		
Halasz et al	0	1	11	38	0.6%	0.80 [0.03, 21.05]	_				
loannou et al	64	281	306	1889	64.3%	1.53 [1.13, 2.07]					
Total (95% CI)		429		2976	100.0%	1.52 [1.19, 1.94]			◆		
Total events	102		546								
Heterogeneity: Tau ² =	0.00; Chi	i² = 0.91	D, df = 6 (P = 0.9	9); I² = 09	6		01	1 10	100	
Test for overall effect:	Z = 3.35 ((P = 0.0	1008)				0.01	0.1	BMI BMI 18-25	,00	

	BMI 18	-25	BMI 25-	29.9 Odds Ratio			Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Al Heialy et al	0	50	4	134	1.8%	0.29 [0.02, 5.43] -	
Anderson et al	154	542	144	717	25.1%	1.58 [1.22, 2.05]	-
Burrell et al	11	52	6	51	9.4%	2.01 [0.68, 5.93]	- +
Chand et al	16	41	51	91	14.3%	0.50 [0.24, 1.06]	
Ciceri et al	15	85	33	172	15.8%	0.90 [0.46, 1.77]	_ _
Czernichow et al	33	329	49	395	20.4%	0.79 [0.49, 1.26]	
Halasz et al	11	38	32	104	13.2%	0.92 [0.41, 2.07]	
Total (95% CI)		1137		1664	100.0%	0.98 [0.66, 1.48]	•
Total events	240		319				
Heterogeneity: Tau² = Test for overall effect:	0.15; Chi Z = 0.08 (i ^z = 15.4 (P = 0.9	42, df = 6 14)	(P = 0.0)2); I² = 61	% <u>–</u> 0.0	11 0.1 1 10 100 BMI 18-25 BMI 25-29.9

Figure 6D: Sensitivity analysis for mortality for BMI 18 kg/m²-24.9 kg/m² vs BMI 25 kg/m²-

29.9 kg/m²

	BMI <1	8	BMI 18	-25		Odds Ratio	Odds Ratio	
Study or Subgroup	Events 1	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Anderson et al	32	68	212	542	34.5%	1.38 [0.83, 2.30]	⊢	
Burrell et al	1	2	28	52	1.1%	0.86 [0.05, 14.45]		
Czernichow et al	22	71	110	329	29.0%	0.89 [0.51, 1.55]		
loannou et al	19	281	123	1889	35.4%	1.04 [0.63, 1.72]	· -+-	
Total (95% CI)		422		2812	100.0%	1.10 [0.81, 1.48]	↓ ♦	
Total events	74		473					
Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi² Z = 0.61 (P	e 1.41 P = 0.5	,df=3(4)	P = 0.7	0); I² = 0%	6	0.01 0.1 1 10 BMI 18 BMI 18-25	100

Figure 6E: Sensitivity analysis for severity of COVID-19 BMI <18 kg/m² vs BMI 18 kg/m² -25

kg/m²

	BMI 18	-25	BMI 30	-40		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	I M-H, Random, 95% CI
Al Heialy et al	2	50	14	84	11.5%	0.21 [0.05, 0.96]]
Al-Sabah et al	13	266	20	138	23.6%	0.30 [0.15, 0.63]]
Anderson et al	212	542	208	643	32.8%	1.34 [1.06, 1.71]] –
Czernichow et al	110	329	194	488	32.0%	0.76 [0.57, 1.02]]
Total (95% CI)		1187		1353	100.0%	0.64 [0.34, 1.20]	•
Total events	337		436				
Heterogeneity: Tau ² =	: 0.31; Chi	i² = 23.4	42, df = 3	(P ≤ 0.	0001); I ² :	= 87%	
Test for overall effect:	Z=1.40 ((P = 0.1	6)				BMI 18-25 BMI 30-40

Figure 6F: Sensitivity analysis for severity of COVID-19 BMI 18 kg/m²-25 kg/m² vs BMI 30

 $kg/m^2 - 40 \ kg/m^2$

	BMI 18-25	BMI >40		Odds Ratio	Odds Ratio
Study or Subgroup	Events Tota	I Events Tota	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Al Heialy et al	2 5) 1 18	5.7%	0.71 [0.06, 8.32]	
Al-Sabah et al	13 26	6 4 19	16.7%	0.19 [0.06, 0.66]	
Anderson et al	212 543	2 51 142	39.9%	1.15 [0.78, 1.68]	
Czernichow et al	110 32	3 44 104	37.7%	0.68 [0.44, 1.08]	
Total (95% CI)	118	283	100.0%	0.68 [0.36, 1.28]	•
Total events	337	100			
Heterogeneity: Tau ² =	0.22; Chi ² = 8.	81, df = 3 (P = 0.	03); I 2 = 66	ì%	
Test for overall effect:	Z = 1.19 (P = 0	.23)			BMI 18-25 BMI >40

Figure 6G: Sensitivity analysis for severity of COVID-19 BMI 18 kg/m² -25 kg/m² vs BMI >40

kg/m²

	BMI 18-2	25	BMI 25-3	29.9		Odds Ratio		Odds Ratio		
Study or Subgroup	Events 1	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rando	m, 95% Cl	
Al Heialy et al	2	50	13	134	2.9%	0.39 [0.08, 1.78]			_	
Al-Sabah et al	13	266	34	304	11.1%	0.41 [0.21, 0.79]				
Anderson et al	212	542	240	717	26.9%	1.28 [1.01, 1.61]		•	-	
Burrell et al	28	52	30	51	8.8%	0.82 [0.37, 1.78]			_	
Czernichow et al	110	329	135	395	23.3%	0.97 [0.71, 1.32]		-+	-	
loannou et al	123 1	1889	206	3167	26.9%	1.00 [0.79, 1.26]		+		
Total (95% CI)	:	3128		4768	100.0%	0.92 [0.70, 1.20]		•		
Total events	488		658							
Heterogeneity: Tau ² =	0.06; Chi ^z 7 – 0.62 (P	= 12.9	96, df = 5 2)	(P = 0.0	12); I ^z = 61	%	0.01	0.1 1	10	100
restion overall effect.	д — 0.03 (F	0.5	3)					BMI 18-25	BMI 25-29.9	

Figure 6H: Sensitivity analysis for severity of COVID-19 BMI 18 kg/m²-25 kg/m² vs BMI 25

kg/m²-29.9 kg/m²

Figure 7A: Standard error plot for severity analysis.

Figure 7B: Standard error plot for mortality analysis.

Figure 8: Several mechanisms of obesity's role in endothelial dysfunction: A central event in pathogenicity of COVID-19 infection

Table 1: Study characteristics

Study	Study Design	Definition of Severity	Total	Total	Median	Female	Diabetes	Heart	Pulmona	Hyperte
			COVID-	Patients	Age	Sex	Proporti	Disease	ry	nsion
			19	with		Proporti	on	Proporti	Disease	Proporti
			Positive	Obesity		on		on	Proporti	on
			Patients						on	
Al Heialy et al.42	Cohort	ICU admissions	286	102	46.9	27.2	26.2	3.8	3.8	25.8
Al-Sabah <i>et al</i> . ⁴³	Cohort	ICU admissions	1158	157	40.5	18.4	23.4	N/A	N/A	20.4
Alkhatib et al. ⁴⁴	Retrospective cohort	ICU admissions	158	96	57	61.4	48.1	13.3	17.5	67.7
Anderson <i>et al</i> . ⁴⁵	Retrospective cohort	Intubation	2466	785	67	42	40	7	17	52
Andrea Rossi <i>et al</i> . ¹¹⁶	Cohort	Not valid	95	35	N/A	18	19	38.9	N/A	47.4
Argenziano <i>et al</i> . ¹⁰⁷	Cohort	ICU admission	1000	352	63	40.4	37.2	23.3	22.3	60.1
Arjun S <i>et al</i> . ⁴⁶	Cohort	ICU admissions	142	54	N/A	N/A	N/A	N/A	N/A	N/A
Bellan <i>et al</i> . ¹¹⁵	Cohort	Not valid	407	60	71	41	24	30	3	58
Bhatraju <i>et al</i> .47	Cohort	ICU admissions	24	13	64	38	58	N/A	16	N/A
Biscarin <i>et al</i> . ⁴⁸	Retrospective cohort	ICU admissions	427	80	67	31.8	19	28	N/A	50
Borobia <i>et al</i> . ¹⁴⁰	Cohort	Not valid	2226	242	61	51.8	17.1	19.3	13.3	41.3
Burrell <i>et al</i> . ⁴⁹	Cohort	Mechanical ventilation	204	80	63.5	31	28	20	11	24
Busetto er al. ⁵⁰	Cohort	ICU admission	92	29	70.5	39.1	30.4	31.5	13	64.1
Cai <i>et al</i> . ⁵¹	Cohort	ICU admission	383	41	48	52.2	7.3	4.9	N/A	15.1
Cariou et al. ⁵²	Cohort	Mechanical ventilation	1117	428	69.8	35.1	88.5	11.6	10.4	77.2
Carrillo-Vega <i>et al</i> . ¹¹⁷	Cohort	Not valid	3922	987	54.2	35	30	5.1	8.1	34.1
Castelnuova <i>et al</i> . ¹³³	Cohort	Not valid	3894	376	67	38.3	19	21.1	14.3	49.4
caussy et al.53	Cohort	Mechanical ventilation	291	96	N/A	N/A	N/A	N/A	N/A	N/A
Cedano <i>et al</i> . ¹¹⁸	Cohort	Not valid	132	59	63	41	45	24	13	59
Chand <i>et al</i> . ¹¹¹	Cohort	Not valid	300	163	58.2	39.3	44.7	13.7	18.7	66.7
Chao <i>et al.</i> ⁵⁴	Cohort	ICU admissions	46	12	13.1	32.7	N/A	2.1	24	N/A
	Prospective case									
Ciceri <i>et al</i> . ¹¹²	control	Not valid	410	78	65	27.1	17.8	12.4	5.3	49.5
Claudia <i>et al</i> . ⁹⁹	Cohort	ICU admissions	99	27	67	37	22	28	21	57

Table 1: Study characteristics (continued)

Cravedi <i>et al</i> . ¹¹³	Cohort	Not valid	144	71	62	34.02	52	28	18.8	95
Czernichow et al.55	Cohort	ICU admissions	5,795	1264	58	34.5	42.6	4.5	N/A	53.4
de Andrade <i>et al</i> . ¹¹⁴	Cohort	Not valid	89405	655	58.9	43.5	1.5	N/A	N/A	4.2
Docherty et al. ¹¹⁹	Cohort	Not valid	20133	1685	72.9	40.1	20.7	30.9	16.11	N/A
Dreher <i>et al</i> . ⁵⁶	Cohort	ARDS	50	17	65	34	58	N/A	50	70
Ebinger <i>et al</i> . ⁵⁷	Cohort	ICU admissions	214	44	62	37	40	21	20	54.6
Fava <i>et al</i> . ¹³⁴	Cohort	Not valid	104	28	59.7	42.3	30.8	29.8	15.4	86.5
Feuth <i>et al</i> . ⁵⁸	Cohort	ICU admissions	28	10	56	46	25	N/A	21	43
		ICU admission +								
Fusco <i>et al</i> . ¹⁰⁰	Cohort	Mechanical ventilation	173942	46965	63	48.9	40.7	73.5	22.2	64.8
Gao et al. ⁵⁹	Cohort	Not mentioned	150	75	48	37.8	19.3	N/A	N/A	N/A
Genny Carrillo et al. ¹⁰¹	Retrospective cohort	Mechanical ventilation	69334	16272	55.29	37.38	30.92	4.21	5.65	34.41
Gerotziafas <i>et al</i> . ⁶⁰	Cohort	ICU admissions	430	67	64.3	61	21.6	N/A	9	47.7
Giacomelli <i>et al</i> . ¹²¹	Cohort	Not valid	233	38	61	30.9	N/A	N/A	N/A	N/A
Giorgi Rossi et al. ¹²²	Cohort	Not valid	1075	34	63.2	38.8	17	31	8.4	26
Goyal <i>et al</i> . ⁶¹	Cohort	Mechanical ventilation	393	136	62.2	39.4	25.2	13.7	17.6	50.1
		ARDS, sepsis, and								
						40 5	42 5	<u> </u>		22.4
Guner <i>et al</i> . ⁶²	Cohort	septic shock	222	77	50.6	40.5	13.5	23.6	5.4	23.4
Guner <i>et al</i> . ⁶² Hajifathalian <i>et al</i> . ⁶³	Cohort Cohort	septic shock ICU admissions	222 770	77 277	50.6 64	40.5 39.2	13.5 31	23.6 21	5.4 17.4	23.4 56.1
Guner <i>et al</i> . ⁶² Hajifathalian <i>et al</i> . ⁶³ Halasz <i>et al</i> . ¹²³	Cohort Cohort Cohort	septic shock ICU admissions Not valid	222 770 242	77 277 48	50.6 64 64	40.5 39.2 18.2	13.5 31 15.3	23.6 21 14.5	5.4 17.4 8.7	23.4 56.1 45.5
Guner <i>et al.</i> ⁶² Hajifathalian <i>et al.</i> ⁶³ Halasz <i>et al.</i> ¹²³ Halvatsiotis <i>et al.</i> ¹³⁹	Cohort Cohort Cohort Cohort	ICU admissions Not valid Not valid	222 770 242 90	77 277 48 31	50.6 64 64 65.5	40.5 39.2 18.2 20	13.5 31 15.3 18.8	23.6 21 14.5 21.1	5.4 17.4 8.7 12	23.4 56.1 45.5 50
Guner et al.62Hajifathalian et al.63Halasz et al.123Halvatsiotis et al.139Hojo de Souza et al.120	Cohort Cohort Cohort Cohort Retrospective cohort	ICU admissions Not valid Not valid Not valid	222 770 242 90 44128	77 277 48 31 3633	50.6 64 64 65.5 N/A	40.5 39.2 18.2 20 45.85	13.5 31 15.3 18.8 39.82	23.6 21 14.5 21.1 52.02	5.4 17.4 8.7 12 6.31	23.4 56.1 45.5 50 N/A
Guner <i>et al.</i> ⁶² Hajifathalian <i>et al.</i> ⁶³ Halasz <i>et al.</i> ¹²³ Halvatsiotis <i>et al.</i> ¹³⁹ Hojo de Souza <i>et al.</i> ¹²⁰ Hsu <i>et al.</i> ¹⁰⁸	Cohort Cohort Cohort Cohort Retrospective cohort Cohort	Septic shock ICU admissions Not valid Not valid Not valid ICU admissions	222 770 242 90 44128 1088	77 277 48 31 3633 565	50.6 64 65.5 N/A 63	40.5 39.2 18.2 20 45.85 45	13.5 31 15.3 18.8 39.82 35.7	23.6 21 14.5 21.1 52.02 19.7	5.4 17.4 8.7 12 6.31 24.3	23.4 56.1 45.5 50 N/A 57
Guner et al. ⁶² Hajifathalian et al. ⁶³ Halasz et al. ¹²³ Halvatsiotis et al. ¹³⁹ Hojo de Souza et al. ¹²⁰ Hsu et al. ¹⁰⁸ Hur et al. ⁶⁴	Cohort Cohort Cohort Cohort Retrospective cohort Cohort Cohort	Septic shock ICU admissions Not valid Not valid Not valid ICU admissions Intubation	222 770 242 90 44128 1088 486	77 277 48 31 3633 565 259	50.6 64 65.5 N/A 63 59	40.5 39.2 18.2 20 45.85 45 44.2	13.5 31 15.3 18.8 39.82 35.7 32.9	23.6 21 14.5 21.1 52.02 19.7 22.8	5.4 17.4 8.7 12 6.31 24.3 16	23.4 56.1 45.5 50 N/A 57 54.9
Guner et al.62Hajifathalian et al.63Halasz et al.123Halvatsiotis et al.139Hojo de Souza et al.120Hsu et al.108Hur et al.64Ioannou et al.66	Cohort Cohort Cohort Cohort Retrospective cohort Cohort Cohort Cohort	septic shock ICU admissions Not valid Not valid ICU admissions Intubation Mechanical ventilation	222 770 242 90 44128 1088 486 3465	77 277 48 31 3633 565 259 1412	50.6 64 65.5 N/A 63 59 61.1	40.5 39.2 18.2 20 45.85 45 44.2 19.6	13.5 31 15.3 18.8 39.82 35.7 32.9 48.8	23.6 21 14.5 21.1 52.02 19.7 22.8 47.3	5.4 17.4 8.7 12 6.31 24.3 16 33	23.4 56.1 45.5 50 N/A 57 54.9 75
Guner et al. ⁶² Hajifathalian et al. ⁶³ Halasz et al. ¹²³ Halvatsiotis et al. ¹³⁹ Hojo de Souza et al. ¹²⁰ Hsu et al. ¹⁰⁸ Hur et al. ⁶⁴ Ioannou et al. ⁶⁶ John Xie et al. ¹⁰⁶	Cohort Cohort Cohort Cohort Retrospective cohort Cohort Cohort Cohort Retrospective cohort	septic shock ICU admissions Not valid Not valid ICU admissions Intubation Mechanical ventilation ICU admissions	222 770 242 90 44128 1088 486 3465 287	77 277 48 31 3633 565 259 1412 187	50.6 64 65.5 N/A 63 59 61.1 61.5	40.5 39.2 18.2 20 45.85 45 44.2 19.6 56.8	13.5 31 15.3 18.8 39.82 35.7 32.9 48.8 53.6	23.6 21 14.5 21.1 52.02 19.7 22.8 47.3 14.3	5.4 17.4 8.7 12 6.31 24.3 16 33 20.5	23.4 56.1 45.5 50 N/A 57 54.9 75 80.1
Guner et al. ⁶² Hajifathalian et al. ⁶³ Halasz et al. ¹²³ Halvatsiotis et al. ¹³⁹ Hojo de Souza et al. ¹²⁰ Hsu et al. ¹⁰⁸ Hur et al. ⁶⁴ Ioannou et al. ⁶⁶ John Xie et al. ¹⁰⁶	Cohort Cohort Cohort Cohort Retrospective cohort Cohort Cohort Cohort Retrospective cohort	septic shock ICU admissions Not valid Not valid ICU admissions Intubation Mechanical ventilation ICU admissions Death or admission to	222 770 242 90 44128 1088 486 3465 287	77 277 48 31 3633 565 259 1412 187	50.6 64 65.5 N/A 63 59 61.1 61.5	40.5 39.2 18.2 20 45.85 45 44.2 19.6 56.8	13.5 31 15.3 18.8 39.82 35.7 32.9 48.8 53.6	23.6 21 14.5 21.1 52.02 19.7 22.8 47.3 14.3	5.4 17.4 8.7 12 6.31 24.3 16 33 20.5	23.4 56.1 45.5 50 N/A 57 54.9 75 80.1
Guner et al.62Hajifathalian et al.63Halasz et al.123Halvatsiotis et al.139Hojo de Souza et al.120Hsu et al.108Hur et al.64Ioannou et al.66John Xie et al.106Kaeuffer et al.67	Cohort Cohort Cohort Cohort Retrospective cohort Cohort Cohort Retrospective cohort Retrospective cohort	septic shock ICU admissions Not valid Not valid ICU admissions Intubation Mechanical ventilation ICU admissions Death or admission to ICU	222 770 242 90 44128 1088 486 3465 287 1045	77 277 48 31 3633 565 259 1412 187 351	50.6 64 65.5 N/A 63 59 61.1 61.5 66.3	40.5 39.2 18.2 20 45.85 45 44.2 19.6 56.8 41.4	13.5 31 15.3 18.8 39.82 35.7 32.9 48.8 53.6 25.3	23.6 21 14.5 21.1 52.02 19.7 22.8 47.3 14.3 11.6	5.4 17.4 8.7 12 6.31 24.3 16 33 20.5 16.5	23.4 56.1 45.5 50 N/A 57 54.9 75 80.1 52.4
Guner et al. ⁶² Hajifathalian et al. ⁶³ Halasz et al. ¹²³ Halvatsiotis et al. ¹³⁹ Hojo de Souza et al. ¹²⁰ Hsu et al. ¹⁰⁸ Hur et al. ⁶⁴ Ioannou et al. ⁶⁶ John Xie et al. ¹⁰⁶ Kaeuffer et al. ⁶⁷ Kalligeros et al. ³²	Cohort Cohort Cohort Cohort Retrospective cohort Cohort Cohort Retrospective cohort Retrospective cohort Cohort Cohort	septic shock ICU admissions Not valid Not valid ICU admissions Intubation Mechanical ventilation ICU admissions Death or admission to ICU ICU admissions	222 770 242 90 44128 1088 486 3465 287 1045 103	77 277 48 31 3633 565 259 1412 187 351 49	50.6 64 65.5 N/A 63 59 61.1 61.5 66.3 60	40.5 39.2 18.2 20 45.85 45 44.2 19.6 56.8 41.4 39.8	13.5 31 15.3 18.8 39.82 35.7 32.9 48.8 53.6 25.3 36.8	23.6 21 14.5 21.1 52.02 19.7 22.8 47.3 14.3 11.6 24.2	5.4 17.4 8.7 12 6.31 24.3 16 33 20.5 16.5 19.5	23.4 56.1 45.5 50 N/A 57 54.9 75 80.1 52.4 64
Guner et al.62Hajifathalian et al.63Halasz et al.123Halvatsiotis et al.139Hojo de Souza et al.120Hsu et al.64Ioannou et al.66John Xie et al.106Kaeuffer et al.67Kalligeros et al.124	Cohort Cohort Cohort Cohort Retrospective cohort Cohort Cohort Retrospective cohort Retrospective cohort Cohort Cohort Cohort Cohort	septic shock ICU admissions Not valid Not valid ICU admissions Intubation Mechanical ventilation ICU admissions Death or admission to ICU ICU admissions Not valid	222 770 242 90 44128 1088 486 3465 287 1045 103 482	77 277 48 31 3633 565 259 1412 187 351 49 166	50.6 64 65.5 N/A 63 59 61.1 61.5 66.3 60 57.5	40.5 39.2 18.2 20 45.85 45 44.2 19.6 56.8 41.4 39.8 28.8	13.5 31 15.3 18.8 39.82 35.7 32.9 48.8 53.6 25.3 36.8 51	23.6 21 14.5 21.1 52.02 19.7 22.8 47.3 14.3 11.6 24.2 30.1	5.4 17.4 8.7 12 6.31 24.3 16 33 20.5 16.5 19.5 10.4	23.4 56.1 45.5 50 N/A 57 54.9 75 80.1 52.4 64 77.4
Guner et al. ⁶² Hajifathalian et al. ⁶³ Halasz et al. ¹²³ Halvatsiotis et al. ¹³⁹ Hojo de Souza et al. ¹²⁰ Hsu et al. ¹⁰⁸ Hur et al. ⁶⁴ Ioannou et al. ⁶⁶ John Xie et al. ¹⁰⁶ Kaeuffer et al. ⁶⁷ Kalligeros et al. ³² Kates et al. ¹²⁴	Cohort Cohort Cohort Cohort Retrospective cohort Cohort Cohort Retrospective cohort Retrospective cohort Cohort Cohort Cohort Cohort Cohort Cohort	septic shock ICU admissions Not valid Not valid ICU admissions Intubation Mechanical ventilation ICU admissions Death or admission to ICU ICU admissions Not valid Not valid	222 770 242 90 44128 1088 486 3465 287 1045 103 482 3406	77 277 48 31 3633 565 259 1412 187 351 49 166 1231	50.6 64 65.5 N/A 63 59 61.1 61.5 66.3 60 57.5 N/A	40.5 39.2 18.2 20 45.85 45 44.2 19.6 56.8 41.4 39.8 28.8 N/A	13.5 31 15.3 18.8 39.82 35.7 32.9 48.8 53.6 25.3 36.8 51 N/A	23.6 21 14.5 21.1 52.02 19.7 22.8 47.3 14.3 11.6 24.2 30.1 N/A	5.4 17.4 8.7 12 6.31 24.3 16 33 20.5 16.5 19.5 10.4 N/A	23.4 56.1 45.5 50 N/A 57 54.9 75 80.1 52.4 64 77.4 N/A

Table 1: Study characteristics (continued)

Lighter <i>et al</i> . ⁶⁸	Cohort	ICU admissions	3615	1370	N/A	N/A	N/A	N/A	N/A	N/A
Ling Hu et al. ¹⁰²	Cohort	Not mentioned	323	13	61	48.6	14.6	12.7	10.9	32.5
Lodigiani <i>et al</i> . ⁶⁹	Cohort	ICU admissions	361	87	66	32	22.7	N/A	N/A	47.2
Marcello <i>et al</i> . ¹³⁵	Cohort	Not valid	6248	2278	61	38	33	31	11	37
Mejía-Vilet. ⁷⁰	Cohort	ICU admissions	329	132	49	36	24	N/A	N/A	27
		Death or admission to								
Mendy <i>et al</i> . ⁷¹	Cohort	ICU	216	53	60	44.4	43.5	77.3	16.7	N/A
Menezes Soares et al. 136	Cohort	Not valid	1152	111	N/A	42.8	24	45.6	9.6	N/A
Mikami <i>et al</i> . ¹³⁷	Cohort	Not valid	3708	288	66	43	24.3	N/A	8.7	34.3
Monteiro <i>et al.</i> ⁷²	Cohort	Mechanical ventilation	112	40	61	34	64	15	17.4	50
Motaib <i>et al</i> . ¹⁶⁹	Cohort	ICU admissions	107	24	53	40	15	15	8.4	30.8
Mughal et al. ⁷³	Cohort	Mechanical ventilation	129	18	63	37.2	19.4	17.1	10.9	43.3
Murillo-Zamora et al. ¹²⁶	Cohort	Not valid	5393	1197	N/A	36.4	31.1	N/A	7.8	36.6
Nachega <i>et al</i> . ⁷⁴	Cohort	ICU admissions	766	39	46	34.4	14	3.9	3.4	25.4
Nakeshbandi <i>et al.</i> ⁷⁵	Cohort	Mechanical ventilation	504	215	68	48	53	19	16	83
		Death or admission to								
Newton <i>et al</i> . ⁷⁶	Cohort	ICU	370	102	62.2	51.8	42.3	17.4	2.5	66.8
Olivas-Martı´nez et al. ¹²⁷	Cohort	Not valid	800	357	51.9	39	26	4.6	2.3	30
Ortiz-Brizuela et al. ⁷⁷	Cohort	ICU admissions	140	50	49	29.3	22.9	4.3	2.8	32
Palaiodimos et al. ⁷⁸	Cohort	ICU admissions	200	46	64	51	39.5	33.5	27.5	76
Parker <i>et al.</i> ¹²⁸	Cohort	Not valid	113	32	48	61	39	5.4	17.2	42
Parra-Bracamonte et										
al. ¹²⁹	Cohort	Not valid	95458	22390	44	38.1	31.3	4.2	5.8	35.1
Peng et al. ¹³⁸	Cohort	Not mentioned	112	33	62	59	N/A	55.3	N/A	82
Pepe <i>et al</i> . ⁷⁹	Cohort	ICU admission	2214	440	49.6	40.2	9.1	8	12.3	26.2
Petersen, A. et al. ⁸⁰	Cohort	ICU admissions	30	19	65.6	12	5	5	3	15
		Mechanical ventilation								
Petrilli <i>et al</i> . ⁸¹	Cohort	and ICU admission	2741	1081	63	38.8	34.7	34.8	16.5	62
Pettit <i>et al</i> . ⁸²	Cohort	ICU admissions	238	146	58.5	52.5	28.6	21.4	26.5	52.9
Philipose <i>et al</i> . ⁸³	Cohort	Not mentioned	368	125	72	40.5	35.4	33.6	28.1	50.2
Pongpirul et al. ⁸⁴	Cohort	Not mentioned	193	22	37	41.5	8.3	1	1.6	16.1
Rachel <i>et al</i> . ¹⁰³	Cohort	Mechanical ventilation	305	127	60	42	35	21	18	52

Table 1: Study characteristics (continued)

Ramlall <i>et al</i> . ⁸⁵	Cohort	Mechanical ventilation	6393	831	57.1	50.3	14.2	26.6	N/A	31.1
Rao et al. ⁸⁶	Cohort	Not mentioned	240	114	48	53.8	9.6	17.9	1.2	N/A
Reilev et al. ⁸⁷	Cohort	ICU admissions	450	50	81	38	26	45	28	74
Rodriguez et al. ¹³⁰	Cohort	Not valid	43	11	65.5	27.2	18.6	14	9.3	30.2
		Need for oxygen								
		therapy via								
Rodríguez-Molinero <i>et</i>		nonrebreather mask or								
al. ⁸⁸	Cohort	mechanical ventilation	418	74	N/A	57	23.7	24.1	N/A	52
Rottoli <i>et al</i> . ⁸⁹	Cohort	ICU admissions	482	104	66.2	37.3	15.2	21.2	13.1	51.7
Salacup G et al. ¹³¹	Cohort	Not valid	242	97	66	49.17	49	14.8	19.8	74
Shah <i>et al</i> . ¹³²	Cohort	Not valid	522	481	63	58.2	42.3	22.6	22	79.7
Shekhar <i>et al.</i> 90	Cohort	ICU admissions	50	20	55.5	54	36	14	16	34
Simmonet et al. ¹⁵²	Cohort	Mechanical ventilation	124	59	60	27	23	N/A	N/A	49
Steinberg et al. ⁹²	Cohort	Mechanical ventilation	210	100	N/A	N/A	N/A	N/A	N/A	N/A
Suleyman <i>et al</i> . ⁹³	Cohort	ICU admission	355	210	61.4	53.5	43.4	29.1	40.3	72.7
Tonetti <i>et al</i> . ⁹⁴	Cohort	ICU admissions	700	176	69.4	23	21.8	61.8	14.4	N/A
	Retrospective case									
Urra <i>et al</i> . ⁹⁵	control	ICU admissions	172	17	N/A	39.5	22.6	16.27	9.8	50.5
Vaquero-Roncero <i>et al</i> . ⁹⁶	Cohort	ICU admissions	146	46	N/A	N/A	N/A	N/A	N/A	N/A
Wang J et al. ¹⁰⁴	Cohort	ICU admissions	297	40	44.3	44.7	8.41	2.02	4.04	16.16
Wang Min et al. ³	Retrospective cohort	Respiratory failure	541	60	52	45.29	8.69	5.36	N/A	24.77
Wang R et al. ⁹⁷	Cohort	Not mentioned	96	44	N/A	N/A	N/A	N/A	N/A	52.1
Xiang Ong et al. ¹⁰⁵	Cohort	ICU admissions	91	40	55	44	19.7	9.9	N/A	33
Zheng et al.98	Cohort	Not mentioned	66	45	47	74.2	24.2	N/A	N/A	28.8

Table 2: Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies ¹⁷⁰

2A: Cohort studies

	Al	Al-	Alkhati	Anders	Andrea	Argenzi	Arjun S	Bellan
Criteria	Heialy	Sabah	b et	on et	Rossi et	ano et	et al.46	et al.115
	et al.42	et al.43	al.44	al.45	al. ¹¹⁶	al. ¹⁰⁷		
Was the research question or objective in this	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
paper clearly stated?								
Was the study population clearly specified and	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
defined?								
Was the participation rate of eligible persons at	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
least 50%?								
Were all the subjects selected or recruited from the	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
same or similar populations (including the same								
time period)? Were inclusion and exclusion criteria								
for being in the study prespecified and applied								
uniformly to all participants?								
Was a sample size justification, power description,	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
or variance and effect estimates provided?								
For the analyses in this paper, were the exposure(s)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
of interest measured prior to the outcome(s) being								
measured?								
Was the timeframe sufficient so that one could	No	No	No	No	No	No	No	No
reasonably expect to see an association between								
exposure and outcome if it existed?	Mark	Mark	NL -	Mark	NL -	N .	Mark	
For exposures that can vary in amount or level, did	Yes	Yes	NO	Yes	NO	NO	Yes	NA
the study examine different levels of the exposure								
as related to the outcome (e.g., categories of								
exposure, or exposure measured as continuous								
Wara the avposure massures (independent	Voc	Voc	No	Voc	Voc	Voc	Voc	Voc
variables) clearly defined valid reliable and	163	163	NO	163	163	163	163	163
implemented consistently across all study								
narticinants?								
Was the exposure(s) assessed more than once over	NA	NA	No	No	No	No	No	No
time?								
Were the outcome measures (dependent variables)	Yes	Yes	No	Yes	Yes	NA	NA	NA
clearly defined, valid, reliable, and implemented								
consistently across all study participants?								
Were the outcome assessors blinded to the	CD	CD	CD	CD	CD	Yes	NA	Yes
exposure status of participants?								
Was loss to follow-up after baseline 20% or less?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were key potential confounding variables	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
measured and adjusted statistically for their impact								
on the relationship between exposure(s) and								
outcome(s)?								
Quality Rating (Good, Fair, or Poor)	Good	Good	Low	Good	Good	Good	Low	Good
Risk of Bias	Low	Low	Moderate	Low	Low	Low	Moderate	Low

	Bhatraj	Biscari	Borobi	Burrell	Busett	Cai et	Cariou	Cravedi et
Criteria	u et	n et	a et	et al.49	o et	al. ⁵¹	et al.52	al. ¹¹³
	al.47	al. ⁴⁸	al. ¹⁴⁰		al. ⁵⁰			
Was the research question or objective in this	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
paper clearly stated?								
Was the study population clearly specified and	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
defined?								
Was the participation rate of eligible persons at	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
least 50%?								
Were all the subjects selected or recruited from	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
the same or similar populations (including the								
same time period)? Were inclusion and exclusion								
criteria for being in the study prespecified and								
applied uniformly to all participants?								
Was a sample size justification, power description,	No	Yes	Yes	Yes	No	Yes	Yes	Yes
or variance and effect estimates provided?								
For the analyses in this paper, were the	No	Yes	Yes	Yes	No	Yes	Yes	Yes
exposure(s) of interest measured prior to the								
outcome(s) being measured?								
Was the timeframe sufficient so that one could	NA	No	NO	No	No	No	NA	No
reasonably expect to see an association between								
exposure and outcome if it existed?								
For exposures that can vary in amount or level, did	NA	Yes	Yes	No	Yes	NA	CD	Yes
the study examine different levels of the exposure								
as related to the outcome (e.g., categories of								
exposure, or exposure measured as continuous								
variable)?								
Were the exposure measures (independent	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
variables) clearly defined, valid, reliable, and								
implemented consistently across all study								
participants?								
Was the exposure(s) assessed more than once over	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
time?								
Were the outcome measures (dependent	NA	NA	Na	NA	Yes	NA	Yes	Yes
variables) clearly defined, valid, reliable, and								
implemented consistently across all study								
participants?								
Were the outcome assessors blinded to the	NA	Yes	Yes	Yes	NA	NA	CD	CD
exposure status of participants?								
Was loss to follow-up after baseline 20% or less?	Yes	Yes	Yes	Yes	NA	Yes	Yes	Yes
Were key potential confounding variables	CD	Yes	Yes	No	Yes	Yes	Yes	Yes
measured and adjusted statistically for their impact								
on the relationship between exposure(s) and								
outcome(s)?								
Quality Rating (Good, Fair, or Poor)	Low	High	High	Good	Low	Good	Good	Good
Risk of Bias	Moderate	Very low	Very low	Low	Moderate	Low	Low	Low

Criteria	Carrillo- Vega <i>et</i>	Castelnu ova <i>et</i>	Caussy et al. ⁵³	Cedano et al. ¹¹⁸	Chand et al. ¹¹¹	Chao et al. ⁵⁴	Claudia et al. ⁹⁹	Czernich ow <i>et</i>
	al. ¹¹⁷	al. ¹³³						al. ⁵⁵
Was the research question or objective in this	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
paper clearly stated?	N	N	Mark	N	Max	Mar	N	Maria
Was the study population clearly specified and	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
defined?	Vee	Vee		Vee	Maa	Maa	Vee	Maa
was the participation rate of eligible persons at	Yes	Yes	yes	Yes	res	res	Yes	Yes
Iddst 50%?	Vec	Vec	Vec	Vec	Vac	Vac	Vec	Vac
the same or similar populations (including the	res	res	res	res	res	res	res	res
same time period)? Were inclusion and								
exclusion criteria for being in the study								
prespecified and applied uniformly to all								
participants?								
Was a sample size justification, power	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
description, or variance and effect estimates								
provided?								
For the analyses in this paper, were the	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
exposure(s) of interest measured prior to the								
outcome(s) being measured?								
Was the timeframe sufficient so that one could	No	NO	NA	No	No	No	NO	No
reasonably expect to see an association								
between exposure and outcome if it existed?								
For exposures that can vary in amount or level,	No	Yes	CD	Yes	Yes	Yes	Yes	CD
did the study examine different levels of the								
exposure as related to the outcome (e.g.,								
categories of exposure, or exposure measured								
as continuous variable)?								
Were the exposure measures (independent	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
variables) clearly defined, valid, reliable, and								
Implemented consistently across all study								
Was the expective(s) accessed more than once	No	Voc	Voc	Voc	Voc	Voc	Voc	Voc
over time?	NO	163	165	163	163	163	163	165
Were the outcome measures (dependent	Yes	Yes	CD	Yes	NA	Yes	Na	NA
variables) clearly defined, valid, reliable, and			02					
implemented consistently across all study								
participants?								
Were the outcome assessors blinded to the	CD	CD	CD	CD	NA	CD	Yes	CD
exposure status of participants?								
Was loss to follow-up after baseline 20% or	Yes	NA	Yes	NA	Yes	Yes	Yes	Yes
less?								
Were key potential confounding variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
measured and adjusted statistically for their								
impact on the relationship between								
exposure(s) and outcome(s)?								
Quality Rating (Good, Fair, or Poor)	Good	Good	Low	Good	Good	High	High	Good
Risk of Bias	Low	Low	Moderate	Low	Low	Very low	Very low	Low

C uiteria	de Au due de	Docherty	Dreher	Ebinger	Fava et	Feuth et	Fusco et	Gao et
Criteria	Andrade et al. ¹¹⁴	et al	et al.30	et al."	al. ¹³⁴	aı.38	al.100	ai. ⁵⁵
Was the research question or objective in this	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
paper clearly stated?								
Was the study population clearly specified and	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
defined?	Mark	Max	Mar	N	N	Mark	Mark	Max
least 50%?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were all the subjects selected or recruited from	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
the same or similar populations (including the								
same time period)? Were inclusion and								
exclusion criteria for being in the study								
prespecified and applied uniformly to all								
participants?								
Was a sample size justification, power	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
description, or variance and effect estimates								
provided?								
For the analyses in this paper, were the	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
exposure(s) of interest measured prior to the								
outcome(s) being measured?								
Was the timeframe sufficient so that one could	No	No	No	No	No	No	No	NO
reasonably expect to see an association between								
exposure and outcome if it existed?								
For exposures that can vary in amount or level,	No	Yes	Yes	No	NO	Yes	Yes	Yes
did the study examine different levels of the								
exposure as related to the outcome (e.g.,								
categories of exposure, or exposure measured								
As continuous variable):	Vac	Voc	No	Voc	No	No	No	No
variables) clearly defined valid reliable and	res	res	NO	res	NO	NO	NO	NO
implemented consistently across all study								
narticinants?								
Was the exposure(s) assessed more than once	Yes	Yes	Yes	Yes	Yes	Yes	No	No
over time?								
Were the outcome measures (dependent	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
variables) clearly defined, valid, reliable, and								
implemented consistently across all study								
participants?								
Were the outcome assessors blinded to the	NR	Yes	CD	CD	Yes	CD	Yes	CD
exposure status of participants?								
Was loss to follow-up after baseline 20% or less?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were key potential confounding variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
measured and adjusted statistically for their								
impact on the relationship between exposure(s)								
and outcome(s)?								
Quality Rating (Good, Fair, or Poor)	Good	High	Good	Good	Good	Good	Good	Good
Risk of Bias	Low	Very low	Low	Low	Low	Low	Low	Low

Criteria	Genny Carrillo et al ¹⁰¹	Gerotzia fas et	Giacome lli et	Giorgi rossi et	Goyal et al. ⁶¹	Guner <i>et</i> al. ⁶²	Hajifath alian <i>et</i> al ⁶³	Halasz et al. ¹²³
Was the research question or objective in this paper clearly stated?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	YEs
Was the study population clearly specified and defined?	Yes	Yes	yes	Yes	Yes	Yes	Yes	Yes
Was the participation rate of eligible persons at least 50%?	Yes	Yes	yes	Yes	Yes	Yes	Yes	Yes
Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was a sample size justification, power description, or variance and effect estimates provided?	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?	Yes	Yes	Yes	Yes	NO	Yes	Yes	Yes
Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?	No	Yes	Yes	Yes	No	No	No	No
For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?	Yes	No	No	No	No	Yes	Yes	Yes
Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	NO	Yes	No	No	Yes	No	Yes	Yes
Was the exposure(s) assessed more than once over time?	No	Yes	Yes	No	No	No	Yes	NO
Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were the outcome assessors blinded to the exposure status of participants?	CD	CD	No	CD	No	CD	CD	CD
Was loss to follow-up after baseline 20% or less?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?	No	No	No	Yes	No	Yes	Yes	Yes
Quality Rating (Good, Fair, or Poor)	Fair	Fair	Good	Good	Low	Good	High	Good
Risk of Bias	Unclear	Unclear	Low	Low	Moderate	Low	Very low	Low

	Halvatsi	Hojo de	Hsu et	Hur et	Laccarin	loannou	John Xie	Kaeuffer
Criteria	otis <i>et</i>	Souza et	al. ¹⁰⁸	al. ⁶⁴	o et al.65	et al.66	et al. ¹⁰⁶	et al. ⁶⁷
	al. ¹³⁹	al. ¹²⁰						
Was the research question or objective in this	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
paper clearly stated?								
Was the study population clearly specified and	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
defined?								
Was the participation rate of eligible persons at	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
least 50%?								
Were all the subjects selected or recruited from	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
the same or similar populations (including the								
same time period)? Were inclusion and								
exclusion criteria for being in the study								
prespecified and applied uniformly to all								
participants?								
Was a sample size justification, power	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
description, or variance and effect estimates								
provided?								
For the analyses in this paper, were the	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
exposure(s) of interest measured prior to the								
outcome(s) being measured?								
Was the timeframe sufficient so that one could	No	No	No	No	No	No	No	No
reasonably expect to see an association								
between exposure and outcome if it existed?								
For exposures that can vary in amount or level,	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
did the study examine different levels of the								
exposure as related to the outcome (e.g.,								
categories of exposure, or exposure measured								
as continuous variable)?								
Were the exposure measures (independent	Yes	Yes	No	Yes	Yes	Yes	Yes'	Yes
variables) clearly defined, valid, reliable, and								
implemented consistently across all study								
participants?								
Was the exposure(s) assessed more than once	No	No	Yes	No	No	Yes	Yes	Yes
over time?								
Were the outcome measures (dependent	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
variables) clearly defined, valid, reliable, and								
implemented consistently across all study								
participants?	<u>(</u>)	CD.	<u>(</u>)	<u>(</u>)	Maa	Ne	Vee	Vee
were the outcome assessors blinded to the	CD	CD	CD	CD	res	NO	res	res
Was loss to follow up after baseling 20% or	Voc	Voc	Voc	Voc	Voc	Voc	Vac	Voc
was loss to follow-up after baseline 20% or	res	res	res	res	res	res	res	res
Ware key potential confounding variables	Voc	Voc	No	Voc	NIA	Voc	CD	Voc
measured and adjusted statistically for their	165	res	NO	162	INA	162		res
impact on the relationship between exposure(s)								
and outcome(s)?								
Quality Rating (Good, Fair, or Poor)	Good	Good	Good	Good	Good	High	High	High
Risk of Bias	Low	Low	Low	Low	Low	Very low	Very low	Very low

Criteria	Kalligero s <i>et al</i> . ³²	Kates <i>et</i> <i>al</i> . ¹²⁴	Klang et al. ¹²⁵	Lighter <i>et al</i> . ⁶⁸	Ling Hu et al. ¹⁰²	Lodigiani et al. ⁶⁹	Marcello et al. ¹³⁵	Mejía- Vilet <i>et</i>
Was the research question or objective in this	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
paper clearly stated?	Voc	Voc	Voc	Vac	Vac	Voc	Voc	Voc
defined?	res	res	res	res	res	res	res	res
Was the participation rate of eligible persons	Vec	Vec	Vec	Vec	Ves	Vec	Vec	Ves
at least 50%?	105	103	105	103	103	105	103	105
Were all the subjects selected or recruited	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
from the same or similar populations								
(including the same time period)? Were								
inclusion and exclusion criteria for being in the								
study prespecified and applied uniformly to all								
participants?								
Was a sample size justification, power	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
description, or variance and effect estimates								
provided?								
For the analyses in this paper, were the	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
exposure(s) of interest measured prior to the								
outcome(s) being measured?								
Was the timeframe sufficient so that one	No	No	No	No	CD	CD	No	No
could reasonably expect to see an association								
between exposure and outcome if it existed?								
For exposures that can vary in amount or level,	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
did the study examine different levels of the								
exposure as related to the outcome (e.g.,								
categories of exposure, or exposure measured								
as continuous variable)?	Maa	Maa	Nie	No	Vee	Maa	Vee	Maa
were the exposure measures (independent	Yes	Yes	NO	NO	Yes	Yes	Yes	Yes
variables) clearly defined, valid, reliable, and								
narticipante?								
Was the exposure(s) assessed more than once	νος	No	νος	No	No	νος	No	νος
over time?	103	NO	103	NO	NO	105	NO	105
Were the outcome measures (dependent	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
variables) clearly defined, valid, reliable, and	105	105	105	105	100	105	105	105
implemented consistently across all study								
participants?								
Were the outcome assessors blinded to the	CD	CD	CD	CD	Yes	Yes	No	No
exposure status of participants?								
Was loss to follow-up after baseline 20% or	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
less?								
Were key potential confounding variables	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
measured and adjusted statistically for their								
impact on the relationship between								
exposure(s) and outcome(s)?								
Quality Rating	High	Good	Good	Fair	High	Good	Good	High
Risk of Bias	Very low	Low	Low	Unclear	Very low	Low	Low	Very low

Criteria	Mendy et al. ⁷¹	Menezes Soares et al. ¹³⁶	Mikami et al. ¹³⁷	Monteir o <i>et al.</i> ⁷²	Motaib et al. ¹⁶⁹	Mughal et al. ⁷³	Murillo- Zamora <i>et al</i> . ¹²⁶	Nachega et al. ⁷⁴
Was the research question or objective in this paper clearly stated?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the study population clearly specified and defined?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the participation rate of eligible persons at least 50%?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was a sample size justification, power description, or variance and effect estimates provided?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?	Yes	No	No	No	No	Yes	No	No
For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the exposure(s) assessed more than once over time?	No	Yes	Yes	Yes	No	Yes	Yes	No
Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were the outcome assessors blinded to the exposure status of participants?	CD	CD	CD	CD	No	CD	CD	CD
Was loss to follow-up after baseline 20% or less?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Quality Rating Risk of Bias	High Very low	High Very low	Good Low	High Very low	Good Low	High Very low	High Very low	Good Low

	Nakeshb andi <i>et</i>	Newton et al. ⁷⁶	Olivas- Martı´ne	Ortiz- Brizuela	Palaiodi mos <i>et</i>	Parker et al. ¹²⁸	Parra- Bracamo	Peng et al. ¹³⁸
Criteria	al. ⁷⁵		z et al. ¹²⁷	et al.77	al. ⁷⁸		nte <i>et</i> al ¹²⁹	
Was the research question or objective in this paper clearly stated?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the study population clearly specified and defined?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the participation rate of eligible persons at least 50%?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was a sample size justification, power description, or variance and effect estimates provided?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?	No	No	No	No	No	No	No	No
For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Was the exposure(s) assessed more than once over time?	No	Yes	Yes	Yes	CD	CD	No	No
Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were the outcome assessors blinded to the exposure status of participants?	CD	Yes	Yes	CD	Yes	CD	CD	CD
Was loss to follow-up after baseline 20% or less?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?	Yes	Yes	Yes	CD	Yes	CD	Yes	Yes
Quality Rating Risk of Bias	Good Low	High Very low	High Very low	Good Low	High Very low	Good Low	Good Low	Good Low

Criteria	Pepe et	Petersen	Petrilli	Pettit et	Philipos	Pongpiru	Rachel	Ramlall
Was the research question or objective in this	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
paper clearly stated?	105	105	105	105	100	105	105	105
Was the study population clearly specified	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
and defined?								
Was the participation rate of eligible persons	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
at least 50%?								
Were all the subjects selected or recruited	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
from the same or similar populations								
(including the same time period)? Were								
inclusion and exclusion criteria for being in								
the study prespecified and applied uniformly								
to all participants?								
Was a sample size justification, power	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
description, or variance and effect estimates								
provided?								
For the analyses in this paper, were the	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
exposure(s) of interest measured prior to the								
outcome(s) being measured?							_	
Was the timeframe sufficient so that one	No	No	No	No	No	Yes	CD	No
could reasonably expect to see an association								
between exposure and outcome if it existed?								
For exposures that can vary in amount or	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
level, did the study examine different levels								
of the exposure as related to the outcome								
(e.g., categories of exposure, or exposure								
measured as continuous variable)?	N	Mark	Mark	N	N	Mark	Maria	Max
Were the exposure measures (independent	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
variables) clearly defined, valid, reliable, and								
norticinante2								
Was the experience's accessed more than	No	Voc	No	No	No	Voc	Voc	NO
once over time?	NO	165	NO	NO	NO	165	Tes	NO
Were the outcome measures (dependent	Voc	νος	νος	Voc	Voc	νος	νος	Voc
variables) clearly defined valid reliable and	163	163	103	163	163	163	103	105
implemented consistently across all study								
narticinants?								
Were the outcome assessors blinded to the	CD	CD	NR	CD	CD	Yes	CD	CD
exposure status of participants?	02	02		02	02		02	02
Was loss to follow-up after baseline 20% or	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
less?								
Were key potential confounding variables	Yes	Yes	Yes	CD	Yes	Yes	Yes	Yes
measured and adjusted statistically for their								
impact on the relationship between								
exposure(s) and outcome(s)?								
Quality Rating	Good	High	Good	Good	Good	High	High	Good
Risk of Bias	Low	Very low	Low	Low	Low	Very low	Very low	Low

	Rao et al. ⁸⁶	Reilev et al. ⁸⁷	Rodrigu ez <i>et</i>	Rodrígu ez-	Salacup G et	Rottoli et al. ⁸⁹	Shah et al. ¹³²	Shekhar <i>et al</i> .90	Simmo
Criteria			al. ¹³⁰	Moliner o <i>et al</i> . ⁸⁸	al. ¹³¹				net <i>et</i> al. ¹⁵²
Was the research question or objective in this paper clearly stated?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the study population clearly specified and defined?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the participation rate of eligible persons at least 50%?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Vac
Was a sample size justification, power description, or variance and effect estimates provided?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?	CD	No	CD	No	Yes	No	No	No	No
For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
Was the exposure(s) assessed more than once over time?	No	Yes	No	No	No	No	No	No	No
Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Vos
Were the outcome assessors blinded to the exposure status of participants?	Yes	CD	CD	CD	CD	CD	No	CD	Yes
Was loss to follow-up after baseline 20% or less?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(c)2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Vec
Quality Rating	High	Good	High	Good	Good	Good	High	Good	High
Risk of Bias	Very low	Low	Very low	Low	Low	Low	Very low	Low	Very low

Criteria	Steinbe rg et al. ⁹²	Suleym an <i>et</i> al. ⁹³	Tonetti <i>et al.</i> 94	Vaquer o- Roncer	Wang J et al. ¹⁰⁴	Wang Min et al. ³	Wang R et al. ⁹⁷	Xiang et al. ¹⁰⁵	Zheng <i>et al.⁹⁸</i>
				al. ⁹⁶					
Was the research question or objective in this paper clearly stated?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the study population clearly specified and defined?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the participation rate of eligible persons at least 50%?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was a sample size justification, power description, or variance and effect estimates provided?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?	NO	No	No	No	No	NO	No	No	No
For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?	Yes	Yes	Yes	Yes	Yes	Yes	yes	Yes	Yes
Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Was the exposure(s) assessed more than once over time?	No	No	No	No	NO	No	No	No	No
Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Were the outcome assessors blinded to the exposure status of participants?	CD	CD	CD	Yes	CD	CD	CD	CD	CD
Was loss to follow-up after baseline 20% or less?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?	No	Yes	Yes	Yes	Yes	CD	CD	CD	Yes
Quality Rating	Good	Good	Good	High	Good	Good	Good	Good	Good
Risk of Bias	Low	Low	Low	Very low	Low	Low	Low	Low	Low

2B: Case control studies

Criteria	Ciceri <i>et al.</i> ¹¹²	Urra <i>et al.95</i>
Was the research question or objective in this paper clearly stated and appropriate?	Yes	Yes
Was the study population clearly specified and defined?	Yes	Yes
Did the authors include a sample size justification?	Yes	Yes
Were controls selected or recruited from the same or similar population that gave rise to the cases (including the same timeframe)?	Yes	Yes
Were the definitions, inclusion and exclusion criteria, algorithms or processes used to identify or select cases and controls valid, reliable, and implemented consistently across all study participants?	Yes	Yes
Were the cases clearly defined and differentiated from controls?	Yes	Yes
If less than 100 percent of eligible cases and/or controls were selected for the study, were the cases and/or controls randomly selected from those eligible?	Yes	Yes
Was there use of concurrent controls?	Yes	No
Were the investigators able to confirm that the exposure/risk occurred prior to the development of the condition or event that defined a participant as a case?	Yes	Yes
Were the measures of exposure/risk clearly defined, valid, reliable, and implemented consistently (including the same time period) across all study participants?	Yes	Yes
Were the assessors of exposure/risk blinded to the case or control status of participants?	NR	NR
Were key potential confounding variables measured and adjusted statistically in the analyses? If matching was used, did the investigators account for matching during study analysis?	Yes	Yes
Quality Rating	High	High
Risk of Bias	Very low	Very low