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Abstract  

Assessment of the kinetics of SARS-CoV-2 antibodies is essential in predicting protection against 

reinfection and durability of vaccine protection. Here, we longitudinally measured Spike (S) and 

Nucleocapsid (N)-specific antibodies in 1,309 healthcare workers (HCWs), including 916 COVID-19 

negative HCWs and 393 convalescent COVID-19 for up to 422 days post-symptom. From month (M)1 

to M7-9 post-infection, SARS-CoV-2 antibodies decreased moderately in convalescent HCWs in a 

biphasic model, with men showing a slower decay of anti-N (p=0.02), and a faster decay of anti-S 

(p=0.0008) than women. At M11-13, anti-N dramatically decreased (half-life: 283 days) while anti-S 

stabilized (half-life: 725 days) at a median of 2.39 log Arbitrary Units (AU)/mL (Interquartile Range 

(IQR): 2.10 -2.75). Overall, 69 SARS-CoV-2 infections developed in the COVID-19 negative group 

(incidence of 12.22 per 100 person-years) versus one in the COVID-19 positive group (incidence of 0.40 

per 100 person-years), indicating a relative reduction in the incidence of SARS-CoV-2 reinfection of 

96.7% (p<0.0001). Correlation with live-virus neutralization assay revealed that variants D614G and 

B.1.1.7, but not B.1.351, were sensitive to anti-S antibodies at 2.3 log AU/mL, while IgG ≥ 3 log AU/mL 

neutralized all three variants. After SARS-CoV-2 vaccination, anti-S levels reached at least 3 logs 

regardless of pre-vaccination IgG levels, type of vaccine, and number of doses. Our study demonstrates 

a long-term persistence of anti-S IgG antibodies that may protect against reinfection. By significantly 

increasing cross-neutralizing antibody titers, a single-dose vaccination strengthens protection against 

escape mutants.  
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Introduction  

Since the beginning of the pandemic, the hypothesis of waning humoral immunity in COVID-19 

convalescent patients has raised many concerns about the reliability of population-based 

seroprevalence studies, and more critically about long-term antibody protection against reinfection 

and by extension the durability of vaccine protection. COVID-19 leads to the development of protective 

neutralizing antibodies in the vast majority of cases (1-4). Several reports suggested a rapid decline of 

SARS-CoV-2 antibodies as early as 3 months after infection(3, 5), while others reported persistence of 

antibody responses up to five months(4, 6). A recent rigorous study investigating T and B cell responses 

in convalescent COVID-19 patients reported that substantial immune memory is generated after 

COVID-19, and 95% of subjects retained immune memory at ≈ 6 months after infection(7). 

Furthermore, the presence of SARS-CoV-2 anti-spike (S) and anti-nucleocapsid (N) IgG antibodies were 

associated with a reduced risk of SARS-CoV-2 reinfection up to 7 months after initial infection(8-10). 

The recent emergence of SARS-CoV-2 variants with high transmissibility such as variant B.1.1.7, or 

decreased susceptibility to antibodies such as variant B.1.351, has raised the question of whether 

antibodies still protect against reinfection. Data on persistence and long-term efficacy of the immune 

response are therefore of vital importance in understanding the overall evolution of the pandemic and 

post-pandemic dynamics, especially in the era of emerging variants(11-14). 

Here, using validated serological assays (15-17) on a large cohort of healthcare workers (HCWs) who 

have recovered from mild COVID-19, we described the dynamics of SARS-CoV-2 humoral response up 

to one year after COVID-19, and analyzed the incidence of reinfection within this period. Second, we 

used the S-Fuse live-virus neutralization assay(18), to assess the sensitivity of infectious SARS-CoV-2 

variants to anti-S antibodies before and after vaccination, several months after primary infection.  
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Results 

Cohort characteristics 

This study involved 4290 samples from 1,309 HCWs, including 393 convalescent COVID-19 (here called 

COVID-19 positive) and 916 COVID-19 negative HCWs (Figure 1). The COVID-19 positive HCWs included 

345 with a history of positive SARS-CoV-2 RT-PCR and 48 with positive serology only. Both COVID-19 

positive and COVID-19 negative cohorts included various professional groups (nurses, doctors, 

caregivers and administrative staff), both with a median age of 39 (Interquartile Range (IQR) 30-51 and 

30-50, respectively), and a predominance of females (76.8% and 78.5%). In COVID-19 positive HCWs, 

a history of contact with a COVID-19 case was reported in 66% of participants. COVID-19 consistent 

symptoms were reported by 383 participants (97.5%), including 367 (93.4%) and 16 (4.1%) with mild 

or moderate disease, respectively (Table 1). No severe cases were reported. All COVID-19 positive 

participants were sampled at month one (M1) (median: 31 days post symptom onset (DSO); IQR: 24-

38), 383 at M3-6 (median: 107 DSO; IQR: 92-131), 346 at M7-9 (median: 215 DSO; IQR: 195-243) and 

lastly 233 at M11-13 (median: 374 DSO; IQR: 347-396), of which 93 were vaccinated against SARS-CoV-

2 before M11-13 sampling. Only one asymptomatic reinfection was reported after nine months in this 

cohort. Conversely, among the 916 COVID-19 negative HCW, 69 (7.5%) reported a SARS-CoV-2 

infection including 49 with symptoms (8 before M3-6, 29 before M7-9 and 32 before M11-13). This 

was confirmed by a positive RT-PCR test and by seroconversion in 62% and 100% of these cases, 

respectively.  

Natural history of humoral response up to one year after COVID-19 

We first sought to analyze the dynamics of SARS-CoV-2 humoral responses and its determinants in the 

aftermath of COVID-19 (e.g. natural history after primary infection, in the absence of vaccination). 

Seropositivity rates differ widely depending on: (1) isotypes (IgM or IgG), (2) antibody targets (N or S), 

(3) assays and (4) timepoints of serum collection (Figure 2A). At M1, the proportions of COVID-19 

positive HCWs who tested positive for anti-S IgM and IgG using lateral flow assay (LFA) were 91.3% and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.07.21256823doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.07.21256823
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

83.7%, respectively. Approximately half of individuals still had detectable antibodies at M11-13 (51.8% 

IgM and 56.8% IgG), showing a significant decrease in the rates of LFA-detected antibodies one-year 

after COVID-19 (both p<0.0001). Positivity rates of anti-N IgG response as measured by ELISA also 

significantly decreased from M1 (85.0%) to M11-13 (20.1%) (p<0.0001). Conversely, anti-S IgG 

response was maintained over time as shown by the persistence of seropositivity chemiluminescence 

microparticle immunoassay (CMIA)-based rates: 97.1% both at M1 and M11-13 (p=0.76). 

Next, we analyzed the dynamics of anti-S and anti-N IgG titers over time. Anti-S titers assessed by CMIA 

significantly decayed by 0.07, 0.04 and 0.02 log Arbitrary Units (AU/mL) per month from M1 to M3-6, 

M3-6 to M7-9 and M7-9 to M11-13, respectively (all p<0.01) (Figure 2B, C). The estimated half-life (t1/2) 

of each phase was of 202, 306 and 725 days, respectively. At M11-13, the median titer of anti-S IgG 

was 2.39 log AU/mL (IQR: 2.10-2.75), with 81.3% of participants showing IgG> 2.0 log AU/mL and 55.4% 

> 2.3 log AU/mL.  

Next, we investigated the effect of age, sex, body mass index (BMI), blood group, rhesus status, DSO, 

and initial Ct values obtained by real-time reverse transcriptase PCR (RT-PCR) in nasal swabs, on CMIA 

anti-S IgG titers at M7-9 and on decay speed between M3-6 and M7-9 by univariate (not shown) and 

multivariate analyses. No significant difference in the absolute values of anti-S IgG titers was found in 

univariate analysis according to sex. However, antibody titers declined faster in men in univariate 

analysis between M3-6 and M7-9. By multivariate analysis (Figure 2D), anti-S IgG titers also decayed 

faster in men than in women with an acceleration in this decrease of - 0.033 log AU/mL per month 

(95% confidence interval 95%CI: - 0.053 to - 0.014; p=0.0008). Another factor significantly associated 

with faster decay was the rhesus-negative (Rh-) status, impacting decay by a factor of -0.021 log AU/mL 

per month (95%CI: - 0.002 to - 0.040; p=0.0008). Notably, no significant effect of age, BMI, blood group, 

DSO or initial Ct values on the anti-S titer slope was observed (Figure 2D).  

Regarding ELISA anti-N IgG, a significant decay of ratios (optical density signal /Cut-Off: S/CO) per 

month was observed between the four study visits (Figure 2E). Interestingly, triphasic kinetic dynamics 
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of anti-N IgG ratio over time was observed with an initial steep decay between M1 and M3-6 (median: 

-0.26 S/CO per month), followed by a slower decay up to M7-9 (-0.02) before a second drop up to M11-

13 (-0.05; all p<0.0001) (Figure 2F). The t1/2 of each phase was therefore 58, 682 and 283 days, 

respectively. This pattern differed from those of anti-S IgG titers. Univariate and multivariate analyses 

were conducted for anti-N ratio similarly to anti-S titers in order to identify potential predictor factors 

of anti-N IgG dynamics. Higher antibody ratios were found in men in univariate analysis at M7-9 

compared to women. Moreover, a slower decay from M3-6 to M7-9 was revealed by multivariate 

analysis in men (0.046 S/CO per month; 95%CI 0.007-0.087; p=0.02) and in older participants (0.017 

per 10-year age; 95%CI 0.002-0.032; p=0.03) (Figure 2G). Thus, male participants displayed a faster 

decay of anti-S antibodies and, conversely, a slower decay of anti-N antibodies.  

We then assessed the relative incidence of SARS-CoV-2 infection in COVID-19 positive and COVID-19 

negative HCWs during follow-up. Overall, 70 SARS-CoV-2 infections developed after enrollment: 1 in 

the COVID-19 positive group (incidence of 0.40 per 100 person-years) and 69 in the COVID-19 negative 

group (incidence of 12.22 per 100 person-years), indicating a relative reduction in the incidence of 

SARS-CoV-2 reinfection in the previously infected group of 96.7% (p<0.0001, Figure 3A,B). The only 

case of reinfection occurred in a 23 year old female medical student. She first developed a 

symptomatic, mild COVID-19 in March 2020 with a high viral load, identified by nasopharyngeal swab 

(Ct=17), leading to an anti-S and anti-N IgG seroconversion (2.6 log AU/mL and 1.0 OD S/CO after 96 

DSO, respectively). The second episode in January 2021 was asymptomatic and revealed by a low viral 

load (Ct=34), detected six days after non-professional COVID-19 exposure. The reinfection was 

associated with positive anti-S IgM and a rebound of both anti-S IgG titer (3.6 log AU/mL) and anti-N 

IgG ratio (1.7 S/CO) without vaccination 22 days after a second positive RT-PCR. Altogether, our 

findings indicate that although anti-SARS-CoV-2 antibody titers do indeed decline, the risk of 

reinfection within a year post-infection remains low. 
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Impact of SARS-CoV-2 vaccination on humoral response in COVID-19 positive HCWs 

To investigate how SARS-CoV-2 antibodies evolve after COVID-19 vaccination in COVID-19 positive 

HCWs, serological results of the 93 COVID-19 positive HCWs who received at least one dose of vaccine 

between M7-9 and M11-13 visits were compared to those of the 139 unvaccinated participants with a 

M11-13 follow-up. Among vaccinated-participants, 59 received a single-dose from 1 to 99 days before 

M11-13 sampling, including 27 HCWs vaccinated with ChAdOx1 nCoV-19 vaccine (AstraZeneca), 4 with 

mRNA-1273 vaccine (Moderna) and 28 with BNT162b2 vaccine (Pfizer-BioNTech). The 34 other 

participants received two doses of BNT162b2 vaccine (n=33) or mRNA-1273 vaccine (n=1) and their 

M11-13 sera were collected from 3 to 94 days after the second dose of vaccine.  

Six out of the seven participants sampled earlier than 6 days after a single dose vaccination still 

displayed anti-S antibody titers under 3 log AU/mL at M11-13 (Figure 4A). Conversely, a rebound of 

anti-S IgG titers was observed in all the 86 samples collected at least 6 days after vaccination with a 

median increase of 1.80 log AU/mL between M7-9 and M11-13 (IQR, 1.38 to 2.17; p<0.0001). Indeed, 

post-vaccination titers reached at least double the values measured at M1 post-infection. Antibody 

titers over 4 log AU/mL were found in 76 of these 86 vaccinated HCWs (88.4%) (Figure 4A, B). 

Altogether, our findings suggest that a strong humoral response is rapidly re-mobilized after a single-

dose vaccination among COVID-19 positive individuals. 

Sensitivity of infectious SARS-CoV-2 variants to anti-S antibodies at M11-13 

To assess whether SARS-CoV-2 variants are sensitive to anti-S antibodies that persist at M11-13 with 

or without prior vaccination, sera collected at M11-13 from 28 COVID-19 positive HCWs (13 vaccinated 

and 15 unvaccinated) were analyzed with the S-Fuse live-virus neutralization assay(18) (Figure 5A). The 

13 vaccinated HCWs had received a single dose, including 8 with ChAdOx1 nCoV-19 vaccine 
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(AstraZeneca), 3 with BNT162b2 vaccine (Pfizer-BioNTech) and 2 with mRNA-1273 vaccine (Moderna). 

Sera collected from unvaccinated participants showed median neutralizing antibody titers of 2.31 log 

IC50 (IQR: 2.03-2.76), 2.10 log IC50 (IQR: 1.76-2.45) and 1.51 log IC50 (IQR: 1.48-1.87) against D614G, 

B.1.1.7 and B.1.351 live-strains, respectively. Sera from vaccinated participants showed a median 

neutralizing antibody titer of 4.01 log IC50 (IQR: 3.88-4.35), 4.03 log IC50 (IQR: 3.85-4.23) and 3.14 log 

IC50 (IQR: 2.99-3.58) against the same viral strains, respectively (Figure 5B). Strong correlation was 

observed at M11-13 between neutralizing antibody titers assessed by S-Fuse neutralization assay and 

anti-S IgG titers measured by CMIA with Spearman correlation coefficients of 0.934, 0.952 and 0.967 

for variants D614G, B.1.1.7 and B.1.351, respectively (p values<0.0001) (Figure 5C). Anti-S titers around 

2.3 log AU/mL neutralized D614G, B.1.1.7 but not B.1.351 variants at more than 2 log IC50. Anti-S IgG 

titers > 3 log AU/mL neutralized D614G, B.1.1.7 at > 2.5 log IC50 and  B.1.351 at ≥ 2 log IC50. These anti-

S IgG titers were reached by all vaccinated HCW regardless of pre-vaccination anti-S IgG titers, type of 

vaccine or number of vaccine doses. Based on the strong correlation between CMIA and neutralization 

assays, neutralizing titers were extrapolated to the remaining 124 unvaccinated HCWs and the 73 

HCWs vaccinated (those with serum collected at least 6 days post-vaccination) to predict the strength 

of neutralization at M11-13 in all participants (Figure 5D). Altogether, our findings suggest that former 

COVID-19 positive individuals benefit from a single-dose vaccine and are able to efficiently neutralize 

current SARS-CoV-2 variants. 

 

Discussion 

The duration and effectiveness of adaptive immunity directed against SARS-CoV-2 after primary 

infection are key questions in understanding the coronavirus disease 2019 (COVID-19) pandemic. The 

present study involving a large cohort of HCWs followed prospectively over one year provides, for the 

first time, crucial information on persistence of circulating SARS-CoV-2 antibodies after mild COVID-

19. We demonstrate that: i) anti-SARS-CoV-2 antibody titers evolve differently in men and women; ii) 
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anti-S IgG stabilize at a median titer of 2.39 log AU/mL (IQR: 2.10 – 2.75) one year after symptom onset; 

iii) the risk of SARS-CoV-2 reinfection was  reduced by 96.7% in the ensuing 12 months, iv)CMIA anti-S 

IgG titers strongly correlate with neutralization titers, v) Anti-S IgG titers around 2.3 log AU/mL 

efficiently neutralize D614G, B.1.1.7 but not B.1.351; vi) SARS-CoV-2 vaccination significantly increases 

anti-S antibodies to levels that neutralize all three variants regardless of pre-vaccination IgG levels, 

type of vaccine, or number of doses.  

Our longitudinal study covered a serological monitoring of convalescent COVID-19 up to 422 days post-

symptom, and showed that almost all COVID-19 positive (96%) still present detectable anti-S IgG one 

year after infection. A previous longitudinal study investigating anti-S IgG found relatively stable 

antibody titers over eight months after COVID-19(7). However, this study had data at only two time 

points and was not able to define a model for the kinetic of antibodies(7). In our study, follow-up at 

M1, M3-M6, M7-M9 and M11-13 showed a tri-phasic decay of anti-S antibodies. This segmented anti-

S decay could reflect B cells turnover after infection(2). Although antibody titers were variable between 

unvaccinated convalescents, 81.3% retain anti-S IgG titers up to 2 log AU/mL and 55.4% up to 2.3 log 

AU/mL at M11-13. According to the correlation curve, titers over 2.3 log AU/mL are allowed to 

neutralize D614G and B.1.1.7 variants but less B.1.351, suggesting that most COVID-19 positive 

patients may be protected from reinfection by the former variants for at least one year after primary 

infection. It should be noted that our hospital faced three waves of COVID-19, from March – June 2020, 

September 2020 – January 2021 and from March 2021 to presently, with the current wave due to the 

B1.1.7 variant. During the period April 2020 – April 2021, 69 new infections were reported in COVID-

19-negative participants while only one case of asymptomatic reinfection was reported in the COVID-

19-positive participants. Although antibodies represent only a part of the immune response, this 

strongly suggests that COVID-19 positive patients develop a robust humoral immune response that 

reduces the risk of SARS-CoV-2 reinfection within at least one year.  
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Interestingly, all individuals who received a SARS-COV-2 vaccine displayed high antibody titers able to 

neutralize all three variants tested, regardless of pre-vaccine anti-S IgG levels, type of vaccine (mRNA 

or adenovirus-vector vaccines) or number of vaccine doses. The increase in antibody titer was 

observed as early as 6 days after vaccination. This suggests that a robust memory B cell response is 

established in COVID-19 convalescents, including those with low antibody titers. This is in line with the 

study of Dan et al. who performed an extensive characterization of memory B cells, revealing that the 

slight antibody decline occurring in convalescent individuals does not reflect a real waning of humoral 

immunity, but rather a contraction of the immune response, whilst antibody affinity maturation 

occurs, and anti-S memory B cells persist(7). Very recently, Wang et al reported that memory B cell 

clones expressing broad and potent anti-S antibodies are selectively retained in the repertoire at least 

one year after infection and expand after vaccination(19). These observations are very hopeful 

regarding the durability of humoral responses developed after COVID-19 and suggest that this 

protection against SARS-CoV-2 infection may last for years(19, 20).   

Unlike anti-S antibody titers which stabilize over time, we observed a steep decay of anti-N IgG titers 

after seven to nine months post-infection, with only 20% of COVID-19 positive HCWs remaining 

seropositive after one year. Previous studies with a shorter monitoring period after infection found 

discrepant results regarding anti-N IgG persistence, depending on the commercial assay used. One 

study described a sustained humoral response up to ten months after infection(21), whereas another 

reported a significant decrease rapidly after infection, in line with our findings(22). These differences 

could be explained by increased avidity or affinity that compensates antibody loss, or by changes in 

recognized epitopes over time(22). Overall, our study show that serological assays targeting 

nucleocapsid should not be used preferentially over seroprevalence studies, even if they have the 

advantage of differentiating between natural infection and post-vaccinal immunity.  

We evaluated several host factors as potential predictors of antibody titers, and of their kinetics up to 

7 - 9 months after primary infection. While no differences in SARS-CoV-2 IgG titers were observed, 
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their kinetics were influenced by sex and rhesus factor. Notably, men displayed a significantly faster 

decay of anti-S IgG and conversely, a significantly slower decrease of anti-N IgG titers between M3-6 

and M7-9 after infection, independent of age and of titers measured at M3-6. Sex differences in the 

SARS-CoV-2 immune response were previously described early after infection. Takahashi and 

colleagues reported that female patients had more robust T cell activation than male patients in the 

early phase of SARS-CoV-2 infection(23). Other studies reported a higher peak of anti-S antibody titers 

in men early after infection followed by a steeper decay compared to females(7, 24-26). The initial, 

greater humoral response in convalescent men has been linked to the higher risk of severe disease in 

this population and to prolonged virus shedding(27, 28). However, this sex difference was also 

observed independently of age, severity of symptoms, or duration of symptoms(7, 24). We showed 

that differences in antibody kinetics depending on sex were still observed later than six months, 

independently of case severity since only mild cases, and a few moderate and asymptomatic cases, 

were monitored in our study. The sex differences in immune responses may be multifactorial, notably 

based on sex steroid concentrations, on transcriptional factors, and on incomplete inactivation of 

immunoregulatory genes on the second X chromosome in females(29, 30). Previous studies reported 

a relationship between ABO and rhesus blood groups, and COVID-19 susceptibility, suggesting that 

type O blood and rhesus-negative status may protect against severe COVID-19(31, 32). In our study, 

Rh- status was associated with faster decay of anti-S IgG titers over time, while no association was 

observed with ABO blood groups. 

Although our study provides crucial data on the natural history of mild COVID-19, it is important to 

note that there are some limitations. Neutralization experiments were performed on a small subset of 

the cohort due to insufficient volume of remaining sera. However, the strong correlation between 

CMIA IgG levels and neutralizing titers observed in this study, and reported by the manufacturer as 

well as by other studies(15, 33, 34), allows an extrapolation of the results to the entire cohort. 

Assessment of reinfection was based on participant reports during visits, as no RT-PCR surveillance was 

planned in the study. Therefore, it cannot be excluded that the COVID-19 positive participants had 
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unnoticed asymptomatic reinfection during follow-up. However, no COVID-19 positive HCW, except 

the case of reinfection, had a significant increase of both anti-S and anti-N levels during follow-up. 

Another limitation is the unbalanced sex distribution, with a female predominance, which reflects the 

sex distribution of the healthcare workers in our hospital. Nevertheless, the sex difference in immune 

response was observed by using univariate and multivariate analysis. Furthermore, we were not able 

to investigate the kinetics of memory B cells because of the lack of peripheral blood mononuclear cells. 

Finally, our results were obtained in participants with a median age of 39 years (IQR 30-51), hence we 

cannot exclude that older individuals may experience a different evolution of humoral response over 

time. 

However, taken together our data demonstrate a long-term persistence of anti-S IgG titers that may 

protect convalescent COVID-19 patients against reinfection by variants D614G and B.1.1.7. By 

increasing the levels of cross-neutralizing antibodies, SARS-CoV-2 vaccine may strengthen their 

protection, especially against variants harboring antibody escape mutations like B1.351. Future work 

will help to determine whether vaccine-induced antibodies evolve in the same manner, and whether 

their kinetics differ between the sexes. 

 

Methods 

Study design and participants 

We characterized SARS-CoV-2 antibody persistence in COVID-19 HCWs from Strasbourg University 

Hospital, France, up to 13 months after infection. Participants were recruited as follows (Figure 1): 

among 1,496 HCWs initially screened by SARS-CoV-2 serology between 6th April and 7th May 2020 in 

our institution, all participants with a COVID-19 history, proven either by serology at screening or by a 

previous RT-PCR, were recruited and followed at M1, M3-6, M7-9 and M11-13. In parallel, participants 

displaying negative serology without a history of positive RT-PCR for SARS-CoV-2 were recruited to 

evaluate the incidence of infection, and were followed by the same visit schedule as the COVID-19 
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positive cohort with M1 defined as one month post-inclusion. Participants completed a questionnaire 

at each visit in reference to sociodemographic characteristics, COVID-19 exposure, symptoms, 

virological findings and eventually vaccination. 

RT-PCR assay  

RT-PCR for SARS-CoV-2 RNA detection was previously performed on nasopharyngeal swab samples at 

the time of diagnosis. All except six RT-PCR positive samples were analyzed in our laboratory with SARS-

CoV-2 specific primers and probes targeting two regions on the viral RNA-dependent RNA polymerase 

(RdRp) gene (Institut Pasteur, Paris, France; WHO technical guidance). Ct values obtained in each 

sample were considered for statistical analyses. 

Serological assays 

Screening assays: All sera were initially screened for SARS-CoV-2 antibodies using two commercial 

assays. The first is the Biosynex® (COVID-19 BSS IgG/IgM) Lateral Flow Assay (LFA), which detects 

separately IgM and IgG directed against the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike 

protein (S), with estimated overall sensitivity and specificity of 96% and 99% at 22 days since symptoms 

onset (DSO), respectively 1. The second assay used was the EDITM Novel coronavirus COVID-19 IgG ELISA 

assay to detect anti-nucleocapsid protein (N) IgG at 22 DSO 1, which, in our hands, displayed a 

sensitivity of 81% and a specificity of 96%. The results rely on a ratio of specimen absorbance reported 

to the cut off (S/CO) value defined by the manufacturer.  

Confirmation assay: All M1 sera associated with at least one positive result using the above-mentioned 

assays or with a history of positive SARS-CoV-2 RT-PCR were retrospectively analyzed with the Abbott 

Architect SARS-CoV-2 IgG Quant II assay (Abbott, Sligo, Ireland) to confirm the serological positive 

status and to measure the anti-S IgG titer, if allowed by remaining serum volume. Sera collected during 

follow-up were also analyzed with this commercial assay for the entire selected cohort of COVID-19 

HCW to define the serological status at each timepoint. This assay is an automated chemiluminescence 

microparticle immunoassay (CMIA) that quantifies anti-RBD IgG, with 50 AU/mL as a positive cut-off 
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and a maximal threshold of quantification of 40,000 AU/mL (80,000 AU/mL at 1:2 dilution). According 

to the manufacturer, this CMIA displays clinical sensitivity and specificity of 98.81% and 99.55% at 15 

DSO, respectively. According to the manufacturer, antibody titers measured by this assay correlate, 

with a high probability (>95%), to neutralizing antibody titers assessed by plaque reduction assay on 

SARS-CoV-2 reference strain. This correlation was confirmed by previous studies(15, 33). 

S-Fuse live-virus neutralization assay: A neutralizing assay was performed on a panel of 28 COVID-19+ 

participants, including 13 who received a single dose of COVID-19 vaccine. All sera were collected at 

M11-13. Live-virus neutralization was analyzed using the S-Fuse reporter cells, as previously reported 

(18). Briefly, S-Fuse reporter cells correspond to U2OS cells engineered to express-ACE2 and either 

GFP1–10 or GFP11. When mixed, these cells produce GFP upon syncytia formation which occurs during 

productive infection with SARS-CoV-2. Neutralization of infectious D614G, B.1.1.7 and B.1.351 variants 

was assessed for each serum using limiting-dilutions. Infection was quantified by measuring the 

number of GFP+ syncytia 18 hours after infection. The percentage of neutralization was calculated 

using the number of syncytia as the value with the following formula: 100 × (1 − (value with serum − 

value in ‘noninfected’)/(value in ‘no serum’ – value in ‘noninfected’)). Neutralizing activity of each 

serum was expressed as the half-maximal inhibitory concentration (IC50). 

Statistical analysis 

Chi-squared test, Kruskal-Wallis rank sum test and Fisher's exact test were conducted to identify any 

significant changes in categorical variables over time and between groups. Non-parametric Wilcoxon 

paired tests and Mann-Whiney tests were conducted to compare quantitative data over time or 

between groups, respectively. All tests were two-sided with an α level of 0.05. To model anti-S (log-

transformed) and anti-N IgG titers over time, a triphasic decay was used, and the half-life (t1/2) of each 

decay phase was calculated.  
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To assess characteristics of patients with a faster/slower decay in anti-S and anti-N IgG titers, non-

parametric tests were used for univariate analyses (Wilcoxon and Fisher’s exact tests). Variables 

achieving a p value <0.17 in the univariate analysis were entered into a multivariate linear regression 

model (with a backward stepwise method based on the likelihood ratio test). Multivariate analyses 

were performed with R software version 4.0.3 (R Foundation for Statistical Computing, Vienna, 

Austria). Factor effects in multivariate linear regression are given with a 95%CI. All other data were 

analyzed and represented using Graphpad Prism version 9.0.0. We used the Kaplan–Meier method to 

estimate the cumulative probability of SARS-CoV-2 infection or reinfection per group (COVID-19 

negative or COVID-19 positive, respectively) and used the log-rank test to perform between-group 

comparisons. Time of exposition starts since the first negative serology for the COVID-19 negative HCW 

and since two months after initial SARS-CoV-2 infection (date of first symptoms or positive RT-PCR or 

first positive serology) for the COVID-19 positive group, as described previously(10). SARS-CoV-2 

infection/reinfection was documented by RT-PCR or serological testing among COVID-19 positive and 

negative HCW, respectively. Vaccinated individuals were censored at the time of the first vaccine dose. 

We also calculated the incidence of SARS-CoV-2 infection/reinfection per month, according to at-risk 

days during the follow-up of COVID-19 positive and COVID-19 negative individuals.  

Study approval 

This analysis was conducted on data from an on-going prospective, interventional, monocentric, 

longitudinal, cohort study enrolling healthcare workers from Strasbourg University Hospital 

(ClinicalTrials.gov Identifier: NCT04441684). The protocol was approved by the institutional review 

board of CPP Sud Méditerranée III. All participants provided a written informed consent. 
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Table 1.  Characteristics of the 393 COVID-19 positive healthcare workers.  

 Total Females Males P value 

Number of COVID-19 positive HCWs 393 302 91 NA 

Age (years), median (IQR) 39.0  
(29.6-50.5) 

40.0  
(30.1-51.1) 

34.3  
(28.6-44.6) 

0.0965 

BMI (kg/m²), median (IQR) 23.6  
(21.3-26.9) 

23.6  
(21.0-27.8) 

24.0  
(21.9-25.6) 

0.8157 

 Blood group 

A, n (%) 162 (41.2) 125 (41.4) 37 (40.7) 

0.2112 
B, n (%) 33 (8.4) 23 (7.6) 10 (11.0) 

AB, n (%) 16 (4.1) 14 (4.6) 2 (2.2) 

O, n (%) 129 (32.8) 108 (35.8) 21 (23.1) 

Rhesus negative, n (%) 60 (15.3) 50 (16.6) 10 (11.0) 0.2448 

Unknown, n (%) 53 (13.5) 32 (10.6) 21 (23.1) 0.0045 

 COVID-19 history 

Contact with COVID-19 case, n (%) 259 (65.9) 200 (66.2) 59 (64.8) 0.8021 

Previous positive SARS-CoV-2 RT-PCR, 
n (%) 

345 (87.8) 263 (87.1) 82 (90.1) 0.5837 

COVID-19 symptoms, n (%) 383 (97.4) 294 (97.4) 89 (97.8) 1.0 

Known date of symptoms onset, n (%) 378 (96.2) 289 (95.7) 89 (97.8) 0.5359 

Hospitalization, n (%) 16 (4.1) 10 (3.3) 6 (6.6) 0.2211 

 Serum collection 

HCW sampled at M1, n (%) 393 (100) 302 (100) 91 (100) 

0.8042 
HCW sampled at M3-6, n (%) 383 (97.5) 294 (97.4) 89 (97.8) 

HCW sampled at M7-9, n (%) 346 (88.0) 275 (91.1) 71 (78.0) 

HCW sampled at M11-13, n (%) 233 (59.3) 181 (59.9) 52 (57.1) 

 Time from symptom onset to serum collection at: 

M1 (days), median (IQR; range) 31 (24-38;  
6-58) 

32 (24-38;  
6-53) 

29 (24-37;  
13-58) 

0.2087 

M3-6 (days), median (IQR; range) 107 (92-131; 
78-172) 

107.5 (92.3-
131; 78-172) 

105 (90-130; 
78-164) 

0.6583 

M7-9 (days), median (IQR; range) 215 (195-243; 
161-284) 

217 (196-246; 
161-284) 

210 (194-237; 
169-281) 

0.3388 

M11-13 (days), median (IQR; range) 373 (347-396; 
321-422) 

369 (346-396; 
321-421) 

384 (348-396; 
332-422) 

0.2053 

 Vaccination 

Single-dose vaccination between M7-9 
and M11-13, n (% of M11-13) 

59 (25.3)  43 (23.8) 16 (30.8) 0.3655 

Double dose vaccination between M7-
9 and M11-13, n (% of M11-13) 

34 (14.6) 27 (14.9) 7 (13.5)  1.0 

 

BMI: body mass index; HCWs: Healthcare workers; IQR: Interquartile range; NA: not applicable; NS: 

not significative; RT-PCR: Real-time reverse transcriptase PCR. P values were calculated with Mann-

Whitney, Chi-square and Fisher exact tests using the Graphpad Prism version 9.0.0 software. 
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Figures and figure legends 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Flow chart of survey recruitment and serum sampling among the healthcare workers 

(HCWs) at Strasbourg University Hospital. First line serological screening was performed using two 

commercial assays: the Biosynex® (COVID-19 BSS IgG/IgM) Lateral Flow Assay (LFA) detecting anti-

spike (S) antibodies and the EDITM Novel coronavirus COVID-19 IgG ELISA assay detecting the anti-

nucleocapsid protein (N) IgG. A third assay, the Abbott SARS-CoV-2 IgG II Quant assay, measuring the 

anti-S IgG, was used to confirm seropositive samples. Serological testing on the first serum sample of 

each participant between 6 April and 7 May 2020 (M1) and on further sera collected at M3-6, M7-9, 

and M11-13 led to the establishment of two separate cohorts of COVID-19 positive or negative HCWs, 

both with serological follow-up. Anti-S: anti-spike protein; Anti-N: anti-nucleocapsid protein; CMIA: 

chemiluminescent microparticle immunoassay; ELISA: enzyme-linked immunosorbent assay; HCW: 

healthcare workers; LFA: lateral flow assay; RT-PCR: real-time reverse transcriptase PCR.  

1,496 HCW in Strasbourg University 
Hospitals screened by SARS-CoV-2 serology 

between 6th April and 7th May (M1) 

1,309 HCW with at least 
one follow-up timepoint 

(M3-6 and/or M7-9 and/or M11-13)

345 HCW with 
history of positive 

SARS-CoV-2 RT-PCR

187 HCW excluded: 
no further serum collected

964 HCW without history of 
positive SARS-CoV-2 RT-PCR

118 HCW seropositive 
with at least one assay

846 HCW seronegative

48 HCW seropositive

70 HCW seronegative

COVID-19 positive 
HCW (n = 393)

COVID-19 negative 
HCW (n = 916)

Confirmation at M1 : 
anti-S IgG CMIA

Screening at M1: 
IgM/IgG anti-S LFA 

and anti-N IgG ELISA
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Figure 2: Dynamics and determinants of SARS-CoV-2 humoral responses after COVID-19. (A) SARS-
CoV-2 seropositive rate over time among participants (M1 (n=393), M3-6 (n=383), M7-9 (n=346), M11-
13 (n=139)) according to the different serological assays. (B) Dynamics of anti-S IgG titers expressed in 
log AU/mL (Abbott SARS-CoV-2 IgG II Quant assay) over time among HCWs with known first date of 
symptoms (M1 (n=369), M3-6 (n= 369), M7-9 (n= 332), M11-13 (n=137). (C) Variation of anti-S IgG 
titers per month expressed in log AU/mL between each time point (M1 to M3-6 (n=374), M3-6 to M7-
9 (n=337), M7-9 to M11-13 (n=128)). (D) Associations between anti-S IgG titers decay between M3-6 
to M7-9 and demographical, biological, and virological data and time of sampling at M3-6 expressed 
in days post symptoms onset (DSO) (n=337). (E) Dynamics of anti-N IgG expressed in ratio optical 
density (OD) signal/Cut Off (S/CO) (EDITM) over time among HCWs with known first date of symptoms 
(M1 (n=378), M3-6 (n= 369), M7-9 (n= 332), M11-13 (n=137)). (F) Anti-N IgG ratios variation per month 
expressed in ratio OD Sample/CO between each timepoints (M1 to M3-6 (n=383), M3-6 to M7-9 
(n=337), M7-9 to M11-13 (n=128)). (G) Associations between anti-N IgG ratio decay between M3-6 to 
M7-9 and demographical, biological, and virological data and time of serum sampling at M3-6. For 
panel B, C, E and F, red lines represent median values and yellow lines the interquartile range for each 
population. *p value < 0.05; **p value < 0.01; ***p value < 0.001, ****p value <0.0001; calculated with 
non-parametric Wilcoxon paired tests using the Graphpad Prism version 9.0.0 software. For panel D 
and G, data are depicted as factor effects in multivariate linear regression, with a 95% confidence 
interval given (95%CI). Multivariate analyses were performed with R software version 4.0.3 (R 
Foundation for Statistical Computing, Vienna, Austria). 
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Figure 3. The risk of reinfection after a first COVID-19 episode. 

(A) Kaplan-Meier estimates of the probability of SRAS-CoV-2 infection protection. The cumulative 

probabilities of remaining free of SARS-CoV-2 infection among COVID-19 negative (COVID-19-) 

participants (red curve) and reinfection among former COVID-19 positive (COVID-19+) participants 

(blue curve) are shown on one year of follow-up (with 95% confidence interval, dotted lines). 

Exposition starts since the first negative serology for the COVID-19- group and since two months after 

initial SARS-CoV-2 infection for the COVID-19+ group, as described previously(10). SARS-CoV-2 

infection/reinfection was assessed either by RT-PCR or/and serology. Vaccinated individuals were 

censored at the time of the first vaccine dose. The number of exposed participants is defined under 

the x axis. Comparison of survival curves was performed using log-rank test. Comparison and p value 

were computed using the Graphpad Prism version 9.0.0 software. (B) Calculated incidence of SARS-

CoV-2 infection/reinfection per month, according to at-risk days during the follow-up of COVID-19+ 

(blue curve) and COVID-19- (red curve) individuals. Exposition starts since the first negative serology 

for the COVID-19- group and since two months after initial SARS-CoV-2 infection for the COVID-19+ 

group, as described previously(10). SARS-CoV-2 infection/reinfection was assessed either by RT-PCR 

or/and serology. Vaccinated individuals were censored at the time of the first vaccine dose. Data are 

represented according to calendar months to allow the reflection with national epidemic dynamics 

(epidemic waves depicted at the top of the graph with arrows). The number of at-risk days is shown 

under the x axis.  
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Figure 4: Impact of SARS-CoV-2 vaccination on humoral response in COVID-19+ HCWs (A) Timing of 

the rebound in anti-S IgG titers following vaccination among the 93 COVID-19 positive HCWs who 

received at least one dose of vaccine against SARS-CoV-2 between M7-9 and M11-13 visits. The dotted 

vertical black line corresponds to the day of first injection (D0). Anti-S IgG titers among HCWs 

vaccinated with one dose of AstraZeneca vaccine are depicted in red circles, with one or two doses of 

Moderna vaccine in light and dark green squares, with one or two doses of Pfizer vaccine in light blue 

upwards and dark blue downwards triangles, respectively. (B) Comparison of anti-S IgG titer dynamics 

over time between 139 unvaccinated HCWs in grey dots and 86 HCWs vaccinated for more at least six 

days in black dots. *p value < 0.05; **p value < 0.01; ***p value < 0.001, ****p value <0.0001; 

calculated with non-parametric Wilcoxon paired tests and Mann-Whiney tests using the Graphpad 

Prism version 9.0.0 software. The dotted horizontal black line corresponds to the anti-S IgG titer 

positivity threshold. 
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Figure 5: Neutralization efficiency after single-dose vaccination among the COVID-19+ HCWs. 
Neutralizing antibody titers against live-strains of D614G, B.1.1.7, and B.1.351 variants of SARS-CoV-2 
were measured in sera collected at M11-13 for 13 single-dose vaccinated HCWs and 15 unvaccinated 
HCWs. (A) Anti-S IgG (log AU/mL) kinetics between M7-9 and M11-13 according to vaccination status. 
(B) Neutralizing antibody titers (log IC50) against the D614G, B.1.1.7, and  B.1.351 variants measured 
at M11-13. The dotted black line corresponds to positivity threshold of neutralization assay. 
Neutralizing antibody titers measured in HCWs vaccinated with one dose of AstraZeneca vaccine (red 
circles), Moderna vaccine (green squares) or Pfizer-BioNtech vaccine(light blue triangles).  (C) 
Spearman correlation between anti-S IgG titers (log AU/mL) and neutralizing antibody titer (log IC50) 
against D614G (green circles), B.1.1.7 (violet squares), and B.1.351 (orange triangles) variants 
measured at M11-13 in vaccinated (n=13) and unvaccinated (n=15) HCWs. The calculated correlation 
coefficients (r) and linear regression equations are depicted. (D) Pie charts depicting the frequency of 
log IC50 neutralization titer categories (extrapolated from CMIA anti-S titers) for all participants at M11-
13 of according to the viral strain and the vaccination status. The number of participants is included at 
the center of the pie. *p value < 0.05; **p value < 0.01; ***p value < 0.001, ****p value <0.0001; 
calculated with non-parametric Wilcoxon paired tests or Spearman correlation. P values and 
correlation coefficients computed using the Graphpad Prism version 9.0.0 software. 
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