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Abstract

This paper proposes and analyses a stochastic model for the spread of an infec-
tious disease that is transmitted between clients and care workers in the UK domicil-
iary care setting. Interactions between clients and care workers are modelled using
specially generated networks, with network parameters reflecting realistic patterns
of care needs and visit allocation. These networks are then used to simulate and
SEIR-type epidemic dynamics with different numbers of infectious and recovery
stages. The results indicate that with the same overall capacity provided by care
workers, the minimum peak proportion of infection, and the smallest overall size of
infection are achieved for the highest proportion of overlap between visit allocation,
i.e. when care workers have the highest chances of being allocated a visit to the
same client they have visited before. An intuitive explanation of this is that while
providing the required care coverage, maximising overlap in visit allocation reduces
the possibility of an infectious care worker inadvertently spreading the infection
to other clients. The model is quite generic and can be adapted to any particular
directly transmitted infectious disease, such as, more recently, COVID-19, provided
accurate estimates of disease parameters can be obtained from real data.

Keywords: care workers, domiciliary care, networks, SEIR

∗ corresponding author: i.z.kiss@sussex.ac.uk

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.05.21256598doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.05.05.21256598
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

The catastrophic impact of Covid-19 in care homes for older people has been well docu-
mented [9, 13], demonstrating the extreme vulnerability of their frail elderly residents to
this emerging infection. Less well recognised is the large number of similarly frail older
people receiving professional (“regulated”) care in their own homes by visiting careers
who visit many clients in different households, known as home care or domiciliary care.
In 2020, an estimated 715,000 people provided care to around 330,000 community care
users above 65 years old in England [8, 7].

Vacancy in the domiciliary-care-providing sector are typically 1 in 10, with annual staff
turnover of 1 in 5 [8]. Social care can contribute to transmission of COVID-19 and
other infections such as influenza or norovirus (winter vomiting). Providers may become
unable to deliver care if staff are ill or isolating, putting vulnerable people at risk. In
care homes, outbreaks are quickly recognised and can have devastating effects, as we
have seen during the Covid-19 pandemic [9, 13]. However, outbreaks are harder to detect
in domiciliary care, as they takes place in people’s home. There is surprisingly little
research on domiciliary care generally [2], and particularly on its role in transmission and
prevention of infection.

Transmission of Covid-19 is likely to be higher for people receiving domiciliary care be-
cause client households are connected via care workers and there are also connections
with carers’ own households. Around one fifth of domiciliary care agencies reported pro-
viding care to at least one person with suspected or confirmed Covid-19 [3]. Dispersed
across households, and protected from knowledge of each other by the confidentiality
required of carers and agencies, domiciliary care associated outbreaks of infection can be
hard to detect and are probably under-ascertained. Previous work in domiciliary care has
explored how difficult it can be to properly identify and address outbreaks of infectious
diseases such as scabies [17] and, more recently, Covid-19 [6].

Given the vulnerability of domiciliary care clients to severe outcomes from Covid-19 and
other infections, and the need to protect visiting carers and their families from exposure,
there is a need to understand transmission dynamics in this neglected and difficult to
study setting. Since the start of Covid-19 pandemic, a large number of mathematical
models have looked into disease dynamics from the perspective of evaluating the effec-
tiveness of different non-pharmaceutical interventions [5, 18, 20, 1, 12], and assessing
various scenarios of lifting lockdown restrictions [14, 19]. Some work has been done on
modelling Covid-19 transmission in the care homes [16], where this disease has been as-
sociated with a significant death toll, but so far it has not been studied in a residential
care setting. We aim to fill this learning gap by developing and parameterising a simple
mathematical model of transmission through domiciliary care, and use it to evaluate the
potential impact of different policies for the allocation of carers to clients.

2 Mathematical model

We model interactions between clients (people receiving care within their own household)
and care workers using a bi-partite network, as shown in Fig. 1. The infection can be
passed from care workers to clients, and from clients to care workers. The majority of
transmission will be associated with movement of care workers between clients in different
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households.

Figure 1: Pictorial representation of the care worker and client/household interactions.
Some of these links will be weighted depending on the number of repeat or return visits
of care workers to the same client.

The main focus of this study is to understand the impact of care workers’ working pattern
on the spread of infectious diseases. In particular we are interested in the difference
between whether clients are visited by the same or different care workers. Whilst there is
some systematic evidence on the receipt of domiciliary care by clients [11] there is little
data on patterns of care delivery. As such we make a number of assumptions based on
anecdotal accounts of current practice. The assumptions are as follows:

• Clients require/receive between 1 to 4 visits per day, these can be fulfilled by the
same or different care workers

• Care workers are either full-time or part-time with their number of visits per day
being around 10 and 5. This approximates the typical 11 to 12 visits per day
for full time and 5 to 6 visits per day by part-time care workers. In the former
case these are to 7 or 8 different households, while in the latter most visits are to
different households.

The networks are generated by allocating stubs to each household. This is done by
choosing numbers from a 1 + Bin(3, µ), with some set value for µ such that the mean
1 + 3µ is around 3. There are care workers of two types: full-time and part-time. These
are also allocate stubs (10 for full-time and 5 for part-time care workers). These stubs are
then placed in two separate lists (one for households and one for care workers) with each
stub being labelled by the node index (e.g. if node i is a household with 3 links the three
copies of i will be added to the households’ stub list). We then choose stubs at random
from the household and from the care worker lists, without replacement. This means
that duplicate links are possible and some compatibility conditions need to be observed
(i.e. the number of stubs from households has to equal the number of stubs from care
workers). Further details are given in the Supplementary Material.

The network has an extra degree of freedom which allows us to vary the amount of repeat
visits (later referred to as ‘overlap’). This is done as follows. Once a household and a
care worker is connected for the first time, the algorithm searches out all the other stubs
from this household and care worker and adds them as extra link with probability poverlap.
High values of poverlap corresponding to the case where care workers go back to the same
household, as much as possible. Low values of poverlap mean visits by care workers are
distributed as much as possible and by avoiding repeat visits.

Figure 2 shows the clear difference between the no repeat (left panel) and repeat (right
panel) scenarios. We note that thicker edges are weighted from one to four, which reflects
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Figure 2: Example of networks with NHH = 100 households (green nodes), and equal
number of full time (red nodes) and part time (yellow nodes) care workers NFTCW =
NPTCW = 20. µ = 2/3 in Bin(3, µ) with poverlap = 0, 0.5, 1 from left to right.

the maximum number of visits required by a household. The construction implies that the
weight of edges in all three network is the same which means that more overlap between
visits leads to a sparser networks, with fewer visible links, but with links of higher weight.
This simple models allows us to vary the amount of repeat visits and thus allows us to
investigate its impact on infectious disease outbreaks in the domiciliary care sector.

We are now in a position to impose an epidemic dynamics on the top of the contact
structure and we do this by using an SEIR model where the nodes can be: susceptible
(S), exposed (E), infected/infectious (I) and recovered (R). The contact pattern between
households and care workers is given by the weighted contact matrix A = (Aij)i,j=1,2,...,N ,
where N is the number of nodes in the network. The transitions between different states
for each of the nodes are associated with following rates:

Transition Rate

Si → E1
i τ

∑N
j=1Aij

E1
i → E2

i K1σ
· · · · · ·
EK1−1

i → EK1
i K1σ

EK1
i → I1i K1σ

I1i → I2i K2γ
· · · · · ·
IK2−1
i → IK2

i K2γ

IK2
i → Ri K2γ

The subscripts i = 1, ..., N are node labels, τ is the disease transmission rate per single
link in the contact network, 1/σ is the incubation period represented by K1 stages, 1/γ
is the recovery period represented by K2 stages. The network is encoded by a weighted
adjacency matrix A = (Aij)i,j=1,2,...,N .

This model is simulated numerically, using the Gillespie algorithm on the generated
contact networks with different overlap.
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3 Results

To model the dynamics of the infectious spread, we have considered networks going from
no overlap to high overlap, see figure 2. In the no overlap (unweighted) network case (see
left panel), client needs are met by different care workers, and could potentially involve
no return visit by the same care worker. In the high overlap (weighted) network case (see
right panel), we assume that if a client is already receiving a visit from a particular care
worker and if they require additional visits, then these would most likely be provided by
the same care worker.

To analyse the effect of possible overlap on epidemic dynamics, we have performed sim-
ulations as follows. Varying the probability poverlap between 0 and 1 in steps of 0.1, for
each value of poverlap, we generated 10 networks, in which weight distribution account for
that particular value of poverlap, and then on each of those ten networks, we simulated
epidemic dynamics 10 times, thus effectively obtaining 100 simulations for each value of
poverlap. These individual simulations were then averaged, and they provided the results
shown in Fig. 3, which illustrates how proportions of infected clients, all care workers, and
separately full-time and part-time care workers, change depending on poverlap. We observe
that increasing the degree of overlap reduces epidemic peaks, which can be explained by
the fact the contribution of care workers who make repeat visits to the same household
to the overall spread of the infection is limited. Repeat visits to same household make
transmission to these households more likely, but this limits the number of links (i.e.
opportunities for wider transmission) available for further or wider spread. Fewer links
of higher weight thus limit the reach of the epidemic/outbreak, and the higher is the pro-
portion/weight of links connecting the same pairs of care workers and clients, the higher
is the reduction in epidemic peak. Figure 4 illustrates this in more detail by showing
how the peak in the total proportion of infected individuals, as well as the final epidemic
size (overall proportion of initial population who have been infected during the course of
epidemic) are both monotonically decreasing with p, once again indicating that increasing
the degree of overlap between visit allocations reduces the potential for disease spread.

The networks that we use have the same number of visits, i.e. the sum of weights on all
networks are the same, but the number of links is smaller in the weighted networks, since
links account for multiple visits. Also, in weighted networks we varied the proportion of
overlap between visits of care workers to the same clients to explore the effect this may
have on the dynamics.

4 Discussion

In this paper, we were able to develop and parameterise a simple model of domiciliary-
care-related infectious disease-transmission, with Covid-19 transmission as a test case.
The model shows that maximising the number of return visits (i.e. a care worker visiting
the same client during the day or multiple days ), while fulfilling care needs, has the
potential to limit the peak size and the overall burden of a domiciliary care outbreak.
This result supports a policy of maximising the ratio of repeat to one-off visits in designing
rosters.

There is a strong consensus that care is of higher quality when provided by a small
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Figure 3: Dynamics of the proportion of infected (exposed E and infectious I) clients,
all care workers, as well as full-time and part-time care workers, depending on the level
of overlap poverlap. Epidemics start with one infected node chosen at random, and each
trajectory represents an average taken over 10 realisations for 10 networks for each value
of p. Further parameters are: the rate of infection τ = 0.2; the rate of recovery from
the E state is σ = 0.3; the rate of recovery from the I state is γ = 0.3; the number of
E stages is K1 = 3; and the number of I stages is K2 = 5. The underlying networks
have NHH = 500 households, and equal number of full-time and part-time care workers,
NFTCW = NPTCW = 100, with each making nFTCW ' 10 and nPTCW ' 5 visits.

Figure 4: Peak total proportion of infected individuals and final epidemic size.
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number of familiar and known individuals [10]. However, the extent to which this is
possible will be limited by high vacancy rates (8.2%) and the need to ensure adequate
remuneration to retain a workforce of which 58% of domiciliary carers are on zero hours
contracts and overall 58% of care workers in the independent sector in 2019-20 were paid
less than the current national living wage (£8.91) [8]. Other limiting factors may include
the need of workers to isolate and lose earnings. In the case where such idle time are
paid will increase costs, while if unpaid will disincentives workers who will in this case be
subsidising the costs of reducing infection risk.

This simple model does not take into account the interaction between the community
and household risks of domiciliary care workers. Future models could usefully include
this information, which may be important in understanding the force of infection on
domiciliary care client households. Lower waged workers typically live in more densely
crowded accommodation, and have experienced higher burdens of Covid-19 infection as
low socioeconomic conditions and overcrowded housing are risk factor [4, 15]. By con-
trast domiciliary care clients generally live in small households with few inter-household
bridges. We have also not taken into account inter-worker networks, whether household,
social or transport related. These too may be important, as domiciliary care workers
mostly provide their own transport, which may be shared with families and co-workers.
Work transmission has been shown to be an an important contributor to non-household
transmission [9].

This simple proof of concept model of domiciliary care provides support from an infection
control perspective for the current policy consensus that care should be provided by a
limited number of familiar carers. The practical implications of doing so in the context
of a setting under considerable staffing and financial pressures need to be carefully con-
sidered in the development of any new social care policy. There is a need to extend this
model to include the social, household and wider community connections of domiciliary
care workers and client households. It should also be extended to address the implica-
tions of isolation and contact tracing policies for carers, clients, households and for the
sustainability of provision in the face of infection risks. Better data, analysis of patterns
of use and delivery of home care services is also a further research need. This will en-
able policy makers, commissioners and clients to understand the most effective actions
and workable trade-offs in relation to risk of Covid-19 and other infections that can be
facilitated through domiciliary care, affecting clients, carers and their households. This
relatively neglected setting deserves focussed research, enabling clients, carers and their
families to be optimally protected.

5 Supplementary Material

Here we provide some further details for the network construction algorithm.

• Number of households receiving care, NHH ;

• Number of full-time (NFTCW ) and part-time (NPTCW ), giving N = NHH+NFTCW +
NPTCW nodes in the network;

• Distribution of the number of visits a household or client receives/needs = 1 +
Bin(3, µ = 2/3), which then translates to numbers drawn from this distribution,
i.e. N i

visitsHH
, where i = 1, 2, ..., NHH ;
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• Number of visits by full-time care workers is nFTCW and it is nPTCW for part-time
care workers;

• We now allocate a proportion pFTCW = nFTCWNFTCW/(nFTCWNFTCW+nPTCWNPTCW )
of all household stubs to full-time care workers and the remaining ones to part-time
care workers. At this point the stubs are not yet allocated to care workers.

• The number of visits made by care workers is now allocated based on NvisitsFTCW
=

floor((
∑

iN
i
visitsHH

) ∗ pFTCW ) + remaining − visits− allocated− at− random, with
a similar formula for the part-time care workers. This means that some care workers
will have ±1 or so stubs compared to nFTCW or nPTCW . But such differences are
minimised by a careful choice of the number of care workers of different type;

• Create a list/array by placing copies/labels of HH in a list as many times as their
number of visits requires;

• Do the same for full-time and part-time CW in a different list;

• Pick elements at random from both lists and connect them up;

• This will produce a network where most links have only been realised once, with
some duplicate links occurring;

• This is then refined to allow multiple links between the same household and CW
leading to weighted edges. This is done as follows. Once a HH and a CW is
connected, the algorithm looks for any of stubs belonging to the same HH and
CW and connects them with probability poverlap.
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