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Abstract 

 Although our understanding of Alzheimer’s disease (AD) has greatly improved in recent years, 

the root cause remains unclear, making it difficult to find effective diagnosis and treatment options. Our 

understanding of the pathophysiology underlying AD has benefited from genomic analyses, including 

those that leverage polygenic risk score (PRS) models of disease. In many aspects of genomic research 

the use of functional annotation has been able to improve the power of genomic models. Here, we 

leveraged genomic functional annotations to build tissue-specific PRS models for 13 tissues and applied 

the scores to two longitudinal cohort studies of AD. The PRS model that was most predictive of AD 

diagnosis relative to cognitively unimpaired participants was the liver tissue score: n = 1,116; odds ratio 

(OR) (95% confidence interval [CI]) = 2.19 (1.70-2.82) per standard deviation (SD) increase in PRS; P = 

1.46 x 10-9. After removing the APOE locus from the PRS models, the liver score was the only PRS to 

remain statistically significantly associated with AD diagnosis after multiple testing correction, although 

the effect was weaker: OR (95% CI) = 1.55 (1.19-2.02) per SD increase in PRS; P = 0.0012. In follow-up 

analysis, the liver PRS was statistically significantly associated with levels of amyloid (P = 3.53 x 10-6) and 

tau (P = 1.45 x 10-5) in the cerebrospinal fluid (CSF) (when the APOE locus was included) and nominally 

associated with CSF soluble TREM2 levels (P = 0.042) (when the APOE locus was excluded). These 

findings provide further evidence of the role of the liver-functional genome in AD and the benefits of 

incorporating functional annotation into genomic research. 
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Introduction 

 Despite advances in our understanding of Alzheimer’s disease (AD), the causal mechanisms are 

not fully understood. Since the hallmarks of AD have long been its neuropathological findings[1], the 

brain has historically been the primary focus of investigations into AD etiology. However, recent 

research has implicated other systems in AD, including the immune system and processes of 

inflammation[2], the cardiovascular system[3], and the liver and metabolism[4]. The lack of clarity over 

the roles of these mechanisms and risk factors in AD hampers our ability to identify novel therapeutic 

targets and ultimately effective treatments[5]. 

 Genomic research has provided a valuable tool for understanding upstream risk factors in AD. 

The importance of amyloid-β (Aβ), long known to aggregate and subsequently accumulate in plaques in 

the brain, has been underscored by the knowledge that familial AD can be driven by genetic mutations 

in genes directly impacting Aβ processing, like APP, PSEN1, and PSEN2[6]. In late-onset AD, genomic 

studies have repeatedly identified risk factors in a number of genes, like APOE, CR1, and ABCA7, 

expanding our knowledge of the molecular systems likely to be contributing to the development of 

AD[7–9]. For instance, the discovery of TREM2 as a genetic risk loci is now being expounded in follow-up 

experimental research on soluble TREM2 levels, highlighting the role of microglia in AD[10–12]. 

 One particular application of genomic research that can help tease apart the mechanisms 

contributing to a disease involves polygenic risk scores (PRS), which are a measure of risk composed of 

the contributions of many single nucleotide polymorphisms (SNPs). Genome-wide PRS models and 

related methods have already been useful in the study of AD, including predicting AD and age of 

onset[13–15], examining genetic risk beyond the APOE locus[16], identifying PRS-environment 

associations[17,18], and comparing the genetic basis of related forms of AD[19]. PRS models can further 

be enhanced by the incorporation of genome functional annotation, which can boost the prediction 

accuracy of a PRS for disease risk[17,20,21]. One of the benefits of incorporating functional annotation is 

that it can introduce information about tissues and cell types and their potential relevance to the 

genomics underlying a particular trait. In AD, where there is growing genetic evidence for the role of 

different tissue and cell types[22,23], such annotation can provide important information about the full 

spectrum of biology involved in AD. 

 Here, we leveraged cell-type-specific genomic functional annotations derived from epigenetic 

data [23–25] to create tissue-specific PRS models for AD. We estimated tissue-specific genetic risk scores 

for participants in two longitudinal cohort studies of AD and analyzed the association between each 

tissue-specific PRS and AD diagnosis. Further, given that AD pathophysiology like brain amyloidosis and 

tau pathology can be identified using cerebrospinal fluid (CSF) biomarkers, we examined the possible 

associations between these tissue-specific PRS models and different pathologies in AD using CSF 

biomarkers of neurodegeneration and inflammation. 

 

Materials and methods 

Study participants 

 Data from two longitudinal AD cohorts focusing on middle and older aged adults were used for 

this study. The first was the Wisconsin Registry for Alzheimer’s Prevention (WRAP) study, described 
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previously[26]. Briefly, participants were between the ages of 40 and 65, fluent in English, able to 

perform neuropsychological testing, without a diagnosis or evidence of dementia at baseline, and 

without any health conditions that might prevent participation in the study. 

 The second cohort was the Wisconsin Alzheimer’s Disease Research Center (WADRC) study, 

described previously[27]. WADRC participants were categorized into one of six subgroups: 1) mild late-

onset AD; 2) mild cognitive impairment (MCI); 3) age-matched healthy older controls (age > 65); 4) 

middle-aged adults with a positive parental history of AD; 5) middle-aged adults with a negative parental 

history of AD; and 6) middle-aged adults with indeterminate parental history of AD. The clinical 

diagnoses for these groups were based on the National Institute of Neurological and Communicative 

Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)[28] 

and National Institute on Aging and Alzheimer’s Association (NIA-AA)[29]. Briefly, participants were over 

the age of 45, able to fast from food and drink for 12 hours, with decisional capacity, and without a 

history of certain medical conditions (like congestive heart failure or major neurologic disorders other 

than dementia) or any contraindication to biomarker procedures. 

 This study was performed as part of the GeneRations Of WRAP (GROW) study, which was 

approved by the University of Wisconsin Health Sciences Institutional Review Board. Participants in the 

WADRC and WRAP studies provided written informed consent. STREGA reporting guidelines[30] were 

used in the description of the results. 

 

Clinical diagnoses 

 AD, MCI, and other diagnoses of cognitive status for both WRAP and WADRC were made by a 

consensus review committee comprising an expert panel of dementia-specialist physicians, 

neuropsychologists, and nurse practitioners[26]. CSF biomarker status was not used in the process of 

making the clinical diagnoses. 

 

CSF biomarkers 

Details on the collection of CSF for biomarker analyses have been previously described[31]. 

Briefly, CSF samples were acquired using a uniform preanalytical protocol between 2010 and 2018. 

Samples were collected in the morning using a Sprotte 24- or 25-gauge atraumatic spinal needle, and 22 

mL of fluid was collected via gentle extraction into polypropylene syringes and combined into a single 30 

mL polypropylene tube. After gentle mixing, samples were centrifuged to remove red blood cells and 

other debris. Then, 0.5 mL CSF was aliquoted into 1.5 mL polypropylene tubes and stored at -80 degrees 

Celsius within 30 minutes of collection. 

All CSF samples were assayed between March 2019 and January 2020 at the Clinical 

Neurochemistry Laboratory at the University of Gothenburg. CSF biomarkers were assayed using the 

NeuroToolKit (Roche Diagnostics International Ltd., Rotkreuz, Switzerland), a panel of automated robust 

prototype immunoassays designed to generate reliable biomarker data that can be compared across 

cohorts. Measurements with the following immunoassays were performed on a cobas e 601 analyzer: 

Elecsys® β-amyloid (1–42) CSF (Aβ42), Elecsys Phospho-Tau (181P) CSF, and Elecsys Total-Tau CSF, β-
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amyloid (1–40) CSF (Aβ40), and interleukin-6 (IL-6). The remaining NTK panel was assayed on a cobas e 

411 analyzer, including markers of synaptic damage and neuronal degeneration (neurogranin, 

neurofilament light protein [NFL], and α-synuclein) and markers of glial activation (chitinase-3-like 

protein 1 [YKL-40] and soluble triggering receptor expressed on myeloid cells 2 [sTREM2]). 

A total of 9 CSF biomarkers were analyzed in this study: the Aβ42/Aβ40 ratio, phosphorylated 

tau 181 (ptau), the ptau/Aβ42 ratio, NFL, α-synuclein, neurogranin, YKL-40, sTREM2, and IL-6. Since the 

CSF biomarker measurements were to be used as outcomes, each biomarker was assessed for skewness 

using the skewness function of the R package moments (version 0.14) [32]. Any biomarker with a 

skewness ≥ 2 was transformed with a log10-transformation to better meet the normality assumption of 

regression. The outcomes that were log10-transformed were ptau, the ptau/Aβ42 ratio, NFL, and IL-6. 

 

Genomic data 

The genomic data collection in the WRAP and WADRC cohorts has been described 

previously[33]. The WRAP samples were genotyped using DNA from whole blood samples and the 

Illumina Multi-Ethnic Genotyping Array at the University of Wisconsin Biotechnology Center[34]. 

Samples and variants with high missingness (> 5%) or inconsistent genetic and self-reported sex were 

removed. Samples from individuals of European descent were then imputed using the Michigan 

Imputation Server[35] and the Haplotype Reference Consortium (HRC) reference panel[36], with low 

quality variants again removed (R2 < 0.8) post-imputation. A total of 1,198 samples with 10,499,994 

SNPs were present at the end of quality control. 

Whole blood samples from the WADRC were genotyped by the Alzheimer’s Disease Genetics 

Consortium (ADGC) at the National Alzheimer’s Coordinating Center (NACC) using the Illumina 

HumanOmniExpress-12v1_A, Infinium HumanOmniExpressExome-8 v1-2a, or Infinium Global Screening 

Array v1-0 (GSAMD-24v1-0_20011747_A1) BeadChip assay. Each chip’s genomic data were initially 

processed separately. After strict quality control that removed variants or samples with high missingness 

(> 2%), out of Hardy-Weinberg equilibrium (HWE) (P < 1x10-6), or with inconsistent genetic and self-

reported sex, samples were imputed with the Michigan Imputation Server where they were phased 

using Eagle2[37] and imputed to the HRC reference panel. Low quality variants (R2 < 0.8) or out of HWE 

were removed. After imputation, the data sets from the different chips were merged together, leaving a 

data set with 377 samples of European descent and 7,049,703 SNPs. 

To prevent variant overlap issues, all genomic data sets used in this study were harmonized, 

including the WADRC, WRAP, International Genomics of Alzheimer’s Project (IGAP) 2019 GWAS of AD[7], 

and the 1000 Genomes Utah residents with Northern and Western European ancestry (CEU)[38] data 

sets. The GRCh37 genome build was used, all ambiguous SNPs were removed, and all SNPs were aligned 

to have strand and allele orientations consistent with the WADRC data set. Only the subset of SNPs 

successfully harmonized and present across all four data sets were used to build the PRS. To avoid 

sample overlap between participants in the WADRC and IGAP, 165 overlapping participants were 

removed, leaving a total of 1,410 participants (212 WADRC, 1,198 WRAP) with 5,631,405 SNPs. 

 

Tissue-specific functional SNP sets 
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 To categorize the genome into tissue-specific functional regions, annotations from GenoSkyline-

PLUS[23–25] (v 1.0.0) were used. GenoSkyline is an unsupervised framework that uses epigenetic data 

sets from the Roadmap Epigenomics Project[39] to predict tissue-specific functional regions of the 

genome. For each region of the genome and for each cell type, GenoSkyline predicts a value between 0 

and 1 that represents whether that region is likely to be functional for that cell type, with 1 indicating 

functional and 0 non-functional. Due to the bimodal distribution of these scores, values ≥ 0.5 were 

considered functional and values < 0.5 were considered non-functional in this study. GenoSkyline-PLUS 

annotations are available for a variety of cell types, with each cell type labeled as part of a larger tissue 

type. The full list of GenoSkyline-PLUS tissues and included cell types can be found in Supplementary 

Table 1. For each tissue, the union of all functional genomic regions from all included cell types was 

defined as the functional genomic region for that tissue, and all SNPs falling within that region were 

included in that tissue’s set of tissue-specific functional SNPs. A total of 13 tissue-specific SNP sets were 

defined in this manner, with a 14th SNP set comprising all SNPs regardless of tissue functionality to 

create a non-tissue-specific genome-wide PRS for comparison. For all of the PRS models, the effect size 

estimate for each SNP came from the 2019 IGAP GWAS results[7]. The nearest protein-coding gene to 

each SNP was also added using GENCODE (version 19) annotations[40]. 

 Since certain genotypes in the APOE locus are known to be strongly associated with AD, we 

sought to examine whether the PRS were associated with AD beyond the effect of the APOE locus. To do 

so, we built tissue-specific PRS using the same procedure as above with the exception that all SNPs in a 

window around the APOE genomic region were removed (defined as between the PVR and GEMIN7 

genes: chromosome 19, base pairs 45,147,098-45,594,782). Some SNPs from the APOE locus were 

considered functional for each tissue, so the PRS scores changed for all tissues when the APOE locus was 

removed. 

 

PRS calculation 

 Each SNP set as defined above was then used to construct the corresponding tissue-specific PRS. 

Each PRS was constructed with PRSice[41] (v 2.2.4) using the Kunkle et al. 2019 IGAP summary 

statistics[7] as the base data set and the 1000 Genomes CEU samples to estimate linkage disequilibrium 

(LD). An R2 of 0.5 was used for clumping SNPs and a P threshold of 0.0025 based on the Zhao et al. 2019 

estimation of the most predictive threshold for AD[42] was used for the inclusion of SNPs, leaving a 

maximum of 649,987 SNPs remaining for PRS construction depending on the SNP set used. The risk 

score for each tissue was calculated for each participant in the combined WADRC/WRAP data set using 

the default “average” PRS equation that divides the weighted sum of the alleles by the total count of 

alleles used (“--score avg” option for PRSice), and then each tissue-specific PRS was standardized to a 

mean of 0 and variance of 1. 

 

PRS-AD diagnosis associations 

 Among the WADRC/WRAP data set, all 1,410 participants had at least one study visit with a 

consensus conference diagnosis. The most recent visit for each participant with an AD, MCI, or 

cognitively unimpaired diagnosis was kept. Then, among related individuals (defined by estimated 
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genetic relationships in WADRC or self-defined families in WRAP) only one participant was kept per 

family (chosen arbitrarily), leaving 1,164 unrelated participants. The association between each PRS and 

AD diagnosis (compared to cognitively unimpaired individuals; n = 79 cases with AD and n = 1,037 

cognitively unimpaired controls; MCI cases excluded) was estimated with logistic regression using the 

R[43] glm function, controlling for sex and age at the time of diagnostic assessment by the consensus 

review committee. A Bonferroni correction for the number of PRS tested (P = 0.05 / 14 = 0.0036) was 

used in reporting significant results. 

As a follow-up analysis, a comparison of the top-performing risk score between AD, MCI, and 

cognitively unimpaired participants was made using a box plot, with both ANOVA and pairwise t-tests 

used to compare the risk score distributions among the groups. Participants were then divided into 5 

groups based on the PRS quantiles, and the distributions of the AD diagnoses across these PRS quantiles 

were compared. 

 Though the two cohort populations were similar geographically and demographically, the 

possibility of confounding by cohort or population substructure was assessed. The PRS-diagnosis 

associations were repeated as above but using only the participants from WADRC and including the first 

5 principal components (PCs) of genetics derived previously using PC-AiR[44]. WADRC was used for this 

sensitivity analysis because it had a more balanced distribution of clinical diagnoses than WRAP. 

To assess whether the effect of APOE was solely driving the associations of the PRS with AD 

diagnosis, a sensitivity analysis was conducted with the set of tissue-specific PRS constructed without 

the APOE locus. The associations between these PRS without APOE and AD diagnosis were estimated 

with logistic regression as before and compared to the original models with APOE included in the PRS. 

 To assess whether the top-performing PRS was substantially better than the rest of the genome 

in predicting AD diagnosis, a sensitivity analysis was conducted where only non-tissue-functional SNPs 

were used to construct a PRS. To build this PRS (referred to as an inverse PRS), the same procedure as 

before was used for the top-performing tissue PRS except that only SNPs in the non-functional regions 

for that tissue were included. The association of this PRS with AD diagnosis was estimated in a logistic 

regression as before and compared to that of the tissue-functional PRS, both with and without the APOE 

region included. 

 

PRS-CSF biomarker associations 

 To investigate the intermediate biological pathways driving the association between the PRS 

most strongly associated with AD diagnosis, the relationship between this PRS (both with and without 

APOE) and the CSF biomarkers was assessed using the longitudinal data set of unrelated WADRC and 

WRAP participants with biomarker measurements available (up to 250 visits from 167 individuals). A 

linear mixed-effects model was used to test each liver PRS-biomarker association, controlling for age at 

CSF collection and sex and including a random intercept for the individual to account for the longitudinal 

CSF measurements. A Bonferroni correction for the number of biomarkers tested (P = 0.05 / 9 = 0.0056) 

was used for reporting significant associations. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2021. ; https://doi.org/10.1101/2021.04.29.21256279doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.29.21256279
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

PRS creation 

 A total of 14 PRS were initially generated based on the GenoSkyline-PLUS functionality 

annotation: one genome-wide PRS (labeled “all”) and 13 tissue-specific PRS (blood, thymus, and spleen; 

brain; breast; connective tissue; fat; gastrointestinal; heart; liver; lung; muscle; ovary; pancreas; and 

skin). The proportion of the 5,631,405 SNPs considered functional for each tissue ranged from 2.5% 

(ovary) to 25.3% (blood, thymus, and spleen) (Supplementary Figure 1). Among the 1,164 unrelated 

participants, the genome-wide and tissue-specific PRS values for the WADRC/WRAP cohort were all 

roughly normally distributed whether the APOE region was included or excluded from the PRS 

(Supplementary Figures 2-3). The PRS were generally correlated with each other with a median pairwise 

correlation of 0.872 (APOE included) and 0.754 (APOE excluded) (Supplementary Figures 4-5 and 

Supplementary Table 2). 

 

PRS-AD diagnosis association 

The 1,164 unrelated participants were considered for the PRS-AD analyses (Table 1). The 

majority (1,037, 89.1%) of these participants were cognitively unimpaired at their most recent visit, with 

the AD and MCI diagnosis participants older and less often female. For the analysis of the PRS-AD 

diagnosis associations, only the 1,116 AD and cognitively unimpaired participants were used. 

 

Table 1. AD diagnosis cohort demographics 

  Cohort   

Diagnosis n WADRC (n, %) WRAP (n, %) Age (mean, SD) Female (n, %) 

AD 79 70 (88.6%) 9 (11.4%) 75.9 (9.1) 34 (43.1%) 

MCI 48 28 (58.3%) 20 (41.7%) 75.1 (8.2) 20 (41.7%) 

Cognitively unimpaired 1037 107 (10.3%) 930 (89.7%) 66.2 (6.6) 716 (69.0%) 

 

The strength of association for each PRS with AD diagnosis (versus cognitively unimpaired) is 

shown in Figure 1 (full regression results and model areas under the curve [AUC] in Supplementary Table 

3). All PRS were individually and statistically significantly associated with AD diagnosis after Bonferroni 

correction for multiple testing, with all PRS showing an increase of polygenic risk associated with a 

diagnosis of AD relative to cognitively unimpaired and AUCs between 0.839 and 0.866. Two tissues (liver 

and ovary) were more strongly associated with AD diagnosis than the genome-wide PRS, with an odds 

ratio of having AD relative to being cognitively impaired (OR) (and 95% confidence intervals [CI] and P 

values) of 2.19 per standard deviation (SD) increase in the PRS (95% CI = 1.70-2.82, P = 1.46 x 10-9) and 

2.06 (1.59-2.66, P = 3.55 x 10-8), respectively, compared to the genome-wide PRS with OR of 2.01 (1.54-

2.62, P = 2.40 x 10-7). 
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Figure 1. Association of tissue-specific PRS with AD diagnosis (APOE included) 

The strength of association of each PRS (with the APOE locus included) with AD diagnosis (relative to cognitively 

unimpaired participants; MCI cases excluded) from the logistic regression models is shown (n = 1,116). The 

horizontal lines indicate thresholds for significance, with the black line indicating the nominal threshold of P = 0.05 

and the red line indicating the Bonferroni-corrected threshold of P = 0.0036. All PRS scores were statistically 

significantly associated with AD diagnosis, with the liver PRS being the most strongly associated score. 

 

The genetic risk scores for the liver PRS (with APOE) increased with increasing severity across 

the three cognitive diagnoses from a mean value of -0.02 (SD = 0.96) for cognitively unimpaired 

individuals to 0.60 (SD = 1.10) for participants with AD (Figure 2). The mean liver score was significantly 

different across the three groups (ANOVA P = 1.6 x 10-7) and between the unimpaired and AD 

participants (t-test P = 4.8 x 10-6). When the participants were stratified into 5 liver PRS risk quantiles, 

the highest risk (5th quantile) and lowest risk (1st quantile) showed a corresponding enrichment of AD 

and MCI participants at the highest PRS risk (19.4%) relative to the lowest PRS risk (6.4%) 

(Supplementary Figure 6). Similar but less marked and consistent trends were seen for the liver PRS 

without APOE: the mean PRS value ranged from -0.001 (SD = 0.97) among cognitively unimpaired 

individuals to 0.34 (SD = 0.99) among participants with AD, and the proportion of AD and MCI 

participants among the highest risk quantile was 14.7% compared to 6.9% in the lowest risk quantile. 
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Figure 2. Distribution of liver PRS by diagnosis group (APOE included) 

The distribution of the liver PRS with the APOE region included across the three clinical stages of AD is shown (n = 

1,410). Pairwise t-tests of the diagnosis group means (P values shown above each box plot pair) revealed a 

statistically significant difference between the liver PRS scores of the cognitively unimpaired and AD groups. An 

ANOVA test similarly identified a statistically significant difference in means across all three groups (P = 1.6 x 10-7). 

 

When these PRS-AD diagnosis analyses were repeated using just the WADRC cohort (n = 177) 

and including the first 5 genetic PCs as additional covariates, the results were similar but with weaker 

associations. All PRS with APOE included were statistically significantly associated with AD diagnosis with 

the liver PRS being the most strongly associated with an OR of 2.26 (95% CI: 1.53-3.33, P = 3.86 x 10-5). 

When APOE was excluded, only the liver PRS remained statistically significantly associated with an OR of 

1.95 (1.24-3.05, P = 0.00357), though its P value was just below the Bonferroni-corrected significance 

threshold. 

To rule out the possibility that the PRS associations with AD diagnosis were solely driven by the 

effect of the APOE locus, the PRS-AD diagnosis associations were recalculated using the PRS that 

excluded the APOE region. In this sensitivity analysis, only the liver PRS remained significantly associated 

with AD diagnosis after Bonferroni correction for the number of PRS tested with an OR of 1.55 (95% CI: 

1.19-2.02, P = 0.0012) (Figure 3), although the AUCs remained similar across PRS models (range: 0.811-

0.823; Supplementary Table 3). A similar increasing genetic risk score across the diagnosis groups from 

cognitively unimpaired to AD was seen with the liver PRS without the APOE locus. A statistically 
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significant difference in the genetic risks scores for the liver PRS between cognitively unimpaired (mean 

score = -0.00050, SD = 0.97) and AD (mean score = 0.34, SD = 0.99) groups was observed with a t-test P = 

0.0041. 

 

 

Figure 3. Association of tissue-specific PRS with AD diagnosis (APOE excluded) 

The strength of association of each PRS (with the APOE locus excluded) with AD diagnosis (relative to cognitively 

unimpaired participants; MCI cases excluded) from the logistic regression models is shown (n = 1,116). The 

horizontal lines indicate thresholds for significance, with the black line indicating the nominal threshold of P = 0.05 

and the red line indicating the Bonferroni-corrected threshold of P = 0.0036. Only the liver PRS remained 

statistically significantly associated with AD diagnosis after multiple testing correction. 

 

 To explore whether the liver-functional genome was indeed more predictive of AD diagnosis 

than the remaining genome, the performance of the liver PRS was compared to the PRS constructed 

using every part of the genome except for the liver-functional genome (i.e., the “liver inverse” PRS), 

both with and without the APOE region included. Regardless of the inclusion of the APOE region, the 

liver-functional genome PRS was more strongly associated with AD diagnosis (vs. cognitively 

unimpaired) than the liver inverse PRS, although all PRS were nominally associated. With APOE included, 

the liver PRS’ OR was 2.19 (95% CI = 1.70-2.82, P = 1.46 x 10-9) compared to the liver inverse PRS with an 

OR of 1.88 (95% CI = 1.44-2.44, P = 2.92 x 10-6). Without APOE, the liver PRS OR was 1.55 (95% CI = 1.19-

2.02, P = 0.0012) compared to the liver inverse PRS with an OR of 1.34 (95% CI = 1.04-1.72, P = 0.024) 

(Supplementary Figure 7). 
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PRS-CSF biomarker associations 

 The longitudinal data set for the CSF biomarkers included all available WADRC/WRAP visits for 

participants where CSF biomarker and genetic data were available, which ranged from 1 to 5 visits per 

participant. The total number of participants included per biomarker analysis ranged from 164-167, 

comprising 245-250 total visits (Table 2). The mean age at visit across all included visits was 64.1 (SD 7.1) 

with 64.0% of the visits from female participants. 

 

Table 2. CSF biomarker data set description 

Outcome Individuals Visits Outcome mean Outcome SD 

α-synuclein (pg/mL) 167 250 183.87 83.43 

Aβ42:Aβ40 ratio 166 247 0.060 0.020 

IL-6 (pg/mL) 164 245 4.48 2.62 

Neurogranin (pg/mL) 167 250 849.62 354.44 

NFL (pg/mL) 167 250 115.78 84.49 

ptau (pg/mL) 166 247 21.59 12.55 

ptau:Aβ42 ratio 166 247 0.034 0.034 

sTREM2 (ng/mL) 167 250 8.74 2.82 

YKL-40 (ng/mL) 167 250 160.05 63.76 

 

 

 The results of the linear mixed-effects models that regressed each outcome on the liver PRS 

(controlling for age at visit and sex) are summarized in Figure 4 (full regression results in Supplementary 

Table 4). After Bonferroni correction, the liver PRS was statistically significantly associated with three 

outcomes: the Aβ42/Aβ40 ratio, ptau, and the ptau/Aβ42 ratio. The liver PRS was nominally associated 

with three other outcomes: NFL, neurogranin, and α-synuclein. The remaining three outcomes (YKL-40, 

sTREM2, and IL-6) were not associated with the liver PRS. 
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Figure 4. Association of the liver PRS with CSF biomarkers (APOE included) 

The strength of association of the liver PRS (with the APOE locus included) with each CSF biomarker from the linear 

mixed effects regression models is shown (n range = 245-250 visits). The horizontal lines indicate thresholds for 

significance, with the black line indicating the nominal threshold of P = 0.05 and the red line indicating the 

Bonferroni-corrected threshold of P = 0.0056. The liver PRS was statistically significantly associated with the 

measures of amyloid and tau but not with the other biomarkers. 

 

 When these analyses were repeated with the APOE region removed from the liver PRS, the 

majority of the association signal was lost: no outcome was statistically significantly associated with the 

liver PRS without APOE after Bonferroni correction, although the PRS was nominally associated with 

sTREM2 (Supplementary Figure 8). 

 

Discussion 

 The main result from the analysis of the association between tissue-specific PRS and AD 

diagnosis was that the liver PRS outperformed all other tissue-specific and non-tissue-specific PRS 

according to the strength of statistical association and the area under the curve (AUC), although the 

differences in AUC were subtle. When the effect of APOE was mitigated by excluding all SNPs in the 

APOE region, the liver PRS was the only PRS to remain statistically significant following multiple testing 

correction in its association to AD diagnosis. The importance of the APOE region in driving much of the 

association signal for the PRS models, including the liver PRS, was expected, as the APOE locus has long 

been known to be strongly associated with AD risk[45,46], especially among a population predominantly 
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of European ancestry[47], as was the case here. However, the liver PRS was associated with AD 

diagnosis beyond the impact of the APOE locus. 

Interpreting the meaning of the liver PRS’ relationship with AD was aided by the follow-up 

analysis with the CSF biomarkers. The liver PRS was most strongly associated with the core biomarkers 

of AD, amyloid and tau (CSF Aβ42/Aβ40, ptau, and ptau/Aβ42), suggesting that the PRS was more 

directly capturing these features of AD pathology rather than some of the other processes of 

neuroinflammation and neurodegeneration. However, these associations with amyloid and tau were 

removed when the APOE locus was removed from the liver PRS, leaving only a nominal association with 

sTREM2. Weaker association signals among the CSF biomarker data set could be attributed in part to the 

much smaller sample size available with CSF biomarker data compared to that with AD diagnosis data (n 

= 250 vs n = 1,116). Still, the reason for the liver PRS without APOE being associated with AD diagnosis 

but not any of the CSF biomarkers was unclear. 

Whether the liver PRS’ association with AD risk indicates a role for the liver organ itself remains 

an open question. The liver PRS here may be associated with AD due to some role of the liver itself or 

simply through the genes that happen to be functional in the liver but are not uniquely expressed in the 

liver. Across the 560 SNPs that were part of the liver PRS (APOE excluded), many of the major AD loci 

were represented, including CLU, BIN1, PICALM, SPI1, CLU, ABCA7, SORL1, and others (Supplementary 

Table 5). Nevertheless, there is mounting evidence pointing to metabolic dysregulation and the liver as 

relevant to AD. Several metabolic traits, including dyslipidemia, metabolic syndrome, obesity, and type 2 

diabetes, appear to be risk factors for AD[48,49]. More specific to the liver, Neuner et al. suggest that 

cholesterol regulation may be a point of common ground between the liver, APOE, neurons, and AD[6]. 

Furthermore, recent evidence has indicated an association between measures of liver function, 

including blood levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and AD 

diagnosis, amyloid, tau, and neurodegeneration[4]. Though the causal direction of these associations is 

unclear, our findings here provide potential further evidence of the relevance of the liver and 

metabolism in relation to AD. 

More generally, this study reinforces the benefit of using functional annotation to improve 

genomic prediction as the PRS’ performance was improved, albeit subtly, by incorporating predicted 

functional information. Among the PRS models with APOE excluded, 6 of the 13 tissue-specific PRS were 

more strongly associated with AD diagnosis than the genome-wide PRS in association. This increased 

strength of association is likely the result of improved filtering of the included SNPs to just those that are 

more likely to be causal due to their predicted functionality. This finding would support a general theme 

among the functional annotation literature that suggests that functional annotation can improve 

genomic analyses of disease. Early work demonstrated that genomic functional annotation could be 

used to filter down a set of SNPs to those more likely to be causal for both dominant and recessive 

Mendelian traits[50]. Recent approaches have used functional annotation to boost GWAS power in 

identifying SNP associations[51], stratify heritability of complex disease by functional annotation[52], 

and improve genetic risk prediction for disease[20,53]. Our work further demonstrates the potential 

utility of incorporating functional annotation in genetic risk prediction, though additional work is needed 

to quantify whether the improvement in this case is enough to be clinically relevant. 

Limitations of this study included the limited sample size. In the study of PRS-AD diagnosis 

associations, the sample was predominantly cognitively unimpaired with only 79 individuals diagnosed 
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with AD, and in the follow-up analysis of CSF biomarker data, only 167 unique individuals were available 

with data. However, even among these smaller sample sizes, detectable association signals were still 

observed. As these cohort studies continue to grow, so too will our capability to investigate genetic 

associations with AD pathology. Another limitation was the population of study, which was limited to 

European ancestry due to lack of participants from other populations in the data set at the time the data 

were pulled. Further studies will be needed to better understand the transferability of these tissue-

specific PRS findings to other populations. 

In conclusion, we leveraged genome functional annotation to create tissue-specific PRS for AD, 

identifying the liver PRS as the PRS most strongly associated with AD and the only PRS to remain 

associated when the APOE locus was removed. Follow-up analysis of the liver PRS with CSF biomarkers 

of AD, neurodegeneration, and neuroinflammation revealed potential intermediate pathways related to 

the role of the liver-functional genome in AD, but the limited sample size of the biomarker data set and 

the apparent role of APOE in driving these biomarker results merit further study. Altogether, these 

findings provide further evidence for the role of the liver-functional genome in AD and highlight the 

benefit of incorporating genomic functional annotation into genetic research of complex disease. 
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