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Abstract 

Background: As SARS-CoV-2 continues to spread, and hospitals are treating a large number of 

patients with COVID-19, easy-to-use risk models that predict hospital mortality can assist in 

clinical decision making and triage. 

Objective: As SARS-CoV-2 continues to spread, easy-to-use risk models that predict hospital 

mortality can assist in clinical decision making and triage. We aimed to develop a risk score 

model for in-hospital mortality in patients hospitalized with COVID-19 that was robust across 

hospitals and used clinical factors that are readily available and measured standardly across 

hospitals. 

Methods: In this observational study we developed a risk score model using data collected by 

trained abstractors for patients in 20 diverse hospitals across the state of Michigan (Mi-

COVID19) who were discharged between March 5, 2020 and August 14, 2020. Patients who 

tested positive for SARS-CoV-2 during hospitalization or were discharged with an ICD-10 code 

for COVID-19 (U07.1) were included. We employed an iterative forward selection approach to 

consider the inclusion of 145 potential risk factors available at hospital presentation. Model 

performance was externally validated with patients from 19 hospitals in the Mi-COVID19 

registry not used in model development. We shared the model in an easy-to-use online 

application that allows the user to predict in-hospital mortality risk for a patient if they have any 

subset of the variables in the final model. 

Results: Our final model includes the patient’s age, first recorded respiratory rate, first recorded 

pulse oximetry, highest creatinine level on day of presentation, and hospital’s COVID-19 

mortality rate. No other factors showed sufficient incremental model improvement to warrant 

inclusion. The AUC for the derivation and validation sets were .796 and .829 respectively.  

Conclusions: Risk of in-hospital mortality in COVID-19 patients can be reliably estimated using 

a few factors, which are standardly measured and available to physicians very early in a hospital 

encounter. 
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1.  Introduction 

The COVID-19 outbreak was declared a pandemic by the World Health Organization in 

March 2020 and continues to devastate much of the world. As of April 18, 2021, there have been 

approximately 141 million reported COVID-19 cases worldwide and 3.02 million reported 

deaths attributed to COVID-19, with a mortality rate per reported infection of 2.1%1. During the 

pandemic, hospitals have needed to constantly adapt how they operate as COVID-19 cases rise 

and wane. Empirical tools to assess individual patients’ risk for mortality could be lifesaving in 

hospitals, where decisions must be made as to how to allocate resources. To fill this need, since 

March 2020, a number of risk score models for predicting adverse outcomes of COVID-19 have 

been published2–5. However, many of these models were developed in patients within a single 

hospital or hospital system, lacked validation, or incorporated variables that are not routinely 

available or not measured consistently across hospitals or required subjective evaluation. 

Concerns of generalizability and ease of implementation remain. 

In this study, we aimed to develop a model to predict the risk of in-hospital mortality 

among patients hospitalized for COVID-19, utilizing variables that are readily available when a 

patient is hospitalized. We used a systematic variable selection approach to determine a small 

number of highly predictive factors from over one hundred variables in a high-quality 

observational dataset abstracted from patient electronic health records in the state of Michigan. 

2.  Methods 

2.1 Study Design and Data Abstraction 

We used data abstracted from patients in hospitals across the state of Michigan (Mi-

COVID19 registry) to fit a model predictive of risk of in-hospital death amongst patients 

hospitalized for COVID-19.6 The Mi-COVID19 data registry is a joint initiative between 10 

collaborative quality initiatives sponsored by an insurance provider, Blue Cross Blue Shield of 

Michigan and Blue Care Network to create a multi-hospital data registry.6 Forty non-critical 

access, non-federal Michigan hospitals voluntarily participated in abstracting data from patients, 

following a coordinated abstraction protocol, beginning on April 2, 2020.  

Data were abstracted from medical records by trained abstractors. The data included a 

pseudo-random sample of COVID-19 positive cases discharged between March 5, 2020 and 

August 14, 2020 (with the majority of discharges before April 24, 2020). If a hospital had the 
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ability to abstract full patient data for all eligible COVID-19 positive patients that entered the 

hospital, they did so. However, if a hospital was unable to abstract all cases, each day the eligible 

cases were ordered by the timestamp (minute) of discharge and were included starting with the 

smallest minute value of discharge, until the hospital reached their abstraction capacity. 

For this study, we only included patients who tested positive for SARS-CoV-2 within the 

hospital in which they were enrolled or were discharged with an ICD-10 code for COVID-19 

(U07.1). We split the data to include 20 hospitals in a derivation set and 20 hospitals in a 

validation set. Our derivation set included the 20 hospitals with the largest number of patients 

with abstracted data and we reserved the data on patients in the 20 hospitals with the smallest 

sample sizes for the validation set. We split the data by hospitals, rather than taking a random 

sample of patients, to emulate external validation and ensure that our estimates of model 

discrimination were not overly optimistic. We used a complete case analysis, so we ultimately 

excluded one hospital in the validation set since it had no observations with complete cases for 

the variables included in our final model. It is worth noting that the sample size available in the 

Mi-COVID19 data registry did not necessarily correlate with the size of the hospital, so there are 

small and large hospitals in both the derivation and validation sets. 

2.2 Outcome and Potential Risk Factors 

The outcome of interest was in-hospital mortality. We considered as possible risk factors 

145 variables abstracted in Mi-COVID19 which were measured on the first or second days of 

hospitalization. These risk factors included a patient’s 1) demographics and health behaviors 

(e.g., smoking), 2) medical history (comorbidities and previous medications and treatments), 3) 

exposure risk factors (e.g., being a service or healthcare worker), 4) symptoms and primary 

complaint at hospital arrival, 5) triage and first day vital signs, 6) first or second hospitalization 

day lab values 7) first or second hospitalization day chest x-ray findings. See eTable 1, 

Supplemental Content, for a full list of factors considered in model derivation. 

2.3 Statistical Methods 

We predicted in-hospital mortality using a logistic regression model. Our approach to 

variable selection ensured that our model was robust across the hospitals participating in Mi-

COVID19 and used factors that are commonly measured, while maintaining high discrimination. 

In order to control for variability between hospitals, we set our base model to be each hospital’s 

COVID-19 mortality rate, which can be thought of as the patient’s pre-test probability for 
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mortality at a given hospital. We included the hospital’s COVID-19 mortality rate as an 

adjustment to ensure that hospital-level differences in mortality would not be falsely attributed to 

patient characteristics or mask important patient characteristics. From this base model, we used 

forward and backward selection to choose which variables to include in the model.  

In the forward and backward selection, we assessed the model with three quality metrics: 

mean squared error (MSE), R-squared, and an adjusted area under the receiver operating 

characteristic curve (AUC). The adjusted AUC (denoted AUC(w)) assessed the discrimination of 

the model in a way that was unaffected by the value of the mortality rate of each hospital (see 

eMethods, Supplemental Content, for details on this calculation). We used this metric so that the 

AUC was not falsely inflated by including hospital mortality rate in the model. The value of 

AUC(w) can be interpreted as an estimate of the probability that, for two randomly selected 

patients with opposite outcomes from the same hospital, the model estimates a higher risk of 

mortality for the patient who is deceased. The AUC(w) calculation is a weighted average of the 

individual hospital AUCs, with weights proportional to the sample size. If AUC(w) is calculated 

for only one hospital, it is equivalent to the standard AUC. 

For each step of forward selection, we added every potential risk factor individually to 

the model determined from the previous step. We then assessed how much the model’s mean 

squared error (MSE), AUC(w), and R-squared improved when including a variable as compared 

to the model excluding that variable. We assessed improvement in the quality metrics (MSE, 

AUC(w), and R-squared) both for the full derivation dataset (all 20 hospitals) and within each 

hospital individually. We considered adding variables to the base model only if there was 

consistent improvement in MSE, AUC(w), and R-squared across the individual hospitals as well 

as all hospitals combined and if the improvement across all derivation hospitals was sufficiently 

large to warrant inclusion. Amongst factors that had consistent quantitative support to be added 

to the model, we considered whether these factors were likely to be routinely available and 

standardly reported across hospitals, as inferred by our clinical experience. If the answer was 

“yes,” we added the variable to the model. We repeated this process until there were no 

remaining clinically meaningful and standardly measured variables that also dependably 

improved MSE, AUC(w), and R-squared in a meaningful way across hospitals in the derivation 

set when added to the model.  
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Following this forward selection protocol, we additionally performed one step of 

backward selection to ensure that all variables, given all others in the model, were predictive of 

in-hospital mortality. We removed each variable individually and again assessed the change in 

MSE, AUC(w), and R-squared from the initial model to this model with one variable removed. If 

the MSE consistently increased and the AUC(w) and R-squared consistently decreased across 

hospitals when the variable was removed from the model, then we kept that variable in our final 

model. 

In both forward and backward selection, predictions for each individual hospital were 

made using a model fit on all other hospitals in the derivation set. In this way, all models were 

assessed using leave-one-out predictions, which reduced the concern for overfitting. 

2.4 Model Validation 

We assessed the performance of our final model on the external validation set of 19 

hospitals described previously. We additionally assessed the performance of the model across 

subgroups of patients (Black versus white, male versus female, and 75 years of age or older 

versus younger than 75) in terms of AUC for the full dataset. 

2.5 Model Application 

We aimed to develop a mortality risk assessment model that was as accessible as 

possible; therefore, we shared the model using an online app developed in R (see eFigure 1, 

Supplemental Content). One can input the values for the patient characteristics included in the 

final model into the app and the predicted risk of mortality is outputted. We set up the app such 

that one does not need to have or guess the values of every variable used in our final risk score 

model in order to estimate a patient’s risk of mortality. Instead, the app will refit the model using 

variables that the user does have access to (see eMethods, Supplemental Content, for details). 

The app can be accessed at https://micovidriskcalc.org/. 

The study was deemed exempt by the University of Michigan Institutional Review 

Board. Data management and analysis was completed in SAS and R version 4.0.3. 

3. Results 

3.1 Patient and Hospital Characteristics 

The Mi-Covid19 dataset included 2,193 patients who met our inclusion criteria. In the 

final model validation, we excluded 79 (4.5%) individuals in the derivation set and 26 (6.1%) 
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individuals in the validation set who were missing data for one of the predictive factors in the 

final model. Therefore, our final derivation and validation sets included 1,690 and 398 patients, 

amongst the 20 and 19 hospitals respectively. The demographic and clinical characteristics of the 

patients in the derivation set are described in Table 1. See eTable 2 and eTable 3, Supplemental 

Content, for hospital characteristics in the Mi-COVID19 registry and characteristics of the 

patients in the validation set. The overall in-hospital mortality rates in the derivation and 

validations sets were 19.6% and 18.6% respectively. However, there was variability of mortality 

rates between individual hospitals. The mortality rates in individual derivation set hospitals 

ranged from 7.4% to 54.3% (see eFigure 2 and eTable 2, Supplemental Content, for all hospital 

COVID-19 mortality rates). 

3.2 Risk Score Model 

Through our forward and backward variable selection process, we arrived at a final risk 

score model that included patient age, first recorded pulse oximetry, first recorded respiratory 

rate, and highest creatinine level on the first day of admission, along with the overall mortality 

rate at the patient’s hospital. The first variable that met the forward selection criteria was patient 

age, then pulse oximetry, respiratory rate, and heart rate in the second step of forward selection, 

and then finally creatinine in the third step. Then, based on the backward selection criteria, we 

removed heart rate. In a final step of forward selection, no further factors met our criteria. See 

eAppendix A and eFigure 3, Supplemental Content, for details. 

 During the forward selection process, the manner in which a patient arrived at the ED 

(e.g., by ambulance or by foot) seemed to improve the model (improving AUC(w) by 2-13% in 

the first steps of forward selection), however this data was not reliably available in different 

hospitals. The interleukin-6 and creatine phosphokinase labs additionally appeared to improve 

the model in terms of MSE (improving MSE by .003, the most out of other variables in the 

second and third steps of forward selection), however these lab values were available for only 

156 (7%) and 562 (26%) patients of the patients in the MiCOVID-19 data, respectively, and are 

unlikely to be commonly measured. Finally, the patient’s emergency department triage score (a 

number from 1-5 indicating acuity with 1 as highest acuity and 5 as lowest acuity) and the 

presence of hypoxia as a symptom appeared predictive in the first steps of forward selection 

(improving the AUC(w) by 3%), however we chose to add vital signs before symptoms since they 

have objectively measured values and before the triage score because the vital signs are 
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incorporated in that score. Once the vital signs were added to the model, the marginal gain from 

adding hypoxia and triage score (only improving AUC(w) by .7-1%) was not sufficient to warrant 

a more complicated model (see eAppendix A, Supplemental Content). A number of factors that 

have appeared in other risk models did not appear predictive in our model after controlling for 

the hospital, for instance a patient’s BMI, race, and gender. 

Thus, we predict risk of in-hospital mortality using a logistic regression model with five 

covariates. We applied a spline basis transformation to age, with knots at 35, 50, 65, and 80 

years, to allow for a non-linear relationship with risk, and a log transformation to creatinine 

level. Pulse oximetry on admission was collected as “70% or less,” “71-80%,” “81-90%,” and 

“91-100%.” Respiratory rate was collected as “Abnormal (20-24),” “Abnormal (25 - 30),” 

“Abnormal (greater than 30),” “Normal (less than 20).” Table 2 reports the odds ratios 

corresponding to the coefficients of this model, fit on the derivation set (see eFigure 4, 

Supplemental Content, for the age odds ratios). In a logistic regression model, the odds (i.e., the 

probability of mortality divided by the probability of survival) is estimated by ����where β is a 

vector of coefficients and X is the matrix of covariates. We estimate that the odds of mortality 

increases as age, respiratory rate, and creatinine increase, and as pulse oximetry decreases. See 

Table 3 for examples of the predicted risk of mortality for twelve patients with different 

characteristics. 

3.3 Model Validation 

The AUC(w) for the model on the derivation set was .796. The model had similar 

discrimination on the validation set, with an AUC(w) of .829. The individual hospital AUC(w) 

values for the validation set vary around .83 and show good discrimination (see Figure 1). We 

also found that the model shows similar discrimination for Black and white patients as well as 

male and female patients, although the discrimination is not as strong for patients 75 years or 

older (see eAppendix B and eTable 4, Supplemental Content). Finally, we observe good model 

calibration when using the individual hospital mortality rates (see Figure 2). 

4. Discussion 

Using a systematic variable selection approach, we built a simple model that estimates 

the risk of in-hospital mortality for patients hospitalized for COVID-19 with comparable 

discrimination to more complex models. We performed external validation of the model in 19 

separate hospitals for our validation set. It is notable that only age and a few vital signs and labs 
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on hospital presentation and the hospital specific COVID-19 mortality rate are able to predict the 

risk of in-hospital mortality with high discrimination. Further, our model can be used even when 

not all variables are available to the user. 

Age, creatinine, respiratory rate, and pulse oximetry have been found to be associated 

with mortality in COVID-19 patients in other studies with different populations, attesting to their 

validity as outcome predictors2–5, 7. Furthermore, the model was developed and validated on data 

from 39 diverse hospitals from different hospital systems, with variable size, urbanicity, profit 

status, and academic affiliation. Because of the diversity of hospitals included in Mi-COVID19, 

we expect that our risk score will generalize well to other hospitals, including those outside the 

state of Michigan. 

We diverge from previous models by including individual hospital’s mortality rate for 

patients with COVID-19 in our model. The inclusion of this variable controls for unmeasured 

differences between hospitals, as well as the patient populations. We expect including this 

indicator for each hospital helps control for differing social determinants of health. We do find 

that after conditioning on the hospital, a patient’s race is not predictive of in-hospital mortality. If 

a user is uncertain about the current mortality rate at their hospital, they can still calculate a risk 

of mortality for a patient using our web application, as the mean COVID-19 mortality rate in the 

data (20%) is used automatically. Additionally, a user can compare the risk of mortality between 

patients within the same hospital without needing to know a hospital COVID-19 mortality rate. 

The contribution of the mortality rate to the prediction of mortality risk for each patient can be 

thought of as adjusting the constant term in the model for each hospital, based on previous 

understanding of the overall risk of COVID-19 mortality at that hospital. In other words, this is 

essentially incorporating a pretest probability into the model, which can be updated over time as 

the mortality rate at an individual hospital changes. 

Our study should be interpreted in the context of some limitations. Many of the 

hospitalizations in our dataset were in Southeastern Michigan during the spring 2020 COVID-19 

surge, when many hospitals in this region were experiencing very high patient volumes and 

treatment differed from current best practices. For example, in March and April 2020, 

dexamethasone and remdesivir were used only rarely, while hydroxychloroquine use was 

common. Thus, because our model was developed and validated using data from the Spring 2020 

surge, it may overestimate the in-hospital mortality of patients treated in non-surge settings and 
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with current best practices. Importantly, however, our model includes the hospital’s mortality 

rate for COVID-19 as a predictor, such that the model automatically re-calibrates over time. 

Furthermore, while in-hospital mortality has changed over time in relation to patient volume and 

the introduction of new therapies, we expect that age, respiratory rate, pulse oximetry, and 

creatinine will remain important predictors of in-hospital mortality for COVID-19, as these 

variables are consistently identified for inclusion in risk-prediction models. However, future 

studies that evaluate the model discrimination and calibration for patients hospitalized after the 

summer of 2020 will need to confirm that the model performance does not degrade over time.  

 In sum, we developed a parsimonious risk-prediction model for in-hospital mortality in 

patients from COVID-19. The use of data from a statewide registry, systematic approach to 

variable inclusion, and external validation should improve applicability in diverse hospital 

settings.  
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Table 1: Derivation set patient characteristics.  

 Overall  
[N = 1769] 

In-Hospital Mortality 

      
Characteristic 

mean/No. (SD/%) 
[n*] 

No 
[N = 1422] 

Yes 
[N = 347] 

Age 64.4 (16.7) [1769] 62 (16.6) [1422] 74.4 (13.1) [347] 
Gender (female) 830 (47%) [1769] 670 (47%) [1422] 160 (46%) [347] 
Race (yes)    
  Black 840 (49%) [1698] 687 (50%) [1364] 153 (46%) [334] 
  White 744 (44%) [1698] 579 (42%) [1364] 165 (49%) [334] 
  Asian 45 (3%) [1698] 38 (3%) [1364] 7 (2%) [334] 
  Native American or Pacific Islander 10 (1%) [1698] 8 (1%) [1364] 2 (1%) [334] 
  Other 59 (3%) [1698] 52 (4%) [1364] 7 (2%) [334] 
Ethnicity (yes)    
  Hispanic 92 (5%) [1762] 84 (6%) [1415] 8 (2%) [347] 
  Non-Hispanic 1535 (87%) [1762] 1229 (87%) [1415] 306 (88%) [347] 
  Unknown 135 (8%) [1762] 102 (7%) [1415] 33 (10%) [347] 
Residing in a Nursing Facility or Assisted Living 
(yes) 340 (19%) [1748] 207 (15%) [1406] 133 (39%) [342] 
Ever-smoker (yes) 645 (39%) [1648] 515 (38%) [1355] 130 (44%) [293] 
BMI 31.2 (8.5) [1680] 31.5 (8.4) [1359] 30 (8.8) [321] 
No. of comorbidities    
  0 228 (13%) [1769] 211 (15%) [1422] 17 (5%) [347] 
  1 341 (19%) [1769] 314 (22%) [1422] 27 (8%) [347] 
  2 369 (21%) [1769] 309 (22%) [1422] 60 (17%) [347] 
  3 299 (17%) [1769] 223 (16%) [1422] 76 (22%) [347] 
  4 225 (13%) [1769] 166 (12%) [1422] 59 (17%) [347] 
  >4 307 (17%) [1769] 199 (14%) [1422] 108 (31%) [347] 
Presence of comorbidity (yes)    
  Cardiovascular disease 485 (27%) [1769] 347 (24%) [1422] 138 (40%) [347] 
  Congestive heart failure 275 (16%) [1769] 191 (13%) [1422] 84 (24%) [347] 
  Chronic obstructive pulmonary disease 208 (12%) [1769] 149 (10%) [1422] 59 (17%) [347] 
  Asthma 219 (12%) [1769] 189 (13%) [1422] 30 (9%) [347] 
  Diabetes (complicated and uncomplicated) 655 (37%) [1769] 487 (34%) [1422] 168 (48%) [347] 
  Severe liver disease 12 (1%) [1769] 10 (1%) [1422] 2 (1%) [347] 
  Cancer 144 (8%) [1769] 106 (7%) [1422] 38 (11%) [347] 
Symptoms (yes)    
  Fatigue 585 (33%) [1769] 491 (35%) [1422] 94 (27%) [347] 
  Fever (subjective and objective) 1452 (82%) [1769] 1204 (85%) [1422] 248 (71%) [347] 
  Chest pain 301 (17%) [1769] 263 (18%) [1422] 38 (11%) [347] 
  Hypoxia 729 (41%) [1769] 526 (37%) [1422] 203 (59%) [347] 
First recorded heart rate    
  < 90 BPM  701 (40%) [1760] 572 (40%) [1415] 129 (37%) [345] 
  90-100 BPM 391 (22%) [1760] 321 (23%) [1415] 70 (20%) [345] 
  101-124 BPM 544 (31%) [1760] 442 (31%) [1415] 102 (30%) [345] 
  > 124 BPM 124 (7%) [1760] 80 (6%) [1415] 44 (13%) [345] 
First recorded respiratory rate    
  < 20 645 (37%) [1734] 564 (41%) [1390] 81 (24%) [344] 
  20-24 682 (39%) [1734] 559 (40%) [1390] 123 (36%) [344] 
  25-30 240 (14%) [1734] 173 (12%) [1390] 67 (19%) [344] 
  > 30 167 (10%) [1734] 94 (7%) [1390] 73 (21%) [344] 
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 Overall 
[N = 1769] In-Hospital Mortality 

      
Characteristic 

mean/No. (SD/%) 
[n*] 

No 
[N = 1422] 

Yes 
[N = 347] 

First recorded systolic blood pressure    
  >= 101 mmHg 1619 (93%) [1740] 1318 (94%) [1401] 301 (89%) [339] 
  90 - 100 mmHg 80 (5%) [1740] 52 (4%) [1401] 28 (8%) [339] 
  < 90 mmHg 41 (2%) [1740] 31 (2%) [1401] 10 (3%) [339] 
First recorded pulse oximetry    
  91-100% 1386 (79%) [1750] 1147 (82%) [1406] 239 (69%) [344] 
  81-90% 287 (16%) [1750] 219 (16%) [1406] 68 (20%) [344] 
  71-80% 45 (3%) [1750] 26 (2%) [1406] 19 (6%) [344] 
  <= 70% 32 (2%) [1750] 14 (1%) [1406] 18 (5%) [344] 
Triage score    
  1 91 (6%) [1564] 43 (3%) [1259] 48 (16%) [305] 
  2 731 (47%) [1564] 570 (45%) [1259] 161 (53%) [305] 
  3 646 (41%) [1564] 582 (46%) [1259] 64 (21%) [305] 
  4 37 (2%) [1564] 35 (3%) [1259] 2 (1%) [305] 
  5 59 (4%) [1564] 29 (2%) [1259] 30 (10%) [305] 
Highest initial creatinine (mg/dL) 1.7 (1.7) [1737] 1.5 (1.6) [1392] 2.3 (2) [345] 
Highest initial white blood cell count (K/uL) 8.4 (6.7) [1750] 8.1 (6.9) [1405] 9.9 (5.5) [345] 
Pneumonia indication on chest x-ray (yes) 1318 (78%) [1684] 1024 (77%) [1337] 294 (85%) [347] 
* n is the number of complete cases in the data for the given variable. Percentages are calculated as No./n. SD = 
Standard Deviation, BPM = Beats per Minute, BMI = Body Mass Index. 
 
Table 2: Odds ratios associated with coefficients of final risk score model. 
 

Factor Odds Ratio 95% CI p 
Age*    
  50 (referent) 1.00   
  30 0.28 (0.09-0.87)  
  40 0.53 (0.32-0.87)  
  60 1.87 (1.58-2.22)  
  70 3.26 (2.64-4.02)  
  80 5.26 (4.07-6.81)  
Respiratory Rate    
  less than 20 (referent) 1.00   
  20-24 1.50 (1.06-2.12) 0.022 
  25-30 2.57 (1.68-3.93) <.001 
  greater than 30 3.88 (2.42-6.23) <.001 
Pulse Oximetry    
  91-100% (referent) 1.00   
  81-90% 1.44 (1.00-2.07) 0.05 
  71-80% 3.66 (1.81-7.42) <.001 
  70% or less  5.57 (2.22-13.92) <.001 
Creatinine (log transformed) 2.29 (1.85-2.84) <.001 
Hospital mortality rate (logit transformed) 2.81 (2.28-3.45) <.001 
Constant 0.06 (0.02-0.14) <.001 
* We applied a spline transformation on age, however the spline regression coefficients are not interpretable. 
Therefore, in this table we display the estimated odds ratios for different ages as compared to 50 years as a reference 
age. The coefficients for the spline are significant with p-values <.001. See eFigure 4 for an illustration of the odds 
ratios and confidence intervals for age with 50 years as a reference age for the full range of ages in the data. 
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Table 3: Estimated risk of in-hospital mortality for ten example patients. 
 

Example 
Patient 

Creatinine 
(mg/dL) 

Age  
(years) 

Respiratory 
Rate 

Pulse 
Oximetry 

Estimated 
Risk 

Patient 1 1 50 20 82% 7% 
Patient 2 1 50 20 92% 5% 
Patient 3 1 50 30 82% 11% 
Patient 4 1 50 30 92% 8% 
Patient 5 1 75 20 82% 24% 
Patient 6 1 75 20 92% 18% 
Patient 7 1 75 30 82% 35% 
Patient 8 1 75 30 92% 27% 
Patient 9 2 50 20 92% 8% 
Patient 10 2 75 20 92% 28% 
 

 

Figure 1: AUC(w) by hospital in the validation set with overall validation AUC(w). Hospitals 

V-J, V-R, and V-S are not included because they have observed COVID-19 mortality rates of 

0% or 100%. 
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Figure 2: Observed COVID-19 mortality rate and average predicted risk of COVID-19 

mortality within each decile of predictions for the validation set. Predictions use the 

individual hospital mortality rate. 
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