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Abstract 

The translational potential of MR-based connectivity modelling is limited by the need for 

advanced diffusion imaging, which is not part of clinical protocols for many diseases. In 

addition, where diffusion data is available, brain connectivity analyses rely on tractography 

algorithms which imply two major limitations. First, tracking algorithms are known to be 

sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls 

and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, 

tractography quality is highly dependent on the acquisition parameters of diffusion sequences, 

leading to a trade-off between acquisition time and tractography precision.  

Here, we propose an atlas-based approach to study the interplay between structural 

disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric 

setting involving three distinct multiple sclerosis datasets (containing both 1.5T and 3T data), 

we compare our atlas-based structural disconnectome computation pipeline to 

disconnectomes extracted from individual tractography and explore its clinical utility for 

reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. 

Results using topological graph properties showed that overall, our atlas-based 

disconnectomes were suitable approximations of individual disconnectomes from diffusion 

imaging. Small-worldness was found to decrease for larger total lesion volumes thereby 

suggesting a loss of efficiency in brain connectivity of MS patients. A graph embedding 

technique followed by dimensionality reduction found a topological organization that mirrored 

disability. Finally, the global efficiency of the created brain graph, combined with total lesion 

volume, allowed to stratify patients into subgroups with different clinical scores in all three 

cohorts. 
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1. Introduction 

Connectivity is a powerful lens through which brain function and dysfunction can be examined. 

The increased availability and quality of non-invasive structural connectivity imaging using 

diffusion data, coupled with methodological advances, has triggered the emergence of 

subfields at the intersection of neuroscience and network science. In network neuroscience 

(Bassett and Sporns, 2017), graphs are used to model connections between brain regions, 

enabling an arsenal of mathematical methods which facilitate systems-level thinking and thus 

new ways of investigating the organization of the brain. Brain graphs are typically 

characterized by a set of nodes (or vertices) and a set of edges, connecting pairs of nodes 

(Bullmore and Bassett, 2011; Richiardi et al., 2013; Sporns et al., 2005). For the study of 

structural connectivity, nodes are usually defined using a brain parcellation, so that each brain 

area can be represented by one node, whereas edges reflect the estimated number of axonal 

projections connecting the corresponding brain regions. By means of graph theory, topological 

features can be extracted from brain networks to characterize either the overall architecture 

of the graph or its local properties (Bassett and Sporns, 2017; Bullmore and Sporns, 2009; 

Hagmann et al., 2008; Sporns et al., 2005). Typically, brain graphs are characterized by high 

clustering and low shortest path length, therefore leading to a so-called small-world 

organization (Telesford et al., 2011; Watts and Strogatz, 1998).  Together with small-

worldness, other topological features such as global efficiency can be computed to estimate 

how efficiently the information is propagated across the graph nodes: the lower the number of 

hops between nodes, the greater the efficiency. 

Compared to raw MR images, meso- and macro-scale representations such as brain graphs 

have the advantage to allow better intra- and inter-subject comparability, at the expense of a 

loss of fine detail.  

During the last decade, the study of structural connectomes, estimated from diffusion imaging 

with tractography, has provided a better and more extensive understanding of several 

neurological and psychiatric diseases. The ‘disconnectome’ approach combines the study of 

lesion location with structural connectomics to investigate the impact of resulting 

disconnections (Catani et al., 2012; Foulon et al., 2018; Fox, 2018). Where disruption of brain 

connectivity is found to affect higher functions, the condition can be described as a 

“disconnection syndrome” (Carrera and Tononi, 2014; Catani and Ffytche, 2005). Further, 

previous studies on the clinical impact of lesion location either in voxel-based (so called 

“lesion-symptom mapping” (Bates et al., 2003)) or within predefined brain networks (“lesion 

network mapping” (Fox, 2018)) provided a better understanding of brain functions and related 

diseases.  

Recently, repeated findings have led multiple sclerosis (MS) to be considered a disconnection 

syndrome (Rocca et al., 2015). Brain damage in MS involves the transection of white matter 

tracts by lesions,  creating  a  disconnection syndrome  which  is associated with a specific 

clinical phenotype (Llufriu et al., 2017). Ongoing demyelination in lesions might lead to remote 

axonal damage by both antero- and retrograde degeneration (“dying back“  and Wallerian 

degeneration (Dziedzic et al., 2010; Lucchinetti et al., 2000) ). Axonal loss has been identified 

as the major determinant of irreversible neurological disability in MS patients (Hayes and 

Ntambi, 2020). An accelerated rate of brain atrophy in MS patients, together with disruption of 

nerve signals in the central nervous system, can cause multiple symptoms that vary widely 

from one patient to another. In particular, connectivity studies have shown that the overall 
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efficiency of functional connectomes is affected by the disease (Yaou et al., 2017) (Rocca et 

al., 2016)(Fleischer et al., 2019) and that small-worldness seems to dissipate with increasing 

lesion load (Faivre et al., 2016). 

During MR examination of MS patients, radiologists typically evaluate the lesion load of their 

patients by counting the number of T2 hyperintense white matter lesions, but the correlation 

with disability is generally poor, leading to the so-called clinico-radiological paradox  (Barkhof, 

2002). Previous studies have shown that including lesion location improves the correlation 

with clinical disability (estimated using the Expanded Disability Status Scale, EDSS) (Charil et 

al., 2003; Vellinga et al., 2009) compared to mere lesion load. Work on topological features of 

structural connectomes investigated with diffusion tensor tractography (Shu et al., 2011) 

showed a decreased graph efficiency correlated with EDSS, disease duration and total WM 

lesion loads, therefore showing the potential of such new quantitative features to help 

narrowing this clinico-radiological gap.  

Tractography is a powerful tool to model and quantify structural connectivity between brain 

areas based on diffusion imaging. However, although proven to be in good accordance with 

ex-vivo histological experiments (Buckner et al., 2011; Donahue et al., 2016) diffusion imaging 

and tractography methods suffer from several pitfalls. Notably, the generation of the 

tractography results is a model-based procedure: the diffusion signal strength and the derived 

tracking algorithm outcome are highly dependent not only on physiological factors and on the 

way axons lay in a given voxel, but also on the image reconstruction methods and acquisition 

parameters chosen. The quantitative interpretability of the results is therefore highly 

dependent on model assumptions (Jones et al., 2013) and renders inter-subjects comparisons 

more difficult and less reliable. Moreover, technical and time constraints arise when it comes 

to using tractography in clinical practice. Tracking algorithms are highly sensitive to two major 

time-consuming acquisition variables: spatial resolution and q-space coverage (Calabrese et 

al., 2014). As acquisition time is a critical limitation in clinical protocols, diffusion imaging 

sequences fulfilling these high standards are rarely acquired. Another possible technical 

limitation is the impact of white matter lesions on diffusion properties (Tievsky et al., 1999) that 

can in turn interfere with the tracking algorithm. Notably, abnormally low fractional anisotropy 

in voxels within white matter lesions can cause the termination of the tracking algorithm or 

cause a deviation of streamlines bundles in proximity of lesions (Ciccarelli et al., 2008), 

although steady progress is being made to mitigate these detrimental effects (Lin et al., 2005; 

Lipp et al., 2020; Pawlitzki et al., 2017; Reich et al., 2007). 

To overcome these limitations, previous studies proposed to model individual structural brain 

disconnectivity without requiring diffusion imaging (Griffis et al., 2020; Ravano et al., 2020, 

2019). Structural connectivity is approximated using the HCP842 atlas (Yeh et al., 2018), a 

population-averaged tractography atlas built using 842 healthy controls of the Human 

Connectome Project (Van Essen et al., 2012). Similarly to what was proposed by (Griffis et 

al., 2020), we estimate individual connectivity loss resulting from white matter lesions by 

overlapping an automatically generated lesion mask with the tractography atlas and using 

brain graphs to model an individual structural disconnectome: a brain map representing the 

affected neuronal connections. In this retrospective multi-centric study, we evaluate the 

proposed approach, by comparing it as closely as possible with disconnectomes extracted 

from individual diffusion-based tractography in a subset of patients and we explore its clinical 

usefulness in reducing the clinico-radiological paradox in multiple sclerosis. 
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2. Datasets  

Demographics and relevant MR protocol parameters are reported in Table 1 for all cohorts. 

The number of patients in each dataset corresponds to those fulfilling the applicability criterion 

defined in Section 3.2.3.   

2.1. Diffusion Cohort: controls and patients with diffusion data 

Forty-five patients with relapsing-remitting MS (disease duration < 5 years) were scanned on 

a 3T MRI system (MAGNETOM Trio, Siemens Healthcare, Erlangen, Germany) using a 32-

channel head coil at the Lausanne University Hospital (Simioni et al., 2014). The acquisition 

protocol included: (i) high-resolution magnetization prepared - rapid gradient echo (MPRAGE), 

(ii) fluid attenuation inversion recovery and (iii) diffusion spectrum imaging (DSI).  

T2 hyperintense lesions were manually marked by one radiologist and one neurologist, and a 

consensus lesion mask was created as described in (Fartaria et al., 2016).  

Two patients were discarded due to incomplete imaging data and two other patients did not 

fulfil the applicability criterion resulting in a  subset of forty-one MS patients (13 males, average 

age 35.1+/-9.86, EDSS ϵ [1,4], median EDSS 1.5 (see Section 3.2.3 for further details). All 

patients provided written informed consent, and the study was approved by the ethics 

committee of the State of Vaud, Switzerland. 

2.2. 1.5T cohort 

An observational Study of Early Interferon beta 1-a Treatment in high risk subjects after clinical 

isolated syndrome (SET study (Horakova et al., 2013)) recruited 220 patients within four 

months after their first clinical event suggestive of MS and all eventually converted to clinically 

definite MS. Patients were scanned at 1.5T (Gyroscan NT 15, Philips Healthcare, Best, The 

Netherlands) and clinically evaluated every six months during a period of four years. The study 

involved eight centers and was coordinated by the Charles University Hospital of Prague, 

where all patients underwent MR examinations. The acquisition protocol included i) fluid 

attenuation inversion recovery (FLAIR) and ii) T1-weighted spoiled-gradient recalled (SPGR). 

An expert neurologist with nine years of experience manually segmented T2 hyperintense 

lesions in FLAIR. A subset of 208 patients was retained for analysis following our applicability 

criterion (69 males, average age 28.6+/-7.5, EDSS ϵ [0,3.5], median EDSS 1.5) (see Section 

3.2.3).  

2.3. 3T cohort 

Five hundred eighty-nine patients affected by any form and stage of MS (clinically isolated 

syndrome, relapsing remitting, secondary progressive and primary progressive) were 

recruited in a project (the Spinal Cord Grant (SCG)) coordinated by the Charles University 

Hospital of Prague (Czech Republic). Patients underwent yearly clinical examination and MR 

imaging at 3T (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany). The 

acquisition protocol included high-resolution magnetization prepared - rapid gradient echo 

(MPRAGE) and 3D fluid attenuation inversion recovery (FLAIR).  

Due to the considerable number of patients, manual segmentations of white matter lesions 

were not available.  
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Four hundred ninety-six patient datasets fulfilled the applicability criterion (158 males, average 

age 28 +/- 8.36, EDSS ϵ [0, 7,5], median EDSS 2).  

All participants in the 1.5T and the 3T cohorts agreed with collecting and retrospectively 

analyzing their clinical, immunological and MRI data within an international, online registry and 

platform for collecting prospective data on patients with MS (MSBase) (Butzkueven et al., 

2006), and within the Czech national registry of MS patients (ReMuS). Therefore, neither 

ethics committee approval nor separate informed consent were obtained for this study. One 

hundred thirty-two patients were present in both the 1.5T and the 3T cohorts, but were 

scanned at different time points. 

Table 1. Demographics and relevant MR protocols for the three datasets. Lesion volumes are estimated 

from manual segmentations when available (Diffusion and 1.5T cohorts) and from LeMan-PV otherwise 

(3T cohort). 

 
Diffusion 

cohort 

1.5T  

cohort 

3T  

cohort 

N (Males) 41 (13) 208 (69) 496 (158) 

Age [years] 35.1 ± 9.86 28.28 ± 7.31 28.0 ± 8.20 

Median EDSS [min,max] 1.5 [1, 4] 1.5 [0, 3.5] 2 [0, 7.5] 

Disease Duration [months] 23.78 ± 18 < 3 143 ± 79 

Lesion Load [mL] 7.74 ± 9.36 4.19 ± 5.27 13.0 ± 14.6 

MR 

System 

Vendor Siemens Philips Siemens 

Scanner 3T Trio 1.5T Gyroscan 3T Skyra 

T1w 

Voxel size [mm3] 1x1x1.2 1x1x1 1x1x1 

Acquisition Type 3D 3D 3D 

TR/TE/TI [ms] 2300/2.98/900 25/5/- 2300/2.96/900 

Flip Angle 9° 30° 9° 

FLAIR 

Voxel size [mm3] 1x1x1.2 1x1x1.5 1x1x1 

Acquisition Type 3D 2D 3D 

TR/TE/TI [ms] 5000/394/1800 11000/140/2600 5000/397/1800 

Flip Angle 120° 90° 120° 

DSI 

Voxel size [mm3] 1x1x3 - - 

TR/TE [ms] 8600/144 - - 

b-max [s/mm2] 8000 - - 
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3. Methods 

Due to patient privacy, the clinical data used in this study cannot be made openly available. 

The Python code used to extract the disconnectome graph and relevant topological metrics 

from a lesion mask normalized to MNI space is publicly available (https://gitlab.com/acit-

lausanne/lesion-disconnectomics), together with pointers to relevant open data as examples. 

An R based visualisation script is also made available.  

3.1. Pre-processing 

Lesions were segmented using the LeMan-PV prototype, an automated lesion segmentation 

technique that performs lesions segmentations on FLAIR and T1-weighted contrasts in two 

main steps: lesions are first detected using a supervised voxel-wise approach (Fartaria et al., 

2016) and then delineated based on partial volume estimation (Fartaria et al., 2017). Lesion 

concentration maps resulting from LeMan-PV were binarized following the methodology 

described in (Fartaria et al., 2017), yielding binary lesion masks. LeMan-PV segmentations 

were computed for the diffusion cohort (in addition to manual segmentation) and the 3T cohort, 

whereas it was not applied to the 1.5T cohort as the data was not compliant with the minimal 

requirements defined by LeMan-PV for a good segmentation quality (in particular, data was 

acquired using a 2D rather than a 3D FLAIR sequence)(Fartaria et al., 2016).   

To overlay the lesion mask with the tractography atlas, a non-rigid spatial registration was 

used to transform the native T1-weighted contrast of each patient to the standard T1-weighted 

MNI152 (2009a) template space using b-spline trilinear interpolation from the Elastix v.4.800 

implementation (Klein et al., 2010) (the parameters file are available in the code repository). 

The transformation was then applied to the binary lesion mask with nearest neighbour 

interpolation to ensure binary output mask and preserving lesion topology.  

Patients’ normalised brains were then segmented in 274 fine-grained subregions using the 

Brainnetome parcellation atlas (Fan et al., 2016), a connectivity-based atlas extracted with 

multimodal neuroimaging data from 40 healthy subjects. 

3.2. Modelling structural disconnectomes from a tractography atlas 

Similarly to the method described in (Griffis et al., 2020), we estimate disconnectomes without 

diffusion imaging data, using a population-averaged structural tractography atlas, namely the 

HCP842 tractography atlas (Yeh et al., 2018). The HCP842 atlas was built by averaging the 

Spin Distribution Function (SDF) in each voxel for 842 healthy subjects from the Human 

Connectome Project (Van Essen et al., 2012) (372 males, age range between 22 and 36 years 

old) whose diffusion data was reconstructed in MNI space using a q-space diffeomorphic 

strategy (Yeh and Tseng, 2011). 

3.2.1. Computation of the individual disconnectomes  

For each patient, affected connections were extracted by isolating the atlas streamlines 

passing through the patient’s normalised lesion mask using DSI Studio (http://dsi-

studio.labsolver.org). Subsequently, the connectivity of affected connections between all 

possible pairs of brain regions (𝑖, 𝑗) extracted from the Brainnetome atlas was modelled as an 

adjacency matrix of damaged connectivity 𝐴𝑐. Each element of the matrix 𝐴𝐶(𝑖, 𝑗) represented 

the number of damaged streamlines passing through the corresponding pair of regions (𝑖, 𝑗).  
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The reference “healthy” brain connectivity was represented as an adjacency matrix 𝐴𝑡 where 

elements 𝐴𝑡(𝑖, 𝑗) represented the number of streamlines passing through the corresponding 

pair of regions (𝑖, 𝑗) in the tractography atlas. (see Figure 1A to C and Figure 2A to B). Note 

that 𝐴𝑡 is the same for all patients, while 𝐴𝑐 is patient-specific and depends on lesions.  

The matrix of affected connectivity 𝐴𝑐   was then used to build a brain graph where each 

parcellation area was represented by one node Vi. Each edge 𝐸(𝑖, 𝑗) represented the 

percentage of streamlines affected by lesions connecting areas i and j with respect to the atlas 

connectivity 𝐴𝑡(𝑖, 𝑗): 

𝑤𝑖𝑗 = {
0, 𝑖𝑓 𝐴𝑡(𝑖, 𝑗) = 0

(𝐴𝑡(𝑖, 𝑗) − 𝐴𝑐(𝑖, 𝑗))/𝐴𝑡(𝑖, 𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This weighted graph model ensures the number of nodes is consistent across patients and 

that the edge weights lie between 0 and 1 (see Figure 1D). 

For visualization, a simplified diagram of connection loss was obtained by grouping 

Brainnetome regions into the main brain lobes and displaying them using Circos (Connors et 

al., 2009): the line thickness represents the number of affected streamlines whereas the colour 

codes for the percentage of affected streamlines relative to the healthy atlas (see Figure 2C).  

 

3.2.2. Extraction of Graph Features 

One way of using graphs for statistical analysis or machine learning is to represent them as 

vectors, i.e., to use graph embedding. Then, a vast number of algorithms, both classical and 

deep, can be used without modification for predictive modelling on graphs (Richiardi et al., 

2013). Embedding techniques include the extraction of topological features characterizing 

graph properties, as well as graph representation learning approaches (Hamilton et al., 2017) 

that optimize the geometric relationships of the embedding in order to reflect graph structure.  

Figure 1. Extraction and modelling of a disconnectome. A. Simplified representation of the atlas-based 

tractogram connectivity of three brain regions i, j and k and their respective streamlines. B. Overlapping 

of the atlas tractogram with the lesion mask. Streamlines passing through the lesion L are highlighted 

in red. C. Affected streamlines are isolated. D. The brain graph representation where brain areas i, j 

and k are represented respectively by nodes Vi, Vj and Vk and edges are weighted by the relative 

number of affected streamlines. 
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Topological graph features can be defined at different scales: at large-scale, they reflect 

properties on the entire graph (e.g. small-worldness), at intermediate scale, the metrics are 

computed on subgraphs (e.g. edge betweenness) and at small scale they reflect node features 

(e.g. node strength) (De Vico Fallani et al., 2014). Here, we extracted different small- and 

large-scale features computed with the NetworkX Python library (Hagberg et al., 2008) to 

study both the performance of our atlas-based method compared to individual 

disconnectomes, and the usefulness of these metrics for clinical applications. The topological 

features used are described in  

Further, the averages of strength, neighbour degree, clustering coefficient and betweenness 

centrality were also computed across all nodes.  

We use transitivity (𝑇), global efficiency (𝐺𝐸), and path length (𝑃𝐿) as defined for binary 

graphs, and the disconnectome graphs were binarized using a threshold 𝜏 on edge weights 

so that the most severely affected connections were modelled as totally disrupted, and the 

mildly affected ones were modelled as intact. Binary edges were therefore defined such as: 

𝑤𝑖𝑗
𝑏𝑖𝑛 =  {

1, 𝑖𝑓 𝑤𝑖𝑗 ≥ 𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We checked that graphs remained connected after thresholding and artificially added one 

edge to reconnect eventual disconnected components. A detailed analysis aiming at defining 

the optimal binarization threshold for disconnectome graphs is described in Supplementary 

Materials Appendix C and resulted in a threshold of 0.7.  

Node embeddings were also extracted from the disconnectome graph using node2vec, a 

graph learning representation technique. Node2vec (Grover and Leskovec, 2016) leverages 

a random walk sampling strategy to optimize an embedding that is similar for nodes that tend 

to co-occur in short random walks. The parameters used for node2vec embeddings are 

reported in Supplementary Materials Appendix A.  

Figure 2 Extraction and representation of a disconnectome. A. The streamlines intersecting the lesion 

mask are isolated from the healthy tractography atlas. B. Affected streamlines are overlaid with an 

anatomical atlas to create a brain graph representation of disconnectivity. C. Lobe-wise summary 

representation of disconnectivity, visualized using Circos (Connors et al., 2009). 
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Table 2 Description of topological metrics extracted from the disconnectome graph. In the following 

equations 𝑉 is the set of nodes, 𝜎(𝑗, 𝑘) is the number of shortest paths between nodes 𝑗 and 𝑘, 𝜎(𝑗, 𝑘|𝑖) 

is the number of those paths passing through node 𝑖, 𝒩𝑖 is the set of nodes in the neighbourhood of 

node 𝑖, �̂�𝑖𝑗=
𝑤𝑖𝑗

𝑚𝑎𝑥 (𝑤)
 and 𝑘𝑖 the node degree defined as the number of edges connecting to node 𝑖. 𝑝(𝑖, 𝑗) 

the shortest path length between nodes 𝑖 and 𝑗 and with n=274 the number of nodes in the graph. 

Group Features Source Equation Binary 

Small-

scale 

Betweenness 

Centrality 
(Brandes, 2001) 𝑏𝑐𝑖 =  ∑

𝜎(𝑗, 𝑘|𝑖)

 𝜎(𝑗, 𝑘)
𝑗,𝑘∈𝑉

 NO 

Node Strength 
(Vespignani et al., 

2004) 
𝑠𝑖 =  ∑ 𝑤𝑖𝑗

𝑗∈𝒩𝑖

 NO 

Clustering Coefficient 
(Saramäki et al., 

2007) 

𝑐𝑖

=  {

0,  𝑖𝑓 𝑘𝑖 < 2
1

𝑘𝑖(𝑘𝑖 − 1)
∑(�̂�𝑖𝑗�̂�𝑖𝑘�̂�𝑗𝑘)

1/3

𝑖,𝑗

,  𝑜𝑡h𝑒𝑟𝑤𝑖𝑠𝑒 
NO 

Average Neighbour 

Degree 

(Vespignani et al., 

2004) 
𝑘𝑛𝑛,𝑖 =  

1

𝑠𝑖
∑ 𝑤𝑖𝑗𝑘𝑗

𝑗∈𝒩𝑖

 NO 

Large-

Scale  

Transitivity (Faust, 1994) 

𝑇

=  
3 × number of triangles in G

number of connected triplets of nodes in 𝐺
 

YES 

Average Global 

Efficiency 

(Latora and 

Marchiori, 2001) 
𝐺𝐸 =  

1

𝑛(𝑛 − 1)
∑

1

𝑝(𝑖, 𝑗)
𝑖,𝑗∈𝑉

 YES 

Average Shortest 

Path Length 
(Dijkstra, 1959) 𝑃𝐿 =  ∑

𝑝(𝑖, 𝑗)

𝑛(𝑛 − 1)
𝑖,𝑗∈𝑉

 YES 

 

3.2.3. Model Assumptions and Applicability Conditions 

Our proposed model relies on the assumption that a patient’s brain connectivity can be 

estimated from the HCP842 atlas. However, the effects of brain atrophy on axonal projections 

are unclear and might lead to interpretation issues when approximating atrophic brains with 

the HCP842 atlas. In fact, brain atrophy, resulting from the loss of neurons or neuronal 

connections, potentially leads to substantial quantitative changes in structural connectivity 

(Kuceyeski et al., 2015).  

To be coherent with our initial assumption and avoid possible misinterpretation resulting from 

the presence of atrophy, we used an applicability criterion to discard unsuitable patients. As 

brain atrophy can be caused either by normal aging or pathology, we implemented a criterion 

based on both age and brain volume relative to total intracranial volume (TIV) estimated with 

the MorphoBox prototype brain morphometry software (Schmitter et al., 2015).  

First, the quality of the MorphoBox segmentation was assessed to discard patients with 

unreliable brain volume estimates. The segmentation quality was computed as the correlation 

between the grey matter a posteriori (GM) probability map generated by MorphoBox and a 
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priori GM probability map. Correlations higher than 0.68 were thought to reflect high 

segmentation quality according to (Chow and Paramesran, 2016). In case of low segmentation 

quality, brain volume and segmentation quality were assessed for scans in subsequent 

timepoints and the first scan with sufficiently high segmentation quality was retained as 

reference. Then, age- and gender-matched MorphoBox reference ranges were used to detect 

abnormal brain volume in patients belonging to the tractography atlas age range (22 to 36 

years old). The 3% and 97% percentiles of normative ranges were chosen not to be too 

conservative as the sharp boundaries of the atlas age range were already considered. For 

patients outside this age range, an upper and a lower bound were defined for patients below 

twenty-two and above thirty-six years old, respectively. The upper and lower bounds were 

defined as the normative value of the 3% at age twenty-two and thirty-six, respectively. 

A flow diagram showing the applicability criterion of our proposed method is represented in 

Figure 3. The precise breakdown of datasets after applying our applicability conditions is 

reported in Supplementary Table 1. 

 

Figure 3. Flow diagram showing the applicability conditions of the atlas-based disconnectome model, 

based on age, brain atrophy and brain segmentation quality estimated from MorphoBox (Schmitter et 

al., 2015). N0: initial number of patients. N1: number of patients discarded due to bad segmentation 

quality. N2: number of patients younger than the age range covered by the tractography atlas, who are 

discarded due to severe atrophy. N3: number of patients inside the atlas age range discarded due to 

atrophy. N4: number of patients older than the age range covered by the tractography atlas, who are 

discarded due to mild to severe atrophy. 

3.3. Comparison with disconnectomes based on individual 

tractography 

Individual variability in brain connectivity in patients can be either caused by individual 

anatomical factors or by pathological phenomena such as brain atrophy, oedema, or white 

and gray matter lesions, degree of de- and remyelination. To estimate the error made under 

the assumption that patients´ brain connectivity could be approximated with the population-

averaged HCP842 tractography atlas, we compared atlas-based disconnectome graphs to the 

equivalent graphs derived from individual tractography in our diffusion cohort. 
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3.3.1. Modelling Disconnectomes from Individual Tractography 

To ensure consistency with the HCP842 tractography atlas, the same reconstruction strategy 

and tracking algorithm were used to build individual whole-brain tractograms as described in 

(Yeh et al., 2018). All reconstruction and tracking parameters were chosen following (Yeh et 

al., 2018) and are described in Supplementary Materials Appendix B.  

The disconnectome was then extracted and modelled following the same procedure as shown 

in Section 3.2.1 and will be hereafter referred to as individual tractography-based 

disconnectome, as opposed to the atlas-based disconnectome.  

3.3.2. Comparing Individual Tractography based and Atlas based disconnectomes 

To study the impact of using a tractography atlas rather than individual tractography on graph 

features, a connection-level comparison of disconnectomes was first performed. To this end, 

lobe-wise connections in the atlas-based and individual tractography-based disconnectome 

matrices were ranked according to their connectivity strength and rank-rank Spearman 

correlation was computed for both lesion segmentation techniques in the diffusion cohort.  

Correlations between large-scale topological metrics extracted from both disconnectome 

models were investigated on the population level in the diffusion cohort by computing the 

intraclass correlation coefficient (ICC(3,1)) and Spearman’s correlation. Then, the ICC and 

Spearman’s correlation between small-scale topological features derived from the two 

approaches were calculated for each patient independently. The impact of total lesion volume 

on patient-level correlations was also studied.  

Small-scale topological features were extracted for all 274 nodes from atlas-based and 

individual tractography-based disconnectomes and the intraclass correlation ICC(3,1) and 

Spearman correlation were computed for each patient in the diffusion cohort and each lesion 

segmentation strategy. 

3.4. Clinical Applications in Multiple Sclerosis 

To test the clinical relevance of our technique, we investigated the potential of atlas-based 

disconnectome features to reduce the gap between radiological findings and physical disability 

in Multiple Sclerosis. To this end, the usefulness of our features in disease characterization 

was evaluated and compared to conventional MRI variables reflecting lesion load (i.e., lesion 

count and lesion volume).  

To verify that the extracted topological features were related to actual physiological 

phenomena instead of measurement noise, the variation of large-scale topological features 

with total lesion volume was analysed in all cohorts. The analysis was restricted to patients 

with a TLV smaller than 50 mL to provide a comparable range of TLV between datasets and 

therefore discarding 15 patients from the 3T cohort. Then, the univariate Spearman’s 

correlation between these features and EDSS was investigated cross-sectionally.  

The clinical usefulness of node2vec embeddings in estimating association with cross-sectional 

EDSS was also studied and contrasted to using standard lesion load measurements in all 

cohorts. To this end, a supervised dimensionality reduction embedding technique called 

Uniform Manifold Approximation and Projection (UMAP) was used (McInnes et al., 2018) on 

node2vec embeddings, to test relation with EDSS. The three main parameters, namely the 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.21256161doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.03.21256161
http://creativecommons.org/licenses/by-nc/4.0/


12 

 

distance metric, the minimal distance, and the number of neighbours, were varied in a grid 

search approach and the best combination was chosen qualitatively. The minimal distance 

and the number of neighbours were varied in a range between 0.5 and 1, and between 32 and 

max(n,256) respectively, with n the number of patients in the dataset. Euclidean, Dice and 

Hamming distances were explored. Patient data was then plotted onto the two UMAP 

dimensions and color-coded according to EDSS for all cohorts. 

Finally, to further study the clinical usefulness of our approach, patients were stratified 

according to global efficiency of their remaining connectivity and their lesion load. In particular, 

for every cohort, patients had low lesion load when their total lesion volume (TLV) was below 

the average TLV within their cohort. Similarly, patients had low, or high global efficiency with 

respect to the average value within each cohort. The EDSS distribution was then compared 

between the four groups for each cohort and tested for significance using non-parametric 

Wilcoxon test.  The so-obtained p-values were further combined in a metanalysis using sum 

of z method.  

4. Results 

4.1. Comparing Disconnectome Models 

The connection-level rank-rank Spearman correlation between atlas-based and individual 

tractography disconnectomes computed in patients from the diffusion cohort was 0.76±0.07 

and 0.75±0.07 for automated and manual lesion segmentation respectively and is shown in 

Supplementary Figure 2.  

4.1.1. Large-scale Topological Features 

Large-scale topological features extracted from atlas-based disconnectome graphs were 

plotted against equivalent features derived from individual tractography-based 

disconnectomes in Figure 4 for both manual segmentation (in yellow) and automated LeMan-

PV segmentation (in blue) for the diffusion cohort. Intraclass correlation ICC(3,1) and 

Spearman correlation between large-scale atlas-based and individual tractography-based 

features in the diffusion cohort, extracted with both manual and automated LeMan-PV 

segmentations are reported together with significance level after Benjamini-Hochberg false 

discovery rate (FDR) correction. Overall, manual segmentation allowed a slightly stronger 

although similar correlation between atlas-based and individual tractography-based features.  

Spearman’s correlation was above 0.8 for all features but average neighbour degree and 

average betweenness centrality with both lesion segmentation strategies. ICC was higher for 

transitivity, average clustering, and average strength (>0.6). Comparatively small ICC (<0.4) 

were observed not only for average betweenness centrality and average neighbour degree, 

but also for global efficiency and average shortest path length. 
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4.1.2. Small-scale Topological Features 

Average correlations and standard deviation computed across all patients are reported in 

Table 3, together with combined p-values using Fisher’s method and respective χ
2 statistics. 

Overall, the results show that atlas-based features are highly correlated with individual 

tractography-based features (ICC>0.75, ρ>0.75), except for the betweenness centrality 

(ICC<0.25, ρ<0.6), in good accordance with previous observations in Section 4.1.1. Further, 

automated lesion segmentation did not substantially impact the correlation between atlas-

based and individual tractography-based features.  

  

Figure 4. Large scale topological features extracted from atlas-based disconnectome graph (y-axis) 

plotted against equivalent metrics extracted from individual tractography-based disconnectome (x-axis) 

for patients of the diffusion cohort. Each point is a patient. Disconnectome features derived from manual 

lesion segmentation are shown in yellow, and automated lesion segmentation with LeManPV in blue. 

ICC(3,1) and Spearman’s correlation are reported with their respective significance level after correction 

for multiple comparison. * p<0.05, ** p<0.01, *** p<0.001 
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Table 3 Intraclass correlation and Spearman ρ between small-scale atlas-based and Individual 

tractography-based small-scale features and the associated p-value adjusted for FDR, for both manual 

and automated LeMan-PV lesion segmentation. The ICC is expressed as the mean over the population 

± standard deviation. P-values were combined using Fisher’s method across the population. The 

combined p-value is reported together with the respective χ2 statistics 

 Node strength Neighbour degree Node Clustering Betweenness 

Centrality 

Segmentation Manual LeMan-

PV Manual LeMan-

PV Manual LeMan-

PV Manual LeMan-

PV 

ICC 0.85±0.16 0.76±0.2 0.90±0.08 0.86±0.12 0.87 ± 0.8 0.84 ± 

0.08 0.20±0.1 0.19±0.08 

P 

(χ
2

ICC
) 

<10
-16 

 
(19550) 

<10
-16 

 (14898) 
<10

-16 
 (19905) 

<10
-16 

 (17875) 
<10

-16 
 (17905) 

<10
-16 

 (15698) 
<10

-16 
 (724) 

<10
-16 

(647) 

ρ 0.86±0.14 0.78±0.18 0.90±0.09 0.85±0.15 0.76±0.14 0.70±0.16 0.54±0.12 0.52±0.10 

p  

(χ
2

ρ
) 

<10
-16 

(19136) 
<10

-16 
(15024) 

<10
-16 

(20691) 
<10

-16 
(17192) 

<10
-16 

(11442) 
<10

-16 
(9350) 

<10
-16 

(4376) 
<10

-16 
(3973) 

 

 

Figure 5. Variation of correlation of small-scale features extracted from individual versus atlas-based 

tractography with lesion load for the diffusion dataset. Each point is a patient. Spearman correlation and 

ICC(3,1) agreement between the two methods are computed across nodes for all patients and are 

shown on the y-axis. The total lesion volume (TLV) estimated from either manual (in yellow) or LeMan-

PV lesion segmentations (in blue) on the x-axis. Labels in the graph indicate patient with generally high 

or low agreement, for which details are provided in supplementary materials. 
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Figure 5. Figure 5 shows how intraclass correlation and Spearman correlation vary with TLV 

estimated from either manual segmentation (in yellow) or LeMan-PV (in blue). Overall, the 

weakest correlations were observed for larger lesion loads and segmentation techniques did 

not substantially impact the correlation distributions.  

In Supplementary Figure 3 two patients with overall high correlations (P01 and P32) and low 

lesion load are shown together with two patients with overall lower correlations (P04 and P38) 

and higher lesion load.  

4.2. Clinical Applications 

4.2.1. Disease Characterization 

The variation of large-scale topological features with the TLV (estimated from manual 

segmentation for the diffusion and the 1.5T datasets and from LeMan-PV for the 3T dataset) 

is represented in Figure 6 for patients in the three datasets. As betweenness centrality and 

neighbour degree were shown to be poorly estimated with our atlas-based approach, these 

metrics were discarded from further analysis. Overall, patients in the 1.5T cohort had lower 

lesion load than other patients. All features showed strong and significant Spearman 

correlations with TLV in all datasets. The weakest correlations were observed for the 

transitivity, especially when computed for the 3T cohort (R=-0.42), and average neighbour 

degree in all cohorts (R<0.62). Transitivity, global efficiency, average clustering, average 

strength, and average neighbour degree were found to decrease with increasing lesion load, 

whereas the average shortest path length increased.  

 

 

Figure 6 Variation of large scale topological features (y-axis) with total lesion volume (TLV, x-axis) for 

patients in all datasets (diffusion cohort in grey, 1.5T cohort in blue and 3T cohort in yellow). Spearman’s 

R and p-value are reported for all datasets. 
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The variation of large-scale features is also plotted against EDSS in Figure 7 for the three 

datasets. For comparison, the correlation between variables reflecting the lesion load (lesion 

count and TLV) and the EDSS are also reported. Patients in the 3T dataset had overall more 

severe and more heterogeneous EDSS than patients in the 1.5T and diffusion datasets. 

Lesion count and TLV were comparably correlated with EDSS for all datasets. The weakest 

correlations were consistently observed for the 1.5T dataset, whereas the findings were 

generally in good accordance between the 3T and the diffusion datasets. Overall, the 

correlation between our topological variables and EDSS was comparable but not substantially 

stronger than the correlations with TLV and lesion count.  

 

Figure 7 Variation of large scale topological features (y-axis) with Expanded Disability Status Scale 

(EDSS, x-axis) for patients in all datasets (diffusion cohort in grey, 1.5T cohort in blue and 3T cohort in 

yellow). Spearman’s R and p-value are reported for all datasets. 

The results of UMAP embedding of node2vec features are shown in Figure 8, where patients’ 

data is displayed in the two UMAP dimensions and color-coded by EDSS value. Patients from 

the 1.5T and 3T cohort were found to follow an EDSS gradient in the latent space, and patients 

with higher EDSS were formed a separate cluster in the 3T cohort. We did not observe this in 

the diffusion cohort patients, probably due to the insufficient number of patients to train the 

embedding. The best results were obtained for Euclidean distance, with a minimal distance of 

0.7 and respectively 256, 128 and 32 nearest neighbours for the 3T, the 1.5T and diffusion 

datasets. 

For comparison, when performing the embedding from lesion load variables and attempting 

to obtain the best tuning, neither a gradient nor a clustering of EDSS values could be observed 

in any dataset.  
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Figure 8. Results of supervised Uniform Manifold Approximation and Projection (UMAP) using EDSS 

as labels for: (left) the 3T, (middle) 1.5T and (right) Diffusion datasets based on (top) node2vec 

embeddings and (bottom) lesion load and lesion count features. Datapoints are color-coded by EDSS 

value. 

When stratified according to TLV and global efficiency, patients consistently showed 

significantly different EDSS across datasets (see Figure 9). In particular, among patients with 

low TLV, those who were also characterized by a low global efficiency had more severe EDSS 

than those with higher global efficiency (3T cohort p=0.0088, diffusion cohort p=0.036 and for 

1.5T cohort p=0.018). These findings were also significant when combined in a meta-analysis 

(sumz=3.93, p=10-5). The cut-off used to stratify patients according to their TLV and global 

efficiency (GE) are reported in Supplementary Table 2 for each cohort.  

Figure 9. EDSS distribution in all cohorts when stratified according to total lesion volume (TLV) and the 

global efficiency (GE) of their remaining connectivity. The cut-offs used to classify patients were the 

average TLV and GE within each cohort. These cut-offs are reported in Supplementary Table 2.  
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5. Discussion 

In this work, we validated a novel approach to model structural disconnectomes without 

diffusion imaging in a large retrospective multi-centric study of multiple sclerosis. Similarly to 

what has been described in (Griffis et al., 2020), the HCP842 tractography atlas (Yeh et al., 

2018) was used to extract brain connections transected by lesions, and the remaining 

connectivity was modelled as a brain graph. Contrary to “lesion network mapping”, our method 

allows to quantify the impact of lesions on the whole structural connectome instead of focusing 

on specific sub-networks. Disconnectome topological features and node embeddings were 

proposed as possible new imaging biomarkers.  

The connection-level rank correlation between atlas-based and individual tractography-based 

models suggests that the strength of connections is overall consistently reflecting a substantial 

similarity between disconnectome graphs. 

Topological features extracted from atlas-based disconnectomes and classical individual 

models were strongly correlated and suggest that our atlas-based model is a well-suited 

approximation of individual connectivity loss. Overall, atlas-based features were strongly 

correlated to individual tractography-based features, even though an offset was often 

observed, showing consistency if not absolute agreement. In terms of comparability between 

atlas-based and individual tractography-based methods, betweenness centrality and 

neighbour degree were the worst performing features on both small- and large-scale levels. 

This observation suggests that our atlas-based method is reflects well global or node 

properties that are independent from specific paths, whereas it does not allow a precise 

approximation of node neighbourhood. This could be explained by normal individual variability 

in axonal connections and by the erroneous or biased estimation of disconnectomes from 

individual tractography (e.g., presence of false positive streamlines). Using an automated 

lesion segmentation did not negatively impact the results, suggesting that a fully automated 

approach could be used to estimate disconnectome graphs using LeMan-PV segmentation 

estimated solely from T1-weighted and FLAIR contrasts. 

When comparing atlas-based to individual tractography-based disconnectomes in MS 

patients, one should take into consideration that although the same reconstruction and 

tracking algorithms were used as for the tractography atlas, individual tractograms lacked the 

filtering of false positives which was performed manually during the construction of the atlas. 

Furthermore, our disconnectome method assumes that streamlines affected by lesions can 

be isolated from the structural connectome. However, individual tractography can already be 

influenced by the presence of lesions itself (Lin et al., 2005; Reich et al., 2007; Tievsky et al., 

1999) and might not therefore reflect the actual structural connectivity of these patients.  

Large-scale atlas-based topological features were shown to be significantly correlated with 

total lesion volume in all datasets. Importantly, the association between TLV and topological 

features was assumed to be linear, but other distributions could be better suited to reflect this 

correlation, especially for transitivity and average clustering which seem to follow a logarithmic 

function. These observations were coherent for all datasets despite substantial differences in 

terms of demographics, lesion load and clinical scores. However, different brain parcellation 

techniques might influence the graph properties due to different definitions of a “node” and 

should be explored in future work. In general, a greater variability is expected to be induced 

by smaller brain regions, leading to a bias-variance trade-off.  
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In multiple sclerosis patients, values decreased for increasing lesion load for transitivity, 

average clustering, average strength, and global efficiency, whereas the average shortest 

path length increased, resulting in decreased small-worldness. This is consistent with previous 

studies (Aerts et al., 2016; Faivre et al., 2016; Rocca et al., 2016, 2015)  that showed 

significantly lower node strength, efficiency, clustering and increased shortest path length in 

MS patients when compared to controls (Shu et al., 2016), and impaired small-world efficiency 

associated to white matter lesion load. Interestingly, the distribution of topological measures 

were closer between the 3T and diffusion cohorts despite different lesion segmentation 

strategies. Such observation could be explained by the different lesion load distribution of the 

1.5T cohort and the substantially different acquisition protocols.  

Univariate correlations between large-scale topological features and EDSS were generally 

poor but close to lesion load variables. Previous studies showed a significant decrease in 

global efficiency although weakly correlated with EDSS (Muthuraman et al., 2016; Shu et al., 

2011). Weaker correlations were observed for the 1.5T dataset, probably due to the narrower 

distribution of EDSS values. When fed to a supervised UMAP algorithm, node2vec 

embeddings allowed to define a two-dimensional space where patients followed an EDSS 

gradient for the 1.5T and 3T cohorts. A cluster of more severely disabled patients was also 

found in the 3T cohort based on the UMAP dimensions. The smaller number of patients in the 

diffusion cohort did not allow to observe such gradient clearly. When performed on lesion load 

variables, the UMAP algorithm did not allow to organize patients according to an EDSS 

gradient. The larger number of variates in node2vec embeddings compared to lesion load 

should be taken into consideration and might partially explain these results.  

When stratified according to their TLV and global efficiency, patients with low lesion load 

showed significantly different EDSS depending on their global efficiency value: the lower the 

global efficiency, the worst the clinical outcome. These findings were validated across all 

cohorts and suggest that disconnectome topological features could be used in addition to TLV 

to stratify patients into subgroups reflecting different clinical states. In patients with high TLV, 

significantly higher EDSS values were observed for higher global efficiency in the 1.5T cohort. 

A high remyelination capacity might explain these results since the 1.5T cohort was composed 

by patients at very early stages of the disease. Another hypothesis to explain these findings 

is the interplay of other pathophysiological effects we are not considering, such as the 

influence of spinal cord and optic nerve lesions on EDSS.  

Due to the limited age range covered by the tractography atlas, we implemented an 

applicability criterion that restricts the target clinical population to patients without profound 

atrophy. Therefore, the findings of this work must be interpreted accordingly and cannot be 

extrapolated to all multiple sclerosis patients. In addition to global brain atrophy, regional 

atrophy levels might also impact the anatomy of neuronal connections and should be deeper 

investigated in future work. Also, the contribution of brain plasticity which might yield to a 

partial or complete recovery of neuronal connections (Aerts et al., 2016; Fleischer et al., 2019; 

Rocca et al., 2015) is not considered in our atlas-based approach, and could impact the 

correlation with clinical scores. 

Different types of lesions might differently impact the connectivity loss based on their active or 

inactive state, as well as ongoing remyelination and demyelination processes. Future work 

should aim at investigating this relation using contrast enhanced scans to identify active 

lesions, whilst T1 hypointensities could be used to find “black holes”. 
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Another limitation of our approach is that it only considers connectivity changes in response 

to focal WM lesions. However, WM lesions are only a part of the complex pathophysiology of 

MS, and other mechanisms might also influence connectivity impairments, such as 

microstructural damage in normal appearing white matter (Solana et al., 2018). Further, 

lesions located in the spine, cortex and optical nerve were not considered in this study but 

might play a role in explaining the clinico-radiological paradox in multiple sclerosis.  

Previous studies have shown how brain connectivity and network efficiency in particular can 

be affected by the sex and brain size of the subject (Yan et al., 2011). Such effects are not 

considered in our approach as the tractography atlas is independent form the sex and brain 

size, which might therefore result into interpretation pitfalls. 

6. Conclusion 

In conclusion, our atlas-based graph model of disconnectivity allows to extract topological 

features shown to reflect actual physiological properties and in good accordance with 

individual tractography disconnectome models in multiple sclerosis. Such metrics were shown 

to contribute to narrowing the clinico-radiological gap in multiple sclerosis by providing a new 

quantitative characterization of brain disconnectivity, in a large retrospective multi-centric 

study involving substantially different clinical cohorts and MR images in terms of hardware and 

acquisition sequences.   

This method could be applied to any other neurological diseases characterized by the 

appearance of white matter lesions to study their impact on structural connectivity without 

requiring diffusion imaging. This is especially interesting for clinical research, as our method 

enables the retrospective analysis of structural disconnectivity in pre-existing datasets with 

routine MR contrasts that does not contain high quality diffusion imaging.  
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