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ABSTRACT 

 

Objective 

As a long-standing Clinical and Translational Science Awards (CTSA) Program hub, the 

University of Pittsburgh and the University of Pittsburgh Medical Center (UPMC) developed and 

implemented a modern research data warehouse (RDW) to efficiently provision electronic 

patient data for clinical and translational research. 

 

Methods 

Because UPMC is one of the largest health care systems in the US with multiple vendors’ 

electronic health record (EHR) systems, we designed and implemented an RDW named Neptune 

to serve the specific needs of our CTSA. Neptune uses an atomic design where data is stored at a 

high level of granularity as represented in source systems. Neptune contains robust patient 

identity management tailored for research; integrates patient data from multiple sources, 

including EHRs, health plans, and research studies; and includes knowledge for mapping to 

standard terminologies. Neptune enables efficient provisioning of data to large analytics-oriented 

data models and to individual investigators. 

 

Results 

Neptune contains data for more than 5 million patients longitudinally organized as HIPAA 

Limited Data with dates and includes structured EHR data, clinical documents, health insurance 

claims, and research data. Neptune is used as a source for patient data for hundreds of IRB-

approved research projects by local investigators and for national projects such as the Accrual to 

Clinical Trials (ACT) network, the All of Us Research Program, and the National Patient-

Centered Clinical Research Network. 

 

Discussion 

The design of Neptune was heavily influenced by the large size of UPMC, the varied data 

sources, and the rich partnership between the University and the healthcare system. It features 

several desiderata of an RDW, including robust protected health information management, an 

extensible information storage model, and binding to standard terminologies at the time of data 

delivery. It also includes several unique aspects, including the physical warehouse straddling the 

University of Pittsburgh and UPMC networks and management under a HIPAA Business 

Associates Agreement. 

 

Conclusion 

We describe the design and implementation of an RDW at a large academic health care system 

that uses a distinctive atomic design where data is stored at a high level of granularity. 

 

 

Keywords: research patient data repository, research data warehouse, secondary use, EHR  
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INTRODUCTION 

The passage of the Health Information Technology for Economic and Clinical Health (HITECH) 

Act by the United States federal government led to the widespread adoption of electronic health 

record (EHR) systems that capture patient data at an ever-increasing pace (1). The availability of 

large amounts of EHR data provides new opportunities for their secondary use to support clinical 

and translational science. Further, EHR data in combination with other patient data from research 

studies, patient-reported outcomes, mobile health, and social media are progressively becoming 

important in biomedical research.  

 

Data warehouses containing EHR data exist in large healthcare systems for a variety of 

operational, reporting, quality improvement, and financial purposes (2). However, such 

warehouses often do not support research effectively due to the heterogeneity of EHR data, 

regulatory complexity such as the requirement for de-identification (3), and the need for 

research-project-specific data management. A common approach to efficient and large-scale 

reuse of EHR data for research is a dedicated research patient data repository or research data 

warehouse (RDW) that integrates and harmonizes EHR data and is architected, implemented, 

and operated by personnel with informatics expertise. Funded by the National Center for 

Advancing Translational Sciences (NCATS), the Clinical and Translational Science Awards 

(CTSA) Program hubs have developed RDWs for efficient and widespread use of EHR and other 

data for research; with 94% of all hubs providing such services (4).  

 

Dedicated RDWs have enabled a wide range of research efforts such as clinical trial recruitment, 

large-scale characterization of treatment pathways (5), generation of real-world evidence for 

clinical decision making (6), pharmacovigilance (7), rapid cohort identification (8), and 

phenome-wide association studies (9). Furthermore, harmonized data in RDWs unlock future 

opportunities for large scale application of machine learning for biomedical discovery (10) and 

clinical decision support that can support order entry (11), smart prioritization of data in EHR 

systems (12), anomaly detection (13), and precision medicine (14). 

 

RDWs have evolved along two broad pathways (15). Several large academic health centers have 

developed single institutional RDWs that are architected specifically based on local EHR 

systems and needs. Examples of single-institution RDWs are those at Northwestern University 

(16, 17), Duke University Health System (18), Stanford University (19, 20), and Vanderbilt 

University (21). Other institutions have implemented RDWs based upon analytics-oriented data 

models designed for multi-institutional consortia and data networks. Examples of such data 

models include the Informatics for Integrating Biology and the Bedside (i2b2) (22), the 

Observational Medical Outcomes Partnership (OMOP) Common Data Model (23), and the 

National Patient-Centered Clinical Research Network (PCORnet) Common Data Model (24).  

 

In this paper, we describe the design and implementation of a single institutional RDW, called 

Neptune, at the University of Pittsburgh (Pitt). Neptune is architected to ingest patient data from 

a multitude of sources, to store data at the level of granularity that exists in the sources, and from 

which data is subsequently transformed into analytics-oriented data models and research data 

sets. Beyond patient data, knowledge for mapping to standard terminologies and definitions for 

standardizing clinical concepts are also stored in Neptune. We provide a brief description of the 
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large health system associated with Pitt, details of the architecture of Neptune, and some of the 

distinctive aspects of Neptune related to the technical infrastructure.  

METHODS 

Setting and history 

The University of Pittsburgh Medical Center (UPMC) is one of the largest health care systems in 

the United States. UPMC serves western, central, and western Pennsylvania and parts of Ohio, 

West Virginia, and New York, and comprises 40 hospitals with 8,400 licensed beds, more than 

700 doctors' offices and outpatient facilities, and 23 nursing homes. Annually, UPMC has 388K 

inpatient admissions, 1.1M emergency room visits, 5.5M outpatient visits, and 260K surgical 

procedures. The University of Pittsburgh School of Medicine (UPSOM), located in the city of 

Pittsburgh, is the medical college and the clinical research facility that, together with UPMC, 

comprises a top 5 NIH-supported leading academic medical center. UPSOM supports an 

academic staff of nearly 2,500 physicians and educators and trains approximately 600 medical 

students and 1,900 medical residents and clinical fellows yearly. 

 

UPMC has evolved as a merger of previously independent hospitals and practices, and its 

clinical information systems reflect this heritage, including a range of legacy and modern 

systems. UPMC has deployed several EHR systems from different vendors. In most outpatient 

facilities, UPMC uses the EpicCare system (Epic, Verona, Wis.), while in the inpatient and 

emergency settings, UPMC has deployed the Cerner system. The UPMC Children’s Hospital of 

Pittsburgh has an independent installation of the Cerner Millennium system. Additional EHR and 

ancillary systems are used in various specialty settings such as inpatient psychiatry, the cancer 

center, the perioperative setting, and radiological imaging. UPMC has created multiple interfaces 

among the clinical information systems to enable clinical workflows that require data from 

multiple systems; however, this has led to the replication of patient data across these systems.   

 

As early as 1982, Pitt and UPMC developed a clinical data warehouse called the Medical 

ARchival Retrieval System (MARS) that integrated data from EHR systems and administrative 

claims systems (25). MARS was developed as a file-based database system that archived both 

structured and document patient data in text files. As UPMC grew with the acquisition of 

hospitals and their clinical information systems, data integration was achieved by sending data in 

Health Level Seven (HL7) format through a message router to MARS. 

 

Since MARS was implemented two decades ago, UPMC has grown substantially and has 

deployed several modern EHR systems. The need for a modern dedicated RDW emerged over 

the past several years. As a long-standing CTSA hub, Pitt needed a modern RDW and robust 

informatics services for efficient and effective support of investigators at Pitt and UPMC.  

Organization 

The Biomedical Informatics Core (BIC) of the University of Pittsburgh Clinical and 

Translational Science Institute, the Center for Clinical Research Informatics (CCRI) (26), and the 

Research Informatics Office (RIO) (27) lead the development of Neptune and provisioning of 

patient data for research. BIC, CCRI, and RIO are each housed in the Department of Biomedical 
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Informatics and are each led by informatics faculty. On behalf of UPMC, three informatics 

faculty members oversee long-term planning, implementation of new features, and maintenance 

of Neptune and its downstream analytics-oriented data marts for national data-sharing efforts.  

 

The team that supports Neptune and the data marts perform a range of functions. The technical 

group identifies use cases, reviews and selects technologies, implements extract-transform-load 

processes based on data standards and terminologies established by a data harmonization group, 

and develops processes for aligning and integrating research data with the EHR data. The data 

harmonization group establishes data standards for different types of EHR and research data, 

determines which standard terminologies to use, and maintains and updates mappings of local 

terms to terminologies. The data quality group establishes statistics, uncovers data anomalies by 

periodically measuring these statistics in the data, and returns discoveries to the technical group 

for changes in the data pipelines. The user support group communicates with local users, 

provides training and support, and solicits feedback from the user community.  

Architecture of Neptune 

The Neptune RDW consists of three main layers: 1) an identity management layer for managing 

personally identifiable information, 2) a data layer that contains EHR and other patient data, 

both identified and as limited data with preserved timestamps and zip codes, and 3) a semantic 

layer that consists of business logic such as mappings between local terms and standard 

terminologies (see Figure 1). Neptune uses a normalized atomic design. Normalized data implies 

that one fact or piece of information is stored in one place in the warehouse to minimize 

redundancy. An atomic data warehouse (28) contains data at a high level of granularity and is 

obtained from the source systems with minimal filtering or summarization.  

 

The RDW is implemented using the Oracle database management system. The warehouse 

physically straddles the UPMC and the Pitt networks. For example, the identity management 

layer of Neptune resides within the UPMC network, and the semantic layer and most of the data 

layer resides in the Pitt network (see Figure 1). Though the warehouse is split across two distinct 

networks, members of the technical group can seamlessly view tables from both components of 

Neptune and run processes across all layers of Neptune. 

Identity management layer 

The identity management layer resides in the UPMC network and contains personally 

identifiable information of all patients. A key function in Neptune is to assign and maintain a 

unique research enterprise identifier to each patient. This research enterprise identifier is distinct 

from patient identifiers that are used in the healthcare system, including clinical enterprise 

identifiers, medical record numbers, and other healthcare identifiers. The research enterprise 

identifier is linked to healthcare system patient identifiers and is also linked to participant 

identifiers of research data sets that are integrated into Neptune. This three-layer identity 

management exceeds best practices for HIPAA Honest Brokerage and helps ensure participant 

identifiers cannot be shared across projects. 

 

Identity management and linking of patient identifiers is performed in a staging area. During 

monthly ingestion of data from clinical systems, new patients in the health system are identified 

and assigned new research enterprise identifiers. For existing patients who may have been 

assigned new clinical identifiers, the new identifiers are linked to the existing research enterprise 
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identifier. Any merges of clinical enterprise identifiers and medical record numbers are also 

processed. Identity management enables patient data from any data domain and linked to any 

patient identifier to be accurately linked to the enterprise research identifier. Neptune’s identity 

management achieves a key goal of Neptune: to create a comprehensive longitudinal record for 

each patient by integrating clinical and non-clinical data from multiple sources. 
 

  
 

Figure 1. The architecture of Neptune with sources and destinations. The identity management 

layer resides at UPMC, the semantic layer resides at Pitt, and the data layer resides mostly at Pitt.   

Data layer 

The data layer resides mostly at Pitt and contains both structured and text EHR data as well as 

other types of data such as imaging data (see Figure 2). The data layer stores atomic patient data; 

that is, the data is at the level of granularity in the source system with minimal transformation. 

The structured data include core data domains such as demographics, visits, diagnoses, 

procedures, laboratory test results, medication orders, other orders (for laboratory tests, clinical 

imaging, procedures, etc.), and medication dispenses. Additional data domains include allergies, 

vaccine administrations, and metadata of clinical documents. The text data consists of de-

identified content for all document types such as history and physical, progress, consultation, 

procedure, and discharge notes; radiology and pathology reports; electrocardiogram and 

electroencephalogram reports; and many more. In every domain, for each data item, the source 

system from which it was extracted is recorded to maintain data provenance.   

 

At the time of extraction of data from source systems, the extracts are staged in the data layer at 

UPMC, where de-identification is performed before data is moved to the data layer at Pitt. A 

copy of the latest extract of data for all domains is maintained in the staging data layer. For most 

domains, data is extracted and processed monthly. De-identification consists of removing all 

HIPAA specified personally identifiable information with the exception of dates and zip codes to 

create a Limited Data Set, and the data are linked to the patient only through the research 

enterprise identifier. De-identification is straightforward for structured data domains where 
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database columns containing personally identifiable information are removed. De-identification 

of clinical documents is done using NLM Scrubber (29) that has been adapted for our use. 

Semantic layer 

The semantic layer resides at Pitt and contains the knowledge and logic to harmonize data that 

may be represented in a heterogeneous fashion across different hospitals and source systems. For 

example, for the laboratory test of hematocrit, each hospital at UPMC uses a different local code, 

and the semantic layer contains a list of all local hematocrit codes that are mapped to the relevant 

LOINC code for standardization. Mappings are obtained from several sources. One source is 

reference data obtained from source systems like EpicCare that contains mappings between local 

terms and standard terminologies that are created and maintained by the clinical enterprise. 

However, the clinical enterprise does not necessarily create mappings to legacy data or mappings 

to standard terminologies that are not mandated by federal regulations. The data harmonization 

group creates and updates mappings for legacy data and mappings that are useful in research. In 

addition, we import a comprehensive set of medical terminologies that are contained in the 

Unified Medical Language System (UMLS) (30) and maintain all versions of the terminologies 

going back to 2004 UMLS releases. We harmonize diagnoses to ICD-9 and ICD-10, procedures 

to ICD-9, ICD-10, CPT-4 and HCPCS, medications to RxNorm and NDC, and laboratory tests to 

LOINC. We also use the UMLS to validate the source system data that are increasingly coded 

with standard terminologies. In addition to mappings, the semantic layer contains value sets that 

have been collected from several sources such as the NIH’s Value Set Authority Center (31) and 

value sets that have been defined by national patient data research networks. 

 

The mappings and value sets of the semantic layer are leveraged at the time data is delivered 

from Neptune to downstream data marts and to individual projects. Standard terminology codes 

and values are applied at that time to produce standardized data; this late binding approach 

provides efficient and timely standardization of data to constantly changing terminologies.  

Extract, transform, and load processes 

Most data domains in Neptune are updated at the beginning of each month. A series of extract, 

transform, load (ETL) database operations are implemented using the Pentaho Data Integrator 

(PDI) and run overnight to extract a month of data from the source systems. More than 70 

workflows process the monthly incremental data updates. The PDI programs perform extraction 

and loading of warehouse tables, including data validation checks, error handling, auditing, and 

control processing. Linux scripts are used to call PDI programs. The data in the source systems 

are transactional, and some transactions may take several weeks to be finalized. Thus, we update 

data in Neptune with a lag period of at least one calendar month so that once extracted and 

loaded, data in Neptune do not have to be updated nor reconciled with newer data. 

Extension of Neptune for COVID-19 

The emergence of coronavirus disease 2019 (COVID-19) necessitated a more frequent update of 

COVID-19 related data in Neptune to support surveillance and research needs. Since UPMC is a 

large health system with millions of active patients and billions of transactions, rather than 

changing the monthly ETL processes, we developed a new parallel ETL process that updates 

data on COVID-19 twice a week. For efficiency, the new process extracts data only between the 

latest monthly Neptune update and the current day; thus, the data lags the source systems at most 
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by four days. This COVID-19 component of Neptune serves national projects that added more 

frequent data requirements for COVID-19 serving the COVID-19 needs of local investigators. 

Regulation of Neptune 

Neptune was initially developed under an institutional review board (IRB) protocol, but the 

regulatory framework was later changed to a HIPAA Business Associates Agreement (BAA). 

Regulation under an IRB protocol was limiting since the addition of new data sources, and 

technical changes need repeated changes to the protocol. The BAA is overseen by the Chief 

Research Informatics Officer at Pitt and the Chief Medical Information Officer at UPMC. This 

arrangement, allowing Neptune to function as an operational research system of UPMC under 

the BAA, enabled rapid expansion and development of new functionality in Neptune.  

RESULTS 

Designed as a RDW that integrates patient data from varied sources, Neptune contains EHR data 

(structured, document and imaging), insurance data, and research data. EHR data in Neptune 

goes back to 2004 when UPMC completed implementation of electronic clinical information 

systems. Every month, a large volume of EHR data is added to Neptune that includes data from 

existing patients and approximately 21,000 new patients (see Figure 2). Neptune also receives 

health insurance claims data from the UPMC Health Plan and from large institutional research 

projects like the Magee Obstetric Maternal & Infant (MOMI) Database and Biobank (>300 

perinatal variables from mother and infant, ~200K deliveries since 1995) (32, 33), and genomic 

data from the Pitt+Me Discovery Biobank. 

 

Neptune provides data to data marts for several national projects that include the NCATS-funded 

Accrual to Clinical Trials (ACT) network (8, 34), which is based on i2b2 (22) and SHRINE (35); 

the NIH-funded All of Us Research Program which is based on the OMOP data model (36, 37); 

the PCORI-funded PCORnet, which is based on PCORnet’s Common Data Model (CDM) and 

Figure 2. Total volume of data in Neptune, monthly data inflows and data 

volumes in destinations served by Neptune.   

Total 

 
Monthly 

5M patients 

Structured data 

460M visits 

311M diagnoses 

130M procedures 

1.42B lab test results 

96M drug prescriptions 

185M drug dispenses 

Clinical document data 

371M documents   

Clinical imaging data 

3M mammograms 

Insurance 

1.3M patients  

 

21K patients 

Structured data 

4M visits 

5M diagnoses 

1M procedures 

11M lab test results 

1M drug orders 

1M drug dispenses 

Clinical document data 

4.5M documents   

 

Data destinations 

Data marts for national 

projects 

ACT 4.9 M patients 

AoU 26K participants 

PaTH 3.5 M patients 

GIC 1.5M patients 

Local data marts 

Alzheimer’s disease 

13,000 patients 

Antibiotic usage 200,000 

patients 

Local investigators  

150 projects year 
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PopMedNet (38, 39); and the NCATS-funded Genomic Information Commons (GIC) which is 

based on i2b2/TranSMART (40, 41). Neptune also provides data to data marts for local projects 

such as an Alzheimer’s disease project and an antibiotic usage project. Typically, data is 

automatically updated in both the national and local data marts following the monthly data 

updates in Neptune (see Figure 2).  

 

In addition, Neptune serves as a source of EHR and other patient data for local research in the 

institution. The RIO provisions data to hundreds of individual research projects per year. Finally, 

RIO responds to approximately one thousand requests per year, including preparatory to research 

requests and letters of support for research grants. 

DISCUSSION 

We described the design and implementation of Neptune, a new RDW, at Pitt and UPMC. 

Neptune is designed to integrate data from several EHR systems with replicated patient records 

as well as non-EHR data, support both identified and de-identified data needs, and service 

efficiently commonly used analytics-oriented data models and data needs of individual 

investigators. The rich partnership between Pitt and UPMC supported the rapid technical 

development and implementation of Neptune. This warehouse is an increasingly rich repository 

of EHR and other patient data and is progressively benefitting the dynamic research environment 

at Pitt and UPMC. 

Distinctive features of Neptune 

This section describes distinctive aspects of Neptune's technical infrastructure. Desiderata for the 

successful implementation and operation of an RDW has been described by Huser and Cimino 

(42). These include a single patient identifier, protected health information (PHI) management, 

an extensible information storage model, semantic integration with standard terminologies, 

metadata and documentation, and documentation of historical evolution of data sources. Several 

of the features of Neptune described below align with these desiderata. 

 

Atomic data warehouse. Neptune is architected as a canonical model for ingestion and storage 

of patient data derived from multiple sources and from which data is subsequently transformed 

into analytics-oriented data models. The canonical model in Neptune uses a normalized atomic 

design. Normalization is a key database principle that enables efficient correction of data errors 

and optimization of storage space. The atomic design enables rapid ingestion of data in bulk, 

tracking of data provenance, isolation, separate processing of changing data, and provides a 

single place for data cleaning and transformation rather than duplicating these processes for each 

data source. The advantage of an atomic warehouse is it can both provide answers to queries at a 

very detailed level and summarize data rapidly that may be needed for analytics-oriented data 

models. Neptune enables us to avoid converting data from one data model to another, e.g., from 

OMOP to PCORnet’s CDM or vice-versa, which is typically more complex to implement than 

an ETL process from Neptune to an individual data model. Further, due to information loss, it is 

not possible to inter-convert between data models with complete fidelity. The atomic design also 

enables the stepwise addition of new data domains without the need to redesign nor implement a 

comprehensive set of all possible data domains that will eventually be needed.  
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Single patient identifier and management of PHI. A key feature in Neptune is the 

management of patient identifiers such that all data related to a patient originating from different 

EHR systems, health insurance, and research studies are linked to a single enterprise research 

identifier. While UPMC maintains a single enterprise clinical patient identifier that links all 

clinical identifiers of a patient, the enterprise clinical patient identifier was not usable in the 

RDW for several reasons. We needed an enterprise identifier that is not PHI and can be linked to 

both clinical patient identifiers and patient identifiers used in research studies. In Neptune, the 

identity management layer is used to integrate clinical and non-clinical identifiers and assign a 

unique enterprise research identifier to each patient. This layer resides on the health system side 

since it contains PHI; thus, the architecture of Neptune helps ensure that PHI does not leave the 

confines of the health system network. 

 

Privacy and study patient identifiers. The enterprise research patient identifier is restricted for 

use within Neptune and is not used to identify patients when data is delivered to data marts and 

for research projects. Unique study patient identifiers are created and assigned for patients in 

each data mart and research data set that are derived from Neptune. A function is used to 

systematically transform the enterprise research patient identifier to a study patient identifier for 

each data set, and function details associated with each data set are archived in Neptune. The 

function allows warehouse personnel to link study identifiers to enterprise research patient 

identifiers for future updates to study data, but investigators cannot link data by patient across 

different data sets that were provisioned under different IRB protocols that may have common 

patients. 

 

Extensible information storage model. An important consideration for Neptune was rapid 

implementation, starting with key data domains so that the warehouse would be functional within 

months rather than years of development. The key data domains were identified based on the 

clinical domains required to service the national data marts; as such, Neptune initially contained 

only structured EHR data in the domains of demographics, diagnoses, procedures, laboratory test 

results, and medications. This enabled implementation in under six months. The addition of a 

new domain includes a selection of sources, identification of de-duplication strategies if 

necessary, aligning patient identifiers, a bulk backload of the data going back to 2004, and 

implementation of a monthly ETL process. The extensible information storage model 

implemented in Neptune has enabled the stepwise addition of new data domains without the need 

to rearchitect existing data domains.   

 

De-replication of data from multiple sources. Multiple EHR systems and an archival system 

are in use in UPMC. Assembling a longitudinal health record from these multiple sources is 

another key requirement for Neptune. In addition to the multitude of patient identifiers, another 

challenge associated with the use of multiple EHR systems is the replication of patient data 

across systems. We achieved de-replication in several ways. One approach is the selective 

extraction of data from a single source if a particular domain is systematically replicated across 

the EHR systems. For example, since 2015, in UPMC, laboratory test results from all care 

settings are available in EpicCare; thus, laboratory test results after 2015 are extracted only from 

EpicCare. Another approach compares timestamps and metadata of suspected replicated data to 

identify replication. For example, laboratory test results before 2015 were obtained from several 

sources, and replications were identified and systematically eliminated. 
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Binding at query. Binding is the process of mapping data to standard terminologies (e.g., 

translation of a local code for a laboratory test to the appropriate LOINC code) and application of 

definitions (e.g., application of a standard definition of an outpatient visit and calculation of the 

length of stay). Binding standardizes the data and makes it usable for research. In some 

warehouse designs and analytics-oriented models, mappings and definitions are applied early 

during data ingestion; such early binding has the disadvantage that changes to the mappings and 

definitions will need data to be corrected and updated continually. Since Neptune uses binding at 

query time, changes in mappings and definitions affect data only at the time data is delivered 

from Neptune, and new data sources are rapidly integrated into Neptune without making 

decisions about mappings upfront. 

 

Limitations 

Neptune has several limitations. One limitation is that the data in the warehouse lags the source 

systems by a month. While this delay is acceptable for most research that uses retrospective data, 

it limits research in clinical decision support and biosurveillance applications that typically 

require current or near current EHR data. But, as mentioned previously for COVID-19 data, 

extending the capabilities to support requirements of more frequent data updates is possible with 

additional development. Another limitation is that there is no efficient mechanism to query 

clinical document data, while structured data can be queried by the warehouse personnel by 

directly querying Neptune or via the ACT i2b2 data mart. We have separately implemented 

Elasticsearch technology for efficient query and analysis of text documents. 

 

 

CONCLUSION 
The Neptune RDW implemented at Pitt is increasingly enabling extensive reuse of patient data 

for a wide range and high volume of clinical and translational research. Neptune is designed as a 

normalized atomic warehouse. The atomic design enabled the warehouse to be built “better, 

faster, cheaper” because there is no need to extensively model or standardize the data. Neptune 

integrates patient data from multiple EHR systems as well as from other sources, maintains a 

robust patient identity management system for research, and enables efficient delivery of data to 

both large data marts based on analytics-oriented data models and to individual investigators. 

Creating a dedicated RDW at Pitt has enabled us to better serve the investigators at Pitt, 

participate in regional and national data networks, and advance informatics research.  
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