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Abstract 
Clarifying key factors dominating the immune heterogeneity from non-survivors to 
survivors is crucial for therapeutics and vaccine developments against  COVID-19. The 
main difficulty is to quantitatively analyze the multi-level clinical data of viral 
dynamics, immune response, and tissue damages. Here, we adopt top-down modeling to 
quantify key functional aspects and their dynamical interplays in the virus-immune system 
battle, yielding an accurate description of real-time clinical data involving hundreds of 
patients for the first time. The quantification of antiviral responses demonstrates T cells' 
dominant role in the virus clearance relative to antibodies, especially for mild patients 
(96.5%). Moreover, the anti-inflammatory responses, namely cytokine inhibition rate and 
tissue repair rate also have positive correlations with T cell number, and are significantly 
suppressed in non-survivors. Simulations show that impaired immune functions of T cells 
leads to greater inflammation (thus dominates the death), explaining the monotonous 
increase of COVID-19 mortality with age and higher mortality for males. We conclude that 
T cells play the role of crucial immunity that saves the death from  COVID-19, which 
points out a new direction to advance current prevention and treatment by incorporating 
the vaccines, drugs and health care activities that aim to improve T cells' number and 
functions.    

Introduction 
 
The ongoing COVID-19 pandemic has resulted in over two million deaths worldwide. 
Therefore, identifying key factors that determine the immune heterogeneity from non-
survivors to survivors is crucial for the current fight against the pandemic. Past clinical 
study has found a series of host factors associated with severe disease or higher mortality 
via correlation analysis: individual characteristics including older age, male sex, and 
comorbidities1,2; profound lymphopenia, with T cells most significantly affected3–5; the 
elevated level of inflammation markers, like LDH (lactate dehydrogenase) and D-
dimer2,6; excessive release of pro-inflammatory signaling molecules, like IFN − γ, IL-6, 
etc., known as the cytokine storm which is thought likely to be a major cause of 
multiorgan failure4,7. For immune responses, both SARS-CoV-2 specific T cells and 
antibodies are observed in COVID-19 patients6,8. However, the quantitative role of these 
factors in antiviral and anti-inflammatory immune responses is unknown, resulting in 
several unsolved questions about the cause and saving of the death: 1. What is the relative 
importance of T cell and antibody response for antiviral immunity at different stages; 2. 
What are the main driver and suppressors for the cytokine storm and multiorgan failure? 
And most importantly, 3.Are there new directions to overcome the heterogeneity of 
patients, decay of antibody function, and gene mutation of SARS-CoV-2 in efficient 
therapeutics and vaccine developments? 
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Beyond correlative analyses, quantitative modeling is a powerful tool to simulate the 
measured dynamical immune response to reveal the relative importance of different 
components9. However, most recent studies focus on the simple viral dynamics and its 
interactions with immune responses10,11and antiviral drugs12–21, without considerations of 
organ damages and disease progression. On the other hand, some multiscale simulations 
22–24 incorporate existing knowledge about the viral dynamics, immune responses, and 
comorbidities to simulate the clinical outcomes. However, these approaches involve 
hundreds of model parameters, which have considerable value uncertainties that limit the 
reliability of predictions and systematic comparisons with clinical data. Therefore, 
previous studies are either oversimplified or overcomplicated to clarify the key factors 
dominating death. 
 
In this work, we adopt a top-down modeling to quantify crucial aspects in the virus-
immune system battle to overcome this difficulty. Here, the battle is classified into three 
kinds of functional behaviors, namely, the pathogenic functions (e.g., virus and 
inflammation), the protective functions (e.g., innate and adaptive immunity), and the 
organ damages. Integrating with the existing clinical and immunological knowledge for 
COVID-19 patients, we establish a dynamical motif for a small set of crucial functional 
variables and their interplays. This antiviral-inflammation model is used to simulate the 
systematic progression of COVID-19 patient with 19 measurable parameters. These 
simulations are validated with real-time clinical data involving hundreds of patients and 
then used to evaluate contributions of T cells and antibodies to antiviral immune 
responses. Subsequently, we quantify the difference of anti-inflammatory immune 
responses from non-survivors to survivors and clarify their correlations to T cells. 
Finally, T cells' dominant role in saving the death of COVID-19 and revelation to new 
therapeutics and vaccine development are discussed.  

Causal network of the Antiviral-Inflammation Model 

The difficulty of previous multiscale simulations22–24 due to considerable parameter value 
uncertainties stems from the fact that, in the bottom-up strategy, the immune response to 
infectious disease is modeled as a complex network of numerous factors, resulting in the 
so-called 'curse of dimensionality'25. In contrast, a recent successful model of a classical 
complex system, namely, fluid turbulence, one of us has demonstrated that the global 
motions composed of numerous components typically display a symmetry-breaking 
which can be quantitatively modeled with finite functional variables, called order 
functions26,27. Here, we use a similar top-down strategy to quantify immune functional 
aspects in the virus-immune system battle.  
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Figure 1. Graphical scheme of COVID-19 antiviral-inflammation model. Key components are 
highlighted. The red arrows mean activation, and the black arrows mean inhibition. Greek letters 
mean the activation/inhibition rates or characteristic time associated with each interactionNAb: 
neutralizing antibody. Non-NAb: non-neutralizing antibody. M𝜙, NK: macrophage and natural killer 
cells. IL-6: interleukin 6. IL-1: interleukin 1. D-dimer: coagulation marker. HSCT: High-sensitivity 
cardiac troponin I, heart injury marker. ARDS: Acute Respiratory Distress Syndrome. MOF: Multi-
Organ Failure. 

The model explicitly describes dynamics of five crucial functional quantities that 
determine COVID-19 progression: virus and interleukin 6 (IL-6) for pathogenic function, 
effector T cells and neutralizing antibodies for protective function, D-dimer (coagulation 
marker), and high-sensitivity cardiac troponin I (HSTC, heart injury marker) as examples 
for multi-organ damage. Other secondary factors modulate their interactions. Fig.1 shows 
their interplay following time order from virus dynamics, immune response to 
inflammation response. Self-replicating virus stimulates innate and adaptive immune 
cells which can produce antibodies. Effector T cells and neutralizing antibodies (NAbs) 
clear virus directly, either by killing infected cells or block the virus from entering into 
tissue cells; non-neutralizing antibodies (Non-NAbs) combines with innate immune cells 
(macrophages (Mɸ) and nature killers (NK), etc.) and induce immunoreaction to clear 
virus indirectly. The activated immune cells secrets cytokines, in which IL-6 has a central 
role for downstream destructive effect on organs, hence, it increases D-dimer and high-
sensitivity cardiac troponin I that characterizes multiorgan failure (MOF). On the other 
hand, suppressing immune hyperactivation and tissue repair by negative feedback 
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reduces activated immune cells and vessel and heart damage, thus reducing IL-6, D-
dimer, and high-sensitivity cardiac troponin I. 

Mathematical description of the Antiviral-Inflammation Model 

Quantitatively, a set of ordinary differential equations, (1)-(5) is constructed to describe 
the antiviral immune response and pathogenesis of inflammation at a specific part of the 
body. The detailed meanings and units of all parameters are provided in SI 
(Supplementary Information), Table S1. The antiviral process includes continuous virial 
replication, dynamical activation of T cells to effector T cells by the virus, dynamical 
secretion of neutralizing antibodies by B cells, virus clearance by effector T cells and 
antibodies, and decay of effector T cells and antibodies. Eq. (1)-(3) describes the 
corresponding dynamical evolutions of concentrations of the virus, effector T cells, and 
neutralizing antibodies, with concise rate constants and time interval describing global 
effects of a series of microscopic processes, like target cell infection, antigen 
identification, antigen presentation, differentiation of T cells, B cell immunoglobulin 
class switching, etc. The antiviral effect of innate immunity is absorbed into an effective 
viral replication rate, 𝛼(. Eq. (4) shows that the release of IL-6 is proportional to 
concentrations of non-neutralizing antibodies (assumed to be proportional to neutralizing 
antibodies) which combine with innate immune cells and trigger pro-inflammatory 
pathways. Immune suppressing reduces activated immune cells and, therefore, the IL-6 
level. The release of IL-6 causes damage to organs, like thrombus formation and heart 
injury marked by D-dimer and high-sensitivity cardiac troponin I, whose levels are 
reduced when blood vessels and heart are repaired, shown in Eq. (5).  

𝑑𝑉(𝑡)
𝑑𝑡

= [𝛼( − 𝛽𝑇!(𝑡)	 − 𝛾[𝐴(𝑡) − 𝐴#]]𝑉(𝑡) (1) 

𝑑𝑇!(𝑡)	
𝑑𝑡

= 𝛿𝑉(𝑡) − 𝜖𝑇!(𝑡)	 (2) 

𝑑𝐴(𝑡)	
𝑑𝑡

= 𝜂𝑉(𝑡 − 𝜏) − 𝜃[𝐴(𝑡) − 𝐴#](𝑡) (3) 

𝑑𝐼(𝑡)
𝑑𝑡

= 𝜅𝐴(𝑡) − 𝜆[𝐼(𝑡) − 𝐼#] (4) 

𝑑𝑆$(𝑡)	
𝑑𝑡

= 𝜇$𝐼(𝑡) − 𝜈$𝑆$(𝑡) (5) 

Simulations of Eq. (1)-(5) are compared to real-time data with 457 patients involved. Ten 
are individuals, and 447 patients form mild, severe, survivor, and non-survivor groups 
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whose median data are compared. For detailed data sources and integration of data from 
different sources, see Methods and SI. The time axis for simulation is the number of days 
after symptom onset, with the starting day being 0 or several days earlier. The numerical 
simulation is propagated using the delayed differential equations (DDE) of MATLAB. 
The least-square fit is achieved using the fmincon function of MATLAB with the 
implemented interior-point optimization algorithm. For a detailed description of fitting 
procedure and parameter uncertainty estimation, see Methods and SI.  

Results 
 

Viral dynamics and contributions of T cells and antibodies to antiviral 
responses 
 

Virus, effector T cell, and antibody dynamics are simulated and compared with real-time 
data from 10 individuals28,29 and median values of mild and severe (critical) groups, 
survivors, and non-survivors30–32. The concentrations of virus (V), effector T cells (Te), 
and antibodies (A) is assumed proportional to viral load measurement from the 
respiratory tract, the change of T cells (T) from its baseline level (T0) measured in 
peripheral blood (T0 - T), and optical density or titer of Anti-RBD IgG/Anti-S1 IgG/Anti-
NP IgG, respectively. CD3+ T cell (all T cells) data from cases of the same severity 
compensate for those who lack CD3+ T cell data. Original lymphocyte count is scaled by 
0.589(Methods) for T cell count. As shown in Fig.2 and Supplementary Fig.1, 
simulations show agreement to data for all cases; for parameters, see SI. 
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Figure 2. Viral dynamics, adaptive immune response, and contributions of T cells to antiviral 
responses. a, d, g are of patient P1, b, e, h are of patient P2, c, f, i are of patient P328. Mild 
patients are in the blue and severe patient is in green. Red dotted lines are the limit of 
detection. Black dotted lines are normal ranges. Viral load is from the nasopharyngeal swab. For 
fitted parameters and the other 10 cases, see SI Table S4. j: An overall statistic of the fraction of 
virus killed by T cells for all cases shows T cells’ contribution is significantly higher in mild 
patients than severe patients. Solid markers are individual data and hollow markers are group 
data. Error bars represent standard errors.  

Clarifying deterministic factor controlling viral load peak benefits early antiviral 
treatment, vaccination, and epidemiological control33. By asymptotic analysis (Methods), 
the model predicts the peak is determined from virus inhibition by T cells: peak value is 
the ratio between square of virus replication rate and two times the multiplication of T 
cell activation and virus clearance rate. This gives 1.37 × 10% copy/mL for the viral peak 
of patient P1 in Fig.2. Data agreement gives that for patients who survive, on average, 
95% of viruses are cleared per day with 109/L T cells from blood engaged, revealing 
strong efficiency of T cells’ virus clearance. In conclusion, the consistency between 
simulation and data clarifies the antiviral dynamics for various severities in which 
adaptive response plays a significant role---first, effector T cells are activated, kill 
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infected cells, and induce viral peak; then neutralizing antibodies are secreted, finally 
clear the virus.  

To clarify the roles of T cells and antibodies in the antiviral process, we define the 
amount of virus cleared by T cells,	𝑁& and antibodies,	𝑁', are: 𝑁&(𝑡) =
∫ 𝛽𝑇(𝑡′)𝑉(𝑡′)	𝑑𝑡′
(
)  and 𝑁'(𝑡) = ∫ 𝛾[𝐴(𝑡*) − 𝐴#]𝑉(𝑡′)	𝑑𝑡′

(
) . Then, the contribution by T 

cells for clearing the detectable virus, 𝐹& and contribution of antibodies, 𝐹', are: 𝐹& =
∫𝑁&(𝑡)𝑑𝑡/[∫ [𝑁&(𝑡) + 𝑁'(𝑡)]𝑑𝑡], 𝐹' = 1 − 𝐹&.  

For patients of different severities, we compare the quantitative contributions of T cells 
and neutralizing antibodies for virus clearance as displayed in Fig.2j. It shows T-cell 
immunity dominates the total virus clearance for all patients (88.8%) but significantly 
decreases from mild to severe patients, consistent with previously reported less CD4+, 
CD8+ response in severe patients compared to mild patients8. Instead, the antibodies’ 
contributions are 3.3% (mild), 19.4% (severe or critical) and 28.9% (non-survivors), 
respectively. Our simulation finds that the antibody preparation time before secretion is 
overall smaller in severe cases (9.42, 5.40-12.79 day) than in mild cases (14.68, 8.45-
20.13 day), revealing antibodies in severe patients secrete earlier and cleared more virus. 
In conclusion, we demonstrate in COVID-19 that T cells have a dominant role in the 
virus clearance relative to antibodies, especially for mild patients. 

Inflammation dynamics associated with death 

To clarify the main driver for the cytokine storm and organ damage of critical illness, we 
compare simulations of Eq. (4)-(5) with real-time, median data of survivors and non-
survivors (Fig.4). The concentration of non-neutralizing antibodies is assumed 
proportional to anti-RBD IgG optical density. For data source and parameter estimation, 
see Methods and SI. The agreement between simulations and data of IL-6, D-dimer, and 
high sensitive cardiac troponin I proves non-neutralizing antibodies stimulate the secretion 
of IL-6, and IL-6 stimulates the accumulation of D-dimer and high sensitive cardiac 
troponin I. IL-6 formation rates are assumed to be the same for both groups. The striking 
feature of non-survivors compared to survivors is the continuous production of IL-6 and 
organ damage, revealed by zero inhibition rates for all three markers (Fig.4b), while the 
difference of formation rates of organ damage markers is not remarkable. 
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Figure 3. Comparison of predictions to clinical data of survivors and non-survivors reveals the 
mechanism for death from COVID-19. The data are the median of the group with error bars from 
reference32. The IL-6, D-dimer, and elevated sensitive cardiac troponin I inhibition rates are all zero 
for non-survivors, which gives continuous deterioration in contrast to non-zero inhibition rates of 
survivors who recover. For parameter estimation, see Methods and SI. The saturation value of Anti-
RBD IgG for non-survivors is estimated by assuming its ratio to the maximum of survivors’(18 non-
critical and three critical) data is close to the ratio of maximums of neutralizing antibodies between 
critical and non-critical patients34.  

We conclude that the main trigger of cytokine storm is the secretion of elevated non-
neutralizing antibodies which combine with innate immune cells and activate cytokine 
release pathways; the lack of negative feedback for immune suppression in non-survivors 
makes cytokine keeps accumulating. The cytokines act as the primary source that causes 
damage to organs, and the lack of tissue repair in non-survivors continues to worsen the 
illness. Our finding reveals the crucial aspect of death from COVID-19 is the lack of 
negative feedback for anti-inflammatory cytokine inhibition and tissue repair. 

Initial T cells as background immunity that reduce mortality 

Our model reveals that T cells’ virus clearance, cytokine inhibition, and tissue repair are 
three essential protective functions in COVID-19 that determine disease severity. To seek 
what determines these protective functions, T cells’ contribution of total virus clearance, 
cytokine inhibition rate, and tissue repair rates are plotted with initial T cell concentration 
before infection (equal to T cell baseline, T0) in Fig.4.a,b, which shows a positive 
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correlation (Fig. b is based on statistics of 137 non-survivors and 54 survivors). It shows 
the importance of sufficient initial T cells for comprehensive protection, which comes 
from an adequate number of effective CD8+ effector T cells that kill infected cells, 
sufficient regulatory T cells and other subsets that suppress the immune response and 
promote tissue repair35 to reduce over inflammation in non-survivors. 

 

Figure 4. Initial T cell concentration as the background immunity of individuals against SARS-CoV-2 
and reduces mortality. a and b: T cell’s antiviral contribution, IL-6, D-dimer and high sensitive cardiac 
troponin (HSCT) inhibition rates are positively correlated with initial T cell concentration. c: D-dimer 
dynamics of non-survivors with increase of initial T cell concentration (T0) reduces organ damage at 
late stage. The Red dashed line is the normal upper limit of the D-dimer, and the grey dashed line is 
the median value of the non-survivor group from reference32. For parameters of simulation, see 
Methods. d. Lymphocyte count decreases with age and mortality(case fatality rate, CFR) increases 
with age. Male (dashed line) have higher mortality than female (solid line). 

A great public concern is how an individual patient’s background ‘immune health’ 
landscape (simplified as background immunity) shapes responses to SARS-CoV-2 
infection36 and controls the disease's severity. Because of the determining relation of 
initial T cell concentration for protective functions, T cells’ static reserve before infection 
and dominance in population compared to other cells against the virus, we propose 
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concentration of initial T cells is a crucial characterization for the background immunity 
against SARS-CoV-2. To verify this hypothesis, we conduct disease progression of 
patients with different initial T cell concentrations. According to Fig.4 a,b, by assuming a 
linear decreasing of T cells’ virus clearing rate, IL-6 and D-dimer inhibition rates with 
decreasing initial T cell concentration, Fig. 4c shows coagulation becomes more and 
more significant, which means lack of initial T cells exacerbates disease severity and 
increase mortality risk.   

Therefore, we conclude that the T cells’  impaired antiviral and anti-inflammation 
functions are the main immune origin of death from COVID-19: the extremely low level 
of initial T cells in non-survivors results in weak antiviral, cytokine inhibition and tissue 
repair abilities as well as low tissue repair function; then it calls the elevated antibodies 
for compensation; as a result, the concomitant large amount of non-neutralizing 
antibodies amplifies the cytokine storm, leading to continued damage. Following this 
casual chain, according to the decrease of lymphocytes (hence decrease of T cells 
assuming T cell count proportional to lymphocyte count) with older age (Fig.4d), we 
predict straightforwardly older patients must have higher mortality than younger patients. 
Also, male patients should have higher mortality than female patients for their lower level 
of CD4+ T cells37. Our prediction explains the continuous increase of COVID-19 
mortality with age and higher mortality for males37, shown in Fig. 4d. 

Discussion 

In conclusion, we have quantified the adaptive-immune-response heterogeneity from 
non-survivors to survivors of COVID-19, using a dynamical motif with 19 measurable 
parameters beyond the overcomplication of the previous multiscale model24. For the first 
time, this model provides an accurate description of real-time clinical data involving 
hundreds of patients, which then reliably clarifies T cells' dominant roles in the antiviral 
and anti-inflammatory immune responses. Beyond the previous correlation analysis for T 
cell scarcity and disease severity8,36, this work reveals the causal relation between death 
from COVID-19 and impaired T cell immunity. This discovery explains the high 
mortality of older man and points out a new direction for therapeutics and vaccine 
development. 

The currently tested drugs target various pathogenesis levels, from antiviral to anti-
inflammatory drugs and antithrombotic agents24, etc. However, there is no proven 
effective therapeutics for COVID-19. One crucial challenge is the lack of broad 
applicability of these drugs to heterogeneous patients with various comorbidities, disease 
severities, and complications38. Our study points out a new direction will be increasing T 
cell number and functions by both drugs and health care activities, which may benefit 
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virus clearance, cytokine inhibition, and tissue repair simultaneously. Firstly, recent 
studies reported the curing effect of drugs to COVID-19 patients by increasing T cell 
number, e.g., recombinant human granulocyte colony-stimulating factor39 
JinHuaQingGanKeLi40. Therefore, we encourage further studies and applications in this 
direction. Second, for the recovery of COVID-19 patients and healthy people's 
prevention, improving background immunity associated with T cells is more important 
and promising. Therefore, we strongly suggest studying the curing and immunity 
improvement effects of health care activities, such as mediation41,42,  Tai Chi43 and 
BaDuanJin44, for previous studies have found they help to increase CD3+ T cell and 
CD4+ T cell concentration and apply to a wide range of age, including older adults.  

On the other hand, in the current development of the vaccine, neutralizing antibody 
immunity plays a crucial role. Unfortunately, the single-strand RNA structure makes 
SARS-CoV-2 easy to mutate, and several lineages have been discovered45. These 
mutations pose challenge for long-term effectiveness of antibody immunity, for it is on 
the molecular level targeting specific epitopes of the virus. By contrast, memory T cells 
show strong cross-reactivity and persistence46, and active T cells protect bodies in several 
aspects, including antivirus, suppress immune hyperactivation, and promote tissue repair. 
Therefore, stimulation of T cell response by the vaccine is worth more exploration, and 
we suggest advancing the current combination adjuvant strategy47 that elicits potent CD8 
and CD4 T cell responses. 

For clinical application, to maximize the curing effect for severe patients, we suggest 
adopting multistage, synthetic protocols incorporating the above therapies. In this case, 
our model provides a strong tool to evaluate the effectiveness of treatments to identify 
individual optimal protocols. The reason is that all parameters can be determined from 
clinical data and quickly predict individual patients' trajectories, which may also advance 
the early prediction algorithm of current artificial intelligence softwares48,49.  

To separate the critical elements from irrelevant details, we here have made some 
assumptions, which should be evaluated in further clinical studies, although they would 
not affect the basic conclusions of the study. For instance, the virus-clearance rate of 
innate immunity is thought to be a constant with negligible variation and is small 
compared to rates of adaptive response, which should be verified by further time-
dependent measurement of the course of innate response. The second assumption that 
needs more measurement to test is that, for survivors, the concentration of effector CD8+ 
T cells at the infected part is proportional to the reduction of CD3+ T cells in peripheral 
blood; whether it is strictly obeyed at the most time or not might be intriguing to further 
investigation4. The third questionable assumption is that the temporal profile of non-
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neutralizing antibodies is proportional to neutralizing antibodies. Further measurement 
needs to test whether they are secreting at the same pace or not. 

Methods 

§ Asymptotic analysis of viral load peak 

Around the viral load peak, with the decay of effector T cells and the production of antibodies 
neglected, the evolutions of viral load and effector T cells become: 

𝑑𝑉(𝑡)
𝑑𝑡

= [𝛼) − 𝛽𝑇-(𝑡)	]𝑉(𝑡) (6) 

𝑑𝑇-(𝑡)	
𝑑𝑡

= 𝛿𝑉(𝑡) (7) 

The analytical solutions are: 

𝑉(𝑡) = 𝑉∗
4

2 + 𝑒89:(;8;∗) + 𝑒9:(;8;∗)
, 𝑉∗ =

𝛼)=

2𝛽𝛿
(8) 

𝑇-(𝑡) = 2𝛼)
1

1 + 𝑒89:(;8;∗)
(9) 

where 	𝑉∗ is viral load peak described in the first section of Results, and 𝑡∗ is the corresponding 
time.  

§ Extraction of data from published literature  

A software tool WebPlotDigitizer (https://automeris.io/WebPlotDigitizer) was used to extract 
data from fig.2 in ref3, fig.1 and fig.3 in ref28, fig.2 in ref2, fig.1 and fig.3 in ref30 and fig.3 in ref31. 
All extracted data were made available to readers in our GitHub shared folder: 
https://github.com/luhaozhang/covid19 

§ Integration of data from different sources 

The data we used here contains 10 individuals and 4 groups. Individuals contain 6 mild and 4 
severe (including critical) patients. The CD3+ T cell data of mild, severe and critical population 
from Hongzhou Lu3’s cohort were used for individual patients and groups of the same severity 
who don’t have T cell data. 4 patients were from Isabella Eckerle’s1 cohort and 6 patients from 
Kelvin To’s2 cohort, and the severity classification follows the assignments in previous 
publications. One patient from Kelvin To’s cohort who have not yet been identified as being 
critically ill is classified as severe because the probability of being critically ill is low (1/6). For 
mild, severe (including critical) and non-survivor groups, Table S2 lists the sources of virus, T 
cells, and antibodies. T cells, IL-6, D-dimer and HSCT were from BinCao’s cohort32 for both 
survivors (137 patients) and non-survivors (54 patients). Virus and Anti-RBD IgG for survivors 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.26.21256093doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.26.21256093
http://creativecommons.org/licenses/by/4.0/


 

 

14 

 

were from the median of 20 survivors from Kelvin’s cohort50. Lymphocyte data were multiplied 
by 0.589 to get estimated T cell concentration (0.589 is the ratio between medians of normal 
ranges of T cells3 and lymphocytes28) 

§ Least square fit of virus, immune response and inflammation data 

For parameters of simulations in Fig.2 and Fig.4, we adopt a best-fit approach to find the 
parameters which minimize the given objective function: the mean of residual sum of squares 
(RSM) between data points and the corresponding model simulations as used similarly in 
influenza model51. For virus-T cell-antibody dynamics, the objective function is: 

𝑅𝑆𝑀%%%%%% =
1
𝑛)
*+

(log10𝑉2 − log10𝑉%2)
log10𝑉567

8
9	;<

2=>

+
1
𝑛@
*+

(𝑇2 − 𝑇%2)	

𝑇567
8
9;B

2=>

+
1
𝑛C
*+

(𝐴2 − �̅�2)
𝐴567

8
9	;F

2=>

(10) 

𝑉A  is viral load data, 𝑉BA  is the value given by model, 𝑛D  is the total number of data points. The 
instructions are similar for T cells(T) and antibodies(A). For the objective function of 
inflammation response, mean of RSM (Eq. (11)) was used in linear scale for survivors and log 
scale (Eq. (12)) for non-survivors: 
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(12) 

For simulation of viral load dynamics, when V<10 copy/mL, it is thought to be cleared 
thoroughly at one time without further evolution and is set to be 1 copy/mL. Table S3 lists the 
data points used for performing the best fit of each case. Viral data points that represent 
negative results of virus were abandoned unless they were important indicators of the ending of 
viral activity. The viral data points associated with the second viral load peak in mild and severe 
group were not used for any fits because the phenomenon is not observed as the common 
feature of individual patients. The decay of CD3+ T cells of 902 and 910 patients after 30 days 
were not used for fit at present. The decay was attributed as a deviation from averaged 
behavior on group level because of the large 95% CI of the data.  

When performing best fit related with I, Sd, and Sh, parameters of virus, T cells and antibodies 
had been fixed. Estimation of uncertainty of parameters is carried out by performing a series of 
fits after the best fit for each case. For uncertainties of 𝜅, 𝜆,	𝜇H, 𝜈H, 𝜇J, 𝜈J, as shown in Fig.4, a 
set of fits was performed, each time by varying one data point of IL-6, D-dimer or HSCT to its 
upper or lower limit. The uncertainties for each fitted parameter were estimated as the  
minimum and maximum of each parameter among all fits. The best fits and uncertainties were 
summarized in Table S5. 95%CI is not used for uncertainty here because the number of data 
points is small. For methods and results of uncertainties of antiviral parameters, see SI. 
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fmincon function of MATLAB (MathWorks, version 2012 and higher) with the implemented 
interior point optimization algorithm was used to perform the fits. It requires constraints for the 
parameters to be optimized and an initial guess. An empirical fitting is performed for each 
patient and group to identify ranges of parameters’ constraints for optimization, shown in Table 
S6 and Table S8. Patients with the same type of data and same severity category are set to have 
similar ranges. Table S7 and Table S8 show the empirical values of parameters as initial guesses 
for best fits. Random initial guess is not suitable here because the fit is sensitive to the initial 
space, probably because of the limited number of data points with relatively large fluctuation, 
especially for viral load. For instructions about fixed parameters during the fitting, see SI. 
Parameters of best fits were used as initial guesses of fits when estimating parameters 
uncertainties. 

§ Simulation of D-dimer dynamics with different initial T cell concentration 

Based on the positive correlation of T cell antiviral contribution, IL-6 and D-dimer inhibition 
rates, we assume a linear increase of T cell activation rate, 𝛿 and inflammation inhibition rates, 
𝜆, 𝜈K, 𝜈L with initial T cell concentration T0 as shown in the eq.(13)-(16). When T0 takes value of 
survivors’ and non-survivors’ median as in Fig.3(b), the parameters equal to their fitted values. 
Simulation in Fig.4(c) is performed using a series of given T0, the corresponding 𝛿, 𝜆, 𝜈K, 𝜈L and 
all other parameters of non-survivor group and their values remain unchanged. 

𝛿 = 0.25 + 21.67 × (𝑇Q − 0.39) (13) 

𝜆 = 3.64 × (𝑇Q − 0.39) (14) 

𝜈K = 0.889 × (𝑇Q − 0.39) (15) 

𝜈L = 0.911 × (𝑇Q − 0.39) (16) 
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