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ABSTRACT  45 

Importance: The persistence of SARS-CoV-2 antibodies may be a predictive correlate of 46 

protection for both natural infections and vaccinations. Identifying predictors of robust antibody 47 

responses is important to evaluate the risk of re-infection / vaccine failure and may be 48 

translatable to vaccine effectiveness.  49 

Objective: To 1) determine the durability of anti-SARS-CoV-2 IgG and neutralizing antibodies in 50 

subjects who experienced mild and moderate to severe COVID-19, and 2) to evaluate the 51 

correlation of age and IgG responses to both endemic human seasonal coronaviruses (HCoVs) 52 

and SARS-CoV-2 according to infection outcome.  53 

Design: Longitudinal serum samples were collected from PCR-confirmed SARS-CoV-2 positive 54 

participants (U.S. active duty service members, dependents and military retirees, including a 55 

range of ages and demographics) who sought medical treatment at seven U.S. military hospitals 56 

from March 2020 to March 2021 and enrolled in a prospective observational cohort study.  57 

Results: We observed SARS-CoV-2 seropositivity in 100% of inpatients followed for six months 58 

(58/58) to one year (8/8), while we observed seroreversion in 5% (9/192) of outpatients six to 59 

ten months after symptom onset, and 18% (2/11) of outpatients followed for one year. Both 60 

outpatient and inpatient anti-SARS-CoV-2 binding-IgG responses had a half-life (T1/2) of >1000 61 

days post-symptom onset. The magnitude of neutralizing antibodies (geometric mean titer, 62 

inpatients: 378 [246-580, 95% CI] versus outpatients: 83 [59-116, 95% CI]) and durability 63 

(inpatients: 65 [43-98, 95% CI] versus outpatients: 33 [26-40, 95% CI]) were associated with 64 

COVID-19 severity. Older age was a positive correlate with both higher IgG binding and 65 

neutralizing antibody levels when controlling for COVID-19 hospitalization status. We found no 66 

significant relationships between HCoV antibody responses and COVID-19 clinical outcomes, or 67 

the development of SARS-CoV-2 neutralizing antibodies. 68 

Conclusions and Relevance: This study demonstrates that humoral responses to SARS-CoV-69 

2 infection are robust on longer time-scales, including those arising from milder infections. 70 
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However, the magnitude and durability of the antibody response after natural infection was 71 

lower and more variable in younger participants who did not require hospitalization for COVID-72 

19. These findings support vaccination against SARS-CoV-2 in all suitable populations including 73 

those individuals that have recovered from natural infection. 74 

 75 

INTRODUCTION 76 

The immune correlates of protection against severe acute respiratory syndrome 77 

coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) are unknown. 78 

However, the development of detectable humoral immunity is likely a predictive surrogate of 79 

protection1,2. The presence of broadly neutralizing serum antibodies five to eight months after 80 

SARS-CoV-2 infection have been documented by several groups3-10. Cases of symptomatic 81 

COVID-19 following re-infection with SARS-CoV-2 have been reported but are infrequent11-15, 82 

and recent studies have highlighted a correlation between the presence of SARS-CoV-2 83 

antibodies and decreased risk of reinfections16,17.  84 

The magnitude of the antibody response to SARS-CoV-2 infection has been positively 85 

correlated with COVID-19 severity18-25, but the confounding effect of age on this association 86 

remains unresolved26-28. Even less understood is whether cross-reactive seasonal human 87 

coronavirus (HCoV) antibodies correlate with the kinetics of SARS-CoV-2 humoral responses 88 

across acute and post-acute timescales after SARS-CoV-2 infection29-32. Pre-existing HCoV 89 

antibodies that cross-react with but do not cross-neutralize SARS-CoV-2 have been 90 

detected30,33-36, and recent infection with HCoVs has been correlated with reduced COVID-19 91 

severity37. 92 

Here, we demonstrate the persistence of SARS-CoV-2 IgG binding and neutralizing 93 

responses out to twelve months in participants enrolled in a prospective study at seven military 94 

treatment facilities (MTFs) across the U.S. from March 2020 to March 2021. MTFs provide care 95 

for active duty servicemembers, dependents and military retirees, including a range of ages and 96 
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demographics that is broadly representative of the civilian U.S. population. Study participants 97 

were followed for up to twelve months allowing analyses to identify correlates of long humoral 98 

immune durability to SARS-CoV-2. The aims are to (i) describe the magnitude and durability of 99 

SARS-CoV-2 antibody response for one year after natural infection, and (ii) identify correlates of 100 

SARS-CoV-2 antibody response, including COVID-19 severity, age, and antibody profiles to 101 

HCoVs. 102 

 103 

METHODS 104 

Study population, setting, participant enrollment and sera collection 105 

 Participants were enrolled and serum samples were collected in the Epidemiology, 106 

Immunology, and Clinical Characteristics of Emerging Infectious Diseases with Pandemic 107 

Potential (EPICC) protocol: a prospective, longitudinal study of COVID-19. The protocol was 108 

approved by the Uniformed Services University Institutional Review Board (IDCRP-085), and all 109 

subjects or their legally authorized representative provided informed consent to participate. 110 

Participants were enrolled at seven MTFs across the United States, including Walter Reed 111 

National Military Medical Center (Bethesda, MD), Brooke Army Medical Center (San Antonio, 112 

TX), Naval Medical Center San Diego (San Diego, CA), Naval Medical Center Portsmouth 113 

(Portsmouth, VA), Madigan Army Medical Center (Tacoma, WA), Fort Belvoir Community 114 

Hospital (Fort Belvoir, VA) and Tripler Army Medical Center (Honolulu, HI). Eligible participants 115 

included individuals with laboratory-confirmed SARS-CoV-2 infection by nucleic acid 116 

amplification test (NAAT), individuals with SARS-CoV-2-like illness, and individuals who were 117 

tested following a high risk exposure to a SARS-CoV-2 positive person or screening 118 

surrounding travel. Blood specimens were collected at enrollment, and then at seven, fourteen, 119 

and twenty-eight days, and subsequently at three, six and twelve months after enrollment.  120 

 Antibody results from SARS-CoV-2 PCR-positive (n=505) and SARS-CoV-2 PCR-121 

negative (n=92) participants were included in the evaluation of humoral response to SARS-CoV-122 
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2 infection. From these participants, we analyzed spike protein IgG binding in a serial collection 123 

of 764 serum samples from 250 (outpatients n= 192, inpatients n= 58) participants who were 124 

followed through six and twelve months-post-enrollment. Six months serum samples from these 125 

participants were collected at a median 188 days post-symptom onset (dpso), IQR= 15. Of 126 

these 250 participants, 19 (outpatients, n= 11; inpatients= 8) had available sera drawn twelve 127 

months from the onset of symptoms and prior to vaccination, allowing long-term monitoring of 128 

IgG duration (eFigure 1). Serum samples collected from individuals after the administration of 129 

COVID-19 vaccinations were excluded from this analysis of antibody responses to natural 130 

infection. To characterize the durability of the neutralizing antibody response to SARS-CoV-2, 131 

paired sera from 72 participants who had serum samples collected during early convalescence 132 

(median 36 dpso, IQR= 14.50) and at six months-post symptom onset collected from 133 

September to October 2020 were evaluated by a SARS-CoV-2 S-pseudovirus neutralization test 134 

(SNT) and an authentic wild-type SARS-CoV-2 virus neutralization test (VNT). Twelve months-135 

post sera collected in March 2021 from 7 inpatients and 4 outpatients were further evaluated by 136 

SNT.  137 

 138 

Multiplex microsphere-based immunoassay screening procedures 139 

Detailed experimental procedures of SARS-CoV-2 and HCoV spike protein-based 140 

multiplex microsphere immunoassays have been previously described38-40 and are described 141 

further in the Supplementary Appendix (eMethods). Briefly, diluted serum and capillary blood 142 

samples were tested in technical duplicates. Antigen-antibody complexes were analyzed on Bio-143 

Plex 200 multiplexing systems (Bio-Rad, Hercules, CA) for IgG binding and median 144 

fluorescence intensity (MFI) values are reported.  145 

 146 

SARS-CoV-2 S-pseudovirus production and neutralization (SNT) 147 
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The spike (S) sequence from SARS-CoV-2 isolate Wuhan-Hu-1 (GenBank accession: 148 

YP_009724390.1) was used to construct lentiviral pseudoviruses for the neutralization assays, 149 

as described previously41. Additional details are provided in the (eMethods), briefly, pseudovirus 150 

titers were measured by infecting 293T-ACE2.TMPRSS2 cells. Pseudovirus titers were 151 

determined as relative luminescence units per milliliter of pseudovirus supernatants (RLU/ml). 152 

The antibody dilution causing a 50% and 80% reduction (inhibitory concentration, IC) of vector-153 

expressed luciferase compared to control (IC50- and IC80-neutralizing antibody titer, respectively) 154 

was calculated with nonlinear regression using GraphPad Prism. Data reported were averages 155 

from at least two independent experiments. 156 

 157 

Wild-type SARS-CoV-2 plaque reduction neutralization tests (VNT) 158 

VNT antibody titers were determined by plaque reduction neutralization test (PRNT) as 159 

previously described with modifications42. Details of experimental procedures are included in the 160 

Supplementary Appendix (eMethods). SARS-CoV-2 (USA WA1/2020, BEI Resources cat # NR-161 

52281) and serum samples were incubated for one hour then incubated with Vero-81 cells 162 

(ATCC cat NoCRL-1587). Cutoffs for 80% PRNT titers (PRNT80) were determined on each plate. 163 

Wells with an OD405 less than 20% of the mean value of nine virus only controls, plus one 164 

standard deviation, were considered neutralizing. 165 

 166 

Statistical analysis of humoral response correlates 167 

Log-scale transformations were applied to all SARS-CoV-2 IgG binding and 168 

neutralization antibody datasets to explore normality and parametric or non-parametric were 169 

applied as indicated. For VNT PRNT80 titers, zero values were changed to 0.01 prior to log10-170 

transformation and nonparametric unpaired Mann-Whitney tests were performed. Generally, 171 

second order polynomial curves were the preferred non-linear regression model (α= 0.05) and 172 

these best-fit curves with confidence intervals are shown in all graphs. Exponential phase-decay 173 
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analyses were used to explore antibody half-life (T1/2) trends utilizing subjects with ≥2 174 

longitudinal sera samples, and, based on best-fit, either a one-phase or two-phase decay model 175 

was preferred. When single models for all the datasets were not preferred or a best-fit single 176 

curve was ambiguous, a robust fit without curve fitting was applied and the mean of all subjects’ 177 

individual T1/2 was calculated; in several instances T1/2 exceeded 1000 days and were reported 178 

as >1000.  We used Brown-Forsythe and Welch’s ANOVA to compare age-stratified log10-179 

transformed IgG binding MFI data and adjusted for multiple comparisons through use of the 180 

Dunnet’s multiple T3 comparison test. Box-Cox transformations were applied to HCoV IgG 181 

binding MFI values to normalize the data and parametric t-tests were performed. Multivariate 182 

linear regression models were used to compare MFI among age groups and by hospitalization 183 

status (with interaction term), and separate models were run for samples collected in the early 184 

convalescence period and at six months-post. Figures were generated and statistical analyses 185 

were performed in GraphPad Prism version 9.0.2 and RStudio version 4.0.2 software (R 186 

Foundation for Statistical Computing)43. 187 

 188 

RESULTS 189 

Demographic and hospitalization status of EPICC participants  190 

Over half of the participants were 18-44 years of age or male. The racial distribution of 191 

participants was non-Hispanic white (44.3%), followed by Hispanic (31.2%) and African-192 

American (14.1%) (Table 1). Participants were classified according to the maximum severity 193 

reported during follow-up as hospitalized (inpatients) or outpatients. Participants were stratified 194 

into three age groups: 18-44, >44-64 and >65 years old. The median age of inpatient and 195 

outpatient participants was 58.2 (interquartile range (IQR)= 16.3 years) and 43.3 (IQR= 24.4) 196 

years, respectively.  197 

 198 

 199 
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SARS-CoV-2 binding and neutralizing antibody responses differ by COVID-19 severity  200 

We observed 95% (183/192) of outpatients and 100% of inpatients (58/58) remained 201 

seropositive at six months-post, and 9/11 outpatients and 8/8 inpatients remained seropositive 202 

at 12 months-post symptom onset. A one-phase decay of the IgG response of inpatients 203 

calculated a T1/2 >1000 days (Figure 1A). IgG responses displayed greater heterogeneity 204 

among outpatients than inpatients and a one-phase decay curve modeled a T1/2= 1232 days 205 

(Figure 1A). Next, we sought to investigate whether the magnitude or duration of the IgG 206 

response was associated with COVID-19 clinical disease severity as determined by 207 

hospitalization status. For this analysis, magnitude was explored as IgG responses recorded 208 

during early convalescence for each participant across all longitudinal sera collections and the 209 

durability of the antibody response was assessed with sera collected six and twelve months-210 

post symptom onset. Geometric mean IgG levels during early convalescence and six months-211 

post-infection were significantly higher in inpatients than in outpatients (early convalescence: 212 

inpatients= 27,646 MFI [95% Confidence Interval (CI): 26,688-28,639], outpatients= 20,587 MFI 213 

[CI:19,057-22,241], P <0.001; six months-post-infection: inpatients= 22,694 MFI [95% CI: 214 

19,967-25,792], outpatients= 13,559 MFI [95% CI: 12,343-14,895], P <0.001) (Figure 1B). By 215 

twelve months-post we found no differences in geometric mean IgG binding between inpatients 216 

(14,755 [95% CI: 11,181-19,472]) and outpatients (10,588 [95% CI: 6,421-17,460]) (P= 0.78). In 217 

addition to MFI as a measurement of IgG binding, we determined anti-SARS-CoV-2 IgG 218 

endpoint titers. Again, we found that the geometric mean of endpoint titers (GMT) were 219 

significantly higher for inpatients than outpatients during early convalescence (inpatients= 220 

13,029 [95% CI: 9375-18,108], outpatients= 3240 [95% CI: 2323-4518]) (eFigure 2A), and six 221 

months-post (inpatients= 8268 [95% CI: 5323-12,843], outpatients= 2216 [95% CI: 1654-2970]) 222 

(eFigure 2B).  223 

Next, sera were assessed for neutralizing antibodies by SNT; IC80 titers are shown in 224 

Figures 1 and 2, while IC50 titers are provided in eFigure 3A-C. A one-phase decay modeled 225 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 2, 2021. ; https://doi.org/10.1101/2021.04.27.21256207doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256207


9 
 

inpatient T1/2 neutralizing antibody responses of 88 days and a two-phase decay of outpatient 226 

neutralizing antibody responses calculated a mean fast/slow-T1/2 of 77/132 days (Figure 1C). 227 

The neutralizing antibody GMT was greater for inpatients than outpatients during both early 228 

convalescence, 378 [95% CI: 246-580] versus 83 [95% CI: 59-116] (P <0.001), and six months-229 

post, 65 [95% CI: 43-98] versus 33 [95% CI: 26-40] (P= 0.006), although these differences were 230 

not observed by twelve months-post (Figure 1D). These significant associations between 231 

COVID-19 severity, and IC80 neutralizing antibody kinetics and durability were also observed 232 

with IC50 titers (eFigure 3A-C).  233 

Recapitulating the durability, magnitude, and correlates of humoral immune response to 234 

SARS-CoV-2 across different populations with different neutralization assays remains a critical 235 

goal44. Antibody neutralization was further characterized by a wild-type SARS-CoV-2 VNT. 236 

Endpoint titers in VNT correlated significantly and had a modest coefficient strength with SNT 237 

titers (Spearman’s ρ= 0.77, P <0.001) (eFigure 4A). A one-phase decay of VNT neutralizing 238 

antibody responses calculated a T1/2 of 106 and 29 days for inpatients and outpatients, 239 

respectively (eFigure 4B-C). The magnitude and durability of VNT GMT was also different 240 

between inpatients and outpatients during early convalescence (inpatients=52 [95% CI: 14-198], 241 

outpatients=11 [95% CI: 4-29], P <0.001) and six months-post (inpatients=14 [95% CI: 3-71], 242 

outpatients=2 [95% CI: 0.5-5], P= 0.02) (eFigure 4D).  243 

 244 

Age correlation with antibody durability may be explained by age-specific clinical severity  245 

Because age is associated with hospitalization status, we used a multivariate regression 246 

model to explore antibody magnitude and durability on the basis of COVID-19 severity and age 247 

(groups: 18-44, >44-64, and ≥65-years-old). This analysis revealed that during early 248 

convalescence IgG levels were higher for all inpatient participants, and increased with age for 249 

outpatients with significantly higher IgG-binding levels in ≥65-years-old outpatients that was   250 

comparable to ≥65-years-old inpatients (Figure 2A). Furthermore, significant differences in IgG-251 
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binding levels were noted between outpatients in 18-44-years-old (19,124 MFI [95% CI: 17,058-252 

21,439, P <0.001) and >44-64-years-old groups (20,897 MFI [95% CI: 18,404-23,728], P 253 

<0.001) compared to the ≥65-years-old group (27,703 MFI [95% CI: 26,401-29,069]) (Figure 254 

2B). By six months-post, IgG levels remained higher for inpatients across age groups than the 255 

outpatients (Figure 2C), and significantly so for the >44-64-years-old (24,789 MFI [95% CI: 256 

22,947-26,779], P= 0.019) compared to the 18-44 years-old age group (Figure 2D). Additionally, 257 

no differences in the IgG response were detected by twelve months-post (eFigure 5A). The IgG 258 

T1/2 of outpatient age groups 18-44-year-old, >44-64-year-old and ≥65-year-old, were >1000, 259 

230, and 143 days, respectively (eFigure 5B). Compared to age-grouped outpatients, IgG T1/2 of 260 

inpatient age groups were slower, >1000 days for all 18-44-year-old, >44-64-year-old and ≥65-261 

year-old age groups (eFigure 5C). 262 

Next, we compared age-stratified neutralizing antibody titers across outpatients and 263 

inpatients. In outpatient 18-44, >44-64 and ≥65 age-groups, neutralizing antibodies one-phase 264 

decay T1/2 were 16, 34, and 21 days, respectively (Figure 3A). Strikingly, we noted a higher 265 

magnitude during early convalescence in outpatients ≥65-years-old (GMT: 233 [95% CI: 111-266 

489]) compared to 18-44 (GMT: 67 [95% CI: 37-120], P= 0.052) and >44-64 (GMT: 80 [95% CI: 267 

50-127], (P= 0.037) years-old groups (Figure 3B). However, this difference was not observed by 268 

six months-post, correlating with the short T1/2 in the ≥65-years-old group (Figure 3B). The 269 

slowest one-phase decay T1/2 was observed in the inpatient ≥65-years-old group, 84 days 270 

(Figure 3C), and when comparing inpatient neutralizing antibodies during early convalescence, 271 

higher GMT were observed in the >44-64 and ≥65-years-old groups, 505 [95% CI: 346-738] (P= 272 

0.14) and 328 [95% CI: 187-576] (P= 0.18), respectively (Figure 3D). These results appear to 273 

suggest that the correlation between age and early humoral response is confounded by age-274 

specific severity of SARS-CoV-2 infection, consistent with other findings45. 275 

 276 
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Seasonal HCoV antibody responses are not correlated with COVID-19 outcomes or the 277 

development of neutralizing antibodies 278 

 We first explored whether subjects with PCR-confirmed SARS-CoV-2 infection 279 

possessed higher levels of HCoV spike protein reactive antibodies as compared to SARS-CoV-280 

2 negative subjects. Higher levels of HCoV-OC43 and HCoV-HKU1 reactive IgG, but not of 281 

HCoV-229E and HCoV-NL63 were observed in SARS-CoV-2-positive subjects during early 282 

convalescence across age groups with mild to severe COVID-19 (Figure 4A). Further, we 283 

identified a positive correlation and distinct clustering of maximum IgG levels between SARS-284 

CoV-2 and seasonal betacoronaviruses (HCoV-OC43 and HCoV-HKU1) that was related to 285 

dpso (eFigure 6A-B), but only very weak relationships with the seasonal alphacoronaviruses 286 

(HCoV-229E and HCoV-NL63) (eFigure 6C-D). To examine the clinical correlation between 287 

HCoV antibody responses and COVID-19 severity, subjects were again stratified by age and 288 

clinical phenotype; we observed no significant correlation with HCoV peak antibody responses 289 

(Figure 4B). Finally, we sought to determine whether the induction of cross-reactive HCoV 290 

antibodies following SARS-CoV-2 infection were associated with the magnitude or durability of 291 

neutralizing antibodies to SARS-CoV-2. The magnitude of HCoV-OC43 and HCoV-HKU1 IgG 292 

titers during early convalescence was not significantly associated with SARS-CoV-2 neutralizing 293 

antibody responses during either early convalescence or six months-post symptom onset 294 

(eFigure 7A-D).  295 

 296 

DISCUSSION 297 

In this study, we have demonstrated that SARS-CoV-2 binding IgG and neutralizing 298 

antibodies remained detectable for up to one year in subjects following mild and moderate to 299 

severe COVID-19. Further, we corroborated that the magnitude and durability of humoral 300 

immune response are positively correlated, reflected by both T1/2 and levels of binding IgG and 301 

neutralizing antibody detected at time periods during early convalescence and six months-post 302 
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symptom onset 
46,47. This may be due to robust stimulation of humoral immunity with failure to 303 

control infection via innate responses.  304 

Notably, when we controlled for hospitalization status, older age was positively 305 

correlated with robust positive antibodies and neutralizing antibody responses. This suggests a 306 

lack of immunosenescence driving waning humoral responses or seroreversion as all instances 307 

of seroreversion between six to twelve months-post symptom onset occurred in outpatient 308 

participants <65 years old (median age 30, Q1=26, Q3=43). Although, the association between 309 

age and disease severity may confound this observation. The interaction between age, severity 310 

and adaptive responses is complex48,49; we noted that age ≥65 years was significantly 311 

associated with the magnitude and durability of IgG responses for outpatients, whereas no 312 

differences were found for inpatients across the age groups. However, sample size was smaller 313 

in the inpatient group so this observation needs to be investigated further. Additionally, the 314 

magnitude of the early neutralizing antibody response increased incrementally in outpatients 315 

and inpatients age groups >44 years old. Interestingly, no significant differences in neutralizing 316 

antibody levels were observed across age groups by six months after symptom onset. 317 

When we assessed HCoV seroresponses in our cohort, we found no association with 318 

the presence of antibodies to seasonal HCoVs and COVID-19 severity or with the development 319 

of SARS-CoV-2 neutralizing antibodies. The induction of antibodies cross-reactive with HCoV 320 

spike proteins after SARS-CoV-2 infection and boosted HCoV-HKU1 and HCoV-OC43 321 

responses were observed, implying that highly conserved betacoronavirus spike protein 322 

epitopes, possibly conformation-dependent, are cross-reactive50. This conclusion is supported 323 

by prior observations that conserved regions of the SARS-CoV-2 spike protein S2 subunit have 324 

been shown to stimulate specific memory B cell repertoires51,52. Although this investigation is 325 

limited by the lack of baseline pre-SARS-CoV-2 infection sera, we also showed that boosted 326 

HCoV-OC43 and HCoV-HKU1 memory responses were not associated with COVID-19 clinical 327 

outcomes nor detrimental to the de novo development of SARS-CoV-2 neutralizing antibodies30.  328 
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Our finding of variable waning yet persistent neutralization titers across participants 329 

groups is consistent with other longitudinal studies7,53-55, however neutralization presents only 330 

one facet of long term SARS-CoV-2 immunity. Memory B cells specific to the SARS-CoV-2 331 

spike receptor-binding domain, which are immunodominant and responsible for 90% of 332 

neutralizing activity56, have been detected even when circulating serum neutralizing antibodies 333 

have waned below detectable limits7,55.  334 

Our results add to the growing body of literature that suggests humoral immunity 335 

following natural infection with SARS-CoV-2 is long lived, including out to one year post-336 

infection. However, the magnitude and durability of SARS-CoV-2 antibody response was lower 337 

and more variable in younger participants (<65 years old) who experienced less severe COVID-338 

19 and did not require hospitalization. These findings suggest that implementation of 339 

vaccination against SARS-CoV-2 infection in all suitable populations, including those individuals 340 

that have recovered from natural infection, would be prudent because vaccine induced immunity 341 

to SARS-CoV-2 will likely be more long-lived than that elicited from mild COVID-19. Additional 342 

studies will also be critical to further examine the protective role and durability of antibody 343 

responses following SARS-CoV-2 re-infection and/or vaccination up to and beyond one year.  344 

 345 
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TABLES 592 

Table 1. Baseline characteristics of participants included in the longitudinal study of 593 

antibody responses.   594 

  Outpatient (N=192) Inpatient (N=58) 
Demographic Information   
Age group   
   <18 6 (3.1%) 0 (0.0%) 
   18-44 94 (49.0%) 9 (15.5%) 
   >44-64 78 (40.6%) 33 (56.9%) 
  ≥65 14 (7.3%) 16 (27.6%) 
Gender 

  
   Female 86 (44.8%) 25 (43.1%) 
   Male 106 (55.2%) 33 (56.9%) 
Race   
   Black 27 (14.1%) 18 (31.0%) 
   Hispanic 60 (31.2%) 19 (32.8%) 
   Other 20 (10.4%) 4 (6.9%) 
   White 85 (44.3%) 17 (29.3%) 
Days post-symptom onset at collection 
(n = 764)* 52 (0 - 385) 53 (1 - 378) 
*Median and range calculated based on days post-symptom onset at collection 595 
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FIGURE LEGENDS 607 

Figure 1. Evaluation of the magnitude and duration of the antibody response and COVID-608 

19 clinical phenotype. Non-linear regressions were used to compare IgG responses from (A) 609 

outpatients (n=192) and inpatients (n=58). Longitudinal samples for subjects are connected by 610 

lines; second order polynomial curves were fit to inpatient (red) and outpatient (blue) groups; 611 

95% CIs are shaded gray. A horizontal line indicates the indeterminate range between SARS-612 

CoV-2 positive (>4774) and negative (<4144) IgG; MFI, median fluorescence intensity. Two 613 

distinct shaded regions highlighted early convalescence (yellow) and 6 months-post (pink) 614 

windows. (B) Early convalescence (median 35 dpso), six months-post (median 188 dpso) and 615 

twelve months-post (median 357 dpso) IgG responses were compared between outpatients and 616 

inpatients; error bars indicate the geometric mean and 95% CI. (C) Longitudinal SNT 617 

neutralizing antibody responses of outpatients (n=54) and inpatients (n=20). (D) Early 618 

convalescence and six months-post SNT neutralizing antibodies were compared by 619 

hospitalization status. P-values were determined by unpaired t-test with Welch’s correction, α= 620 

0.05; error bars indicate the geometric mean and 95% CI. 621 

 622 

Figure 2. The magnitude and durability of IgG-binding responses are associated with 623 

COVID-19 severity and age. (A) Multivariate linear regression analysis of outpatient and 624 

inpatient IgG responses and (B) hospitalization status stratified by age groups, outpatients, 18-625 

44 (n=94), >44-64 (n=78), ≥65 (n=14), and inpatients, 18-44 (n=9), >44-64 (n=33), ≥65 (n=16) 626 

during early convalescence. A horizontal line indicates cutoff for positive/negative IgG; MFI, 627 

median fluorescence intensity. Statistical significance were determined by unpaired t-test with 628 

Welch’s correction, α = 0.05; error bars indicate the geometric mean and 95% CI. 629 

 (C-D) Six months-post IgG responses were compared between age-stratified outpatients and 630 

inpatients.  631 

 632 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 2, 2021. ; https://doi.org/10.1101/2021.04.27.21256207doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256207


23 
 

Figure 3. The magnitude and durability of neutralizing antibody responses are associated 633 

with COVID-19 severity and age. (A) Longitudinal SNT measurement of neutralizing 634 

antibodies in outpatient age groups, 18-44 (n=18), >44-64 (n=29) and ≥65 (n=6); longitudinal 635 

samples are connected by lines, second order polynomial curves and 95% CIs are shaded gray. 636 

(B) Early convalescence and six months-post SNT measured neutralizing antibodies compared 637 

between outpatient age groups. (C) Longitudinal SNT measurement of neutralizing antibodies in 638 

outpatient age groups, 18-44 (n=1), >44-64 (n=13) and ≥65 (n=6). (D) Early convalescence and 639 

six months-post SNT measured neutralizing antibodies compared between inpatient age 640 

groups. Statistical significance were determined by unpaired t-test with Welch’s correction, α = 641 

0.05; error bars indicate the geometric mean and 95% CI. 642 

 643 

Figure 4. Seasonal HCoV antibody responses are not associated with COVID-19 clinical 644 

outcomes. (A) IgG binding levels of SARS-CoV-2 and seasonal HCoV-OC43, HCoV-HKU1, 645 

HCoV-229E, HCoV-NL63 detected in SARS-CoV-2 PCR-positive (n=505) and SARS-CoV-2 646 

PCR-negative (n=92) samples. (B) Stratified SARS-CoV-2 positive samples (n=505) into age 647 

groups (18-44, >44-64, and ≥65 years old) and COVID-19 severity (outpatient vs. inpatient). 648 

MFI, median fluorescence intensity; dpso is from zero to twelve months; boxplots denote 649 

median, first quartile (25th percentile) and third quartile (75th percentile); statistical significance 650 

was determined by unpaired t-test with Welch’s correction, α = 0.05. 651 

 652 

 653 

 654 

 655 
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