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ABSTRACT 
 
Germline genetic variants are involved in lung cancer (LC) susceptibility. Previous genome-wide association studies 
(GWAS) have implicated genes involved in smoking propensity and DNA repair but further work is required to 
identify additional LC susceptibility variants and to investigate LC disease development dynamics.  
 
We have undertaken a family history-based genome-wide association (GWAx) study of LC, analysing 48,843 
European cases with a parent/sibling with LC compared to 195,387 controls from the UK Biobank. This was meta-
analysed with previously described LC GWAS results. We performed Polygenic Risk Scores (PRS) analyses and 
further evaluated the PRS influence on the somatic environment in exome (N=736) and genome sequencing (N=61) 
profiled cohorts.   
 
Eight novel loci were identified including DNA repair genes (CHEK1, MDM4), metabolic genes (CYP1A1) and 
variants that were also associated with smoking propensity, such as both subunits of the neuronal α4β2 nicotinic 
acetylcholine receptor (CHRNA4 and CHRNB2). PRS analysis demonstrated that variants related to eQTLs and/or 
smoking propensity are enriched for susceptibility variants, including variants below genome-wide significant 
threshold. PRS of LC variants related to smoking propensity were associated with somatic mutation burden in two 
case cohorts, with individuals with higher polygenic genetic risk having increased numbers of somatic mutations in 
their lung tumours. 
 
This study has expanded the number of susceptibility loci linked with LC and provided insights into the molecular 
mechanisms by which these susceptibility variants contribute to the development of lung cancer. 
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INTRODUCTION 
Lung cancer (LC) is the most common cause of cancer-related deaths worldwide. While most LC risk is 

attributable to exposure to tobacco smoke, a genetic basis for LC susceptibility was initially identified from familial 
aggregation studies after accounting for personal smoking habits 1–3, segregation based analyses4  and twin studies.5  
Genome-wide association studies (GWAS) have identified multiple lung cancer susceptibility loci in genes related to 
propensity to smoke tobacco (CHRNA5, CHRNA3, CHRNB4, CYP2A6)6–8,  DNA repair (CHEK2, BRCA2 , ATM)9–11 
and genes related to telomere regulation (TERT, RTEL, OBFC1)12,13 as well as many loci where the target genes are 
less obvious.13 
 

While traditional GWAS approaches continue to expand in size, novel analytical approaches can leverage 
existing data from large, genotyped biorepositories to identify additional loci. An example is the genome-wide 
association by proxy (GWAx) approach, which considers 1st degree relatives previously diagnosed with the given trait 
of interest as “proxy” cases and individuals without relatives with that given trait as “proxy” controls.14,15 In the 
current study, we undertook a GWAx of lung cancer in the UK Biobank and combined this with the largest GWAS of 
LC undertaken to date.13 Furthermore, we constructed Polygenic Risk Scores (PRS) with variants related to LC and 
used these scores to investigate the influence of these germline susceptibility variants on the somatic mutation burden 
in two independent cohorts.  
 
 
MATERIALS AND METHODS 
 
Cohorts 

A detailed description of each dataset (Transdisciplinary Research for Cancer in Lung (TRICL, the 
traditional LC GWAS),13 UK Biobank (GWAx and a subset left out of the GWAx, forming the germline PRS test 
set)16, The Cancer Genome Atlas (TCGA, somatic mutations and signatures analysis (https://www.cancer.gov/tcga)) 
and the GeniLuc cohort (somatic mutation and signatures replication cohort (unpublished)) can be found in the 
supplementary information. 
 
Genome-wide association by using a family history and genetic correlations analysis 

The UK Biobank resource was accessed under project number 15825. The sample selection process and 
variant filtering from the UK Biobank is detailed in Supplementary Table 1 along with the UK biobank data ID fields. 
We performed a traditional GWAS on the family history status (GWAx) of LC and adjusted the betas and standard 
error as described previously.14 Individuals diagnosed with lung cancer directly were not included in the GWAx. All 
samples were reported as having a European ancestry (confirmed with ancestry inferred by genetic profile) with non-
European individuals excluded from the study due to different genetic architecture. Consent and ethics were approved 
for all cohorts used. Genetic correlation analysis was undertaken using the LDSC package.17 Summary statistics were 
obtained from the LC traditional GWAS which has been previously published elsewhere. 13 Each summary statistic 
file from the Sequencing Consortium of Alcohol and Nicotine (GSCAN) consortium (with UK Biobank samples 
removed) along with the traditional LC GWAS and the GWAx were tested for genetic similarity using LDSC 
regression. 18 
 

Both the LC family history GWAx and the LC GWAS were meta-analysed using a fixed effect model. LD 
clumping was undertaken using PLINK (R2 < 0.1 and 10,000 kb). eQTL analysis was performed using GTEx version 
8 data for both lung and brain tissues containing all variant and gene pairs. Coffee intake and forced vital capacity 
(FVC) summary statistics were obtained from the Benjamin Neale UK Biobank work (http://www.nealelab.is/uk-
biobank/). To estimate the colocalization between genetic associations of two traits at a given locus, we calculated the 
Bayesian posterior probability (PP4) for colocalisation of two datasets for the H4 (one shared variant across both 
traits),19 by firstly calculating the log bayes factor for each SNP in each dataset, then the PP4 was calculated by the 
COLOC package in python (https://github.com/anthony-aylward/coloc).  
 
 
Mutation burden analysis   

The somatic mutations from the TCGA samples were retrieved from the study of Ellrott et al 2018 20 
excluding individuals flagged for QC issues (see supplementary methods for further QC details). Germline genotypes 
were derived from Affymetrix 6.0 arrays.  
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For the GeniLuc cohort, 61 lung cancer patients were identified from central and eastern Europe as described 
previously.13 Subsequent to histopathological review, to ensure appropriate tumour purity, DNA was extracted from 
normal material (blood) and the lung tumour resection. Whole genome sequencing (WGS) was undertaken using PCR 
free whole genome library preparation and sequenced to a depth of 30X for the paired tumour normal for each patient 
using an Illumina HiSeq X 5 DNA sequencer at the National Center of Human Genomic Research (CNRGH) 
laboratory in Paris, France. Raw sequencing data was processed by inhouse Nextflow pipelines 
(https://github.com/IARCbioinfo). Somatic mutations were defined using Mutect2 and germline calls using 
Strelka2.21,22 For germline genotypes from WGS tissue, PRS SNPs were extracted from VCF files and put in the 
PLINK BED format.23 Individual PRS scores were generated using PRsice2 from the normal calls.24  
 
Mutational signatures computation 

In order to compute mutational signatures, mutational matrices for each mutation type (Single Base 
Substitution (SBS), Doublet Base Substitution (DBS), and small Insertion and Deletion (ID)) were generated using 
SigProfilerMatrixGenerator (v1.1.20) with default parameters.25 Mutational signatures were then extracted with 
SigProfilerExtractor (v1.0.17) from the TCGA-WES (LUAD and LUSC) samples and GENILUC-WGS lung cancer 
cohorts, separately, using the default options.26 SigProfilerExtractor extracted de novo signatures for each context 
(SBS96, DBS78, and ID83) and the optimum number of de novo signatures (suggested solution method) were 
decomposed into COSMIC (version 3.1) reference signatures. Previously reported smoking tobacco-related 
signatures, SBS4, DBS2, and ID3 (ID83A and ID83B), and the absolute mutation counts for each COSMIC signature 
per sample were assessed. 
 
Statistical analysis 

For the GWAx analysis, association testing was performed using a logistic regression model using the --glm 
function in PLINK 2.0 on European ancestry individuals. Each model was adjusted by age at recruitment, sex, array 
type, and the first 5 principal components that define genetic ancestry (PCs) to account for population structure. 
The meta-analysis was done using METASOFT using a fixed-effects model based on an inverse-variance-weighted 
effect size.27 Germline PRS analysis in the UK Biobank samples was performed using a logistic regression model 
after standardising raw PRS scores. Covariates that were used in the model included sex, array type, age of 
recruitment and the first 5 principal components from genetic inferred ancestry. Odd ratios for PRS are given as a one 
unit increase per a standard deviation in score.  For the analysis of PRS associations with mutational signatures, a 
model diagnostic was used to compare a linear model, negative binomial model and a Quasi-Poisson model due to 
frequent zero-inflation for mutational signatures. Covariates included in the models were age, gender, the 5 first 
principal components resulting from Eigenstrat and tumour purity. In TCGA, a categorical variable indicating the 
cohort type was included in the model as appropriate. 
 
RESULTS 
 
The 8 novel susceptibility loci  

The family history GWAS (GWAx) on 48,843 self-reported “family history lung cancer cases” and 197,029 
“controls” (Supplementary Table 1) identified five loci (5p15.33, 6p21.32, 12p13.33, 13q13.1 and 15q25.1) that had 
previously been discovered from the traditional GWAS (Supplementary Table 2 and Supplementary Figure 2) and 
LDSC confirmed a strong relationship between both GWAx and the GWAS (rg = 1, se = 0.066, p = 4.0 x 10-52) 
supporting the utility of this approach (see supplementary material document for further details).  
Meta-analysis between the GWAx and the traditional LC GWAS 13 identified 65 variants that achieved a P-value of 
less than 5x10-8 across 21 distinct genomic loci defined by cytoband (Figure 1), after LD clumping genetic variants 
(Supplementary Table 2). At previously described lung cancer susceptibility loci, the meta-analysis also identified 
independent (R2 < 0.1) low-frequency (MAF < 0.05) variants associated with lung cancer at 5p15.33 (rs35812074), 
19q13.2 (rs1801272), 15q25.1 (rs2229961, rs8192479, rs151118057) and at 12p13.33 (rs7487683) in addition to 
previously described common genetic variants (Supplementary Table 2). At 13q13.1, where a rarer lung cancer 
susceptibility allele has previously been described (rs11571833, K3326X BRCA2, MAF = 0.01), a common 
susceptibility allele was noted (rs11571734, MAF = 0.28). 
 

Eleven lung cancer susceptibility variants at eight loci have not previously associated with lung cancer at 
genome wide (GW) significance (Table 1). Of these, the lung cancer susceptibility variants at 1q21.3-rs78062588, 
6p22.2-rs7766641 and 20q13.33-rs11697662 were also associated at GW significance with traits related to propensity 
to smoke tobacco (Supplementary Table 2). The sentinel variants at 1q21.3-rs78062588 and 20q13.33-rs11697662 are 
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eQTLs for the nicotinic acetylcholine receptors (nAChRs) subunits CHRNB2 and CHRNA4 (Supplementary Table 2 
and Supplementary Table 3). At 6p22.2, LC susceptibility loci were noted (Supplementary Table 2), typified by two 
sentinel variants, rs6913550 and rs7766641. rs7766641 was also associated with propensity to smoke, whereas 
curiously rs6913550 was not (Supplementary Table 2). 
 

At 1q32.1, 11p11.2, 11q24.2 and 15q24, the sentinel variants (rs4252707, rs72905558, rs61612408, 
rs12441817, respectively) were not associated with propensity to smoke (Supplementary Table 2). 11q24.2-
rs61612408 was associated with the expression of the CHEK1 gene in multiple tissues including lung epithelia 
(colocalisation between CHEK1 lung eQTL and LC: PP4 = 91.1%), with the allele associated with increased 
expression correlating with decreased risk of lung cancer (Figure 2.C). The association with 11q24.2-rs61612408 
appeared to be more prominent in lung squamous cell carcinomas (Table 1).  15q24-rs12441817 is located near the 
CYP1A1 and CYP1A2 enzymatic genes. This locus has been associated with coffee consumption and forced vital 
capacity (FVC),28,29 although there was colocalisation between variants associated with lung cancer only for FVC 
(colocalisation between coffee consumption and LC: PP4 = 0.0003%, colocalisation between FVC and LC: PP4 = 
97.05%) (Supplementary Figure 3). There was evidence that rs12441817 influenced CYP1A1 expression in the 
nucleus accumbens (colocalisation PP4 = 70.26%) (Supplementary Figure 4) and an eQTL effect with the processed 
pseudogene RP11-10O17.1 in lung tissue (colocalisation between eQTL RP11-10O17.1 and LC PP = 95.25%) (Figure 
2.D). At 4q13.2-rs185666783 the candidate genes remain ambiguous (AC104806.2 and RNU6-699P) and the 
association with lung cancer appeared most prominent in lung adenocarcinoma. At 11p11.2, rs72905558 was 
associated with expression of C1QTNF4 in lung tissue reported in GTEx but there was no evidence for colocalization 
between variants related to C1QTNF4 expression and lung cancer (C1QTNF4 PP4 = 0.06%).  
 
Exploration of subgenome-wide significant variants and integrative multi-trait polygenic risk score construction.  

The variants that achieved GW significance also tended to be associated with propensity to smoke and/or an 
eQTL (Supplementary Table 2). We therefore used partial least squares regression (PLS) to identify subgenome wide 
significant genetic variants with similar propensity to smoke and/or an eQTL features (represented by PLS 
components) (see Supplementary Material for details). We constructed bins of variants ranked by these PLS 
components and represented them as a function of the mean LC association statistic calculated within each bin (Figure 
3.A). The bins that were ranked highly by a smoking and/or an eQTL components were observed to have elevated 
mean LC association statistics relative to most other bins, implying that the variants within these bins are enriched for 
LC susceptibility alleles (Figure 3.A). Interestingly, this enrichment was more marked for the eQTL PLS component 
(Figure 3.A). We constructed two polygenic risk scores, smPRS and eQTLPRS, based on the top 100 and 1,000 
ranking SNPs from the smoking and eQTLs PLS analyses, respectively (see Methods section and Supplementary 
Material), with number of variants guided by the degree of enrichment observed (Figure 3.A) and tested them in an 
independent cohort of 1,666 lung cancer cases and 6,664 matched controls from the UK Biobank. The PRS were 
robustly associated with lung cancer in this independent series (smPRS: OR per standard deviation = 1.246, 95% CI: 
1.176-1.32, P = 8.5 x10-14; eQTLPRS: OR = 1.349, 95% CI: 1.27-1.43, P = 7.29 x 10-17, combined (both smPRS and 
eQTLPRS combined after adjusting for variant overlap), OR = 1.366, 95% CI 1.288-1.448, P = 1.44 x10-25). These 
risk estimates were only modestly attenuated when excluding the GWAS significant variants and adjusting for 
smoking status, again implying that these variants are enriched for LC-susceptibility alleles (Figure 3.B).  
 
PRS germline influences on mutational burden and mutational signatures 

We evaluated the association of the smPRS and eQTLPRS with somatic mutational burden in the 736 TCGA 
lung cancer patients where somatic and germline data overlapped and passed QC metrics (see Methods). There was 
little evidence for association involving the eQTLPRS and mutation burden (Supplementary Figure 8), however the 
smPRS was associated with tumour mutational burden (TMB) (P = 1.23x10-3, Figure 4.A), with evidence of a trend 
between increasing polygenic load and somatic mutation burden (Figure 4.A). The smPRS was similarly associated 
with burden of mutational signatures attributed to tobacco smoke (SBS4 (P = 9.73 x 10-5), ID3A (P = 1.78 x 10-3), 
ID3B (P = 3.77 x 10-2) and DBS2 (P = 3.05 x 10-3)) (Figure 4.A and Supplementary Figure 6). These associations 
were observed more prominently in patients with LUAD (Figure 4.A). The 15q25 CHRNA5 lung cancer sentinel 
variant, rs72740955, had the most striking effect (Supplementary Table 2 and Supplementary Figure 7) but the 
associations remained significant after excluding genome-wide variants for lung cancer (Figure 4.A). The associations 
between the smPRS and somatic mutation burden (P = 0.034) and with mutation signatures attributed to tobacco 
smoking (SBS4: P = 0.023, ID3: p = 0.054, DBS2: P = 0.035, Supplementary Figure 8) were similarly observed in an 
independent cohort of 61 lung cancer patients whose germline and matched tumour samples have undergone WGS, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.04.26.21254132doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.26.21254132


replicating this finding. We additionally projected the smPRS into other cancer types in TCGA cohorts and the 
association with TMB was also observed in the esophageal carcinoma (ESCA) cohort (Supplementary Table 6). 
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DISCUSSION  
This study identified 21 lung cancer susceptibility loci, including eight novel loci by combining large, 

genotyped biobank data and traditional genome-wide association studies.  Three of eight novel loci were also 
associated with propensity to smoke. This included brain eQTLs variants for both subunits of the neuronal nAChRs 
α4β2 receptor. Variants in LD with the α4 subunit (rs2373500) have been described in nicotine dependency and lung 
cancer risk, albeit not at GW significance for lung cancer,18 while the β2 receptor and lung cancer risk has not been 
described. The neuronal nAChRs α4β2 receptor is the most abundant nAChR subtype within the human brain and 
important within the dopaminergic signalling pathway. The α4β2 receptor has a key role in nicotine dependence 
behaviours30 and a major target in nicotine addiction intervention.31,32 The third novel locus related to lung cancer and 
propensity to smoke is telomeric to the MHC region, where the target candidate gene(s) is less obvious. The MHC 
region was among the first susceptibility loci to be associated with lung cancer.6,33–35 However, rs7766641, is not in 
LD with these previously described variants (R2< 0.001) and associated with the number of cigarettes smoked per day, 
implying that these are distinct associations.  
 

This meta-analysis also identified additional lung cancer susceptibility loci that appear to be independent of 
smoking propensity. This included variants at 15q24 near CYP1A1, CYP1A2 and CYP11A1 that participate in the 
metabolism of many different xenobiotics and some endogenous substrates. Variants at the 15q24 CYP1A1 / CYP1A2 
locus have been linked with multiple traits, notably other forms of propensity (coffee consumption) and forced vital 
capacity (FVC).28,29 The coffee consumption/FVC variants at this locus appear distinct and colocalisation analysis 
implicates FVC more in the lung cancer association, which also seems aetiologically more plausible. For tissue 
expression, rs12441817 colocalised with lung tissue expression of the processed pseudogene RP11-10O17.1 (Figure 
2.D) although how this pseudogene relates to lung cancer susceptibility is unclear.  
 

An additional novel lung cancer susceptibility variant, rs61612408, was a lung tissue eQTL for the DNA 
repair gene CHEK1 (Figure 2.C). Similar to previously described variants associated near CHEK2 and BRCA2, the 
association between rs61612408 and lung cancer appears more prominent in lung squamous cell carcinomas9,10. We 
additionally noted the variant impacting the MDM4 gene, which is an important p53 regulator. This variant was 
previously associated with non-glioblastoma tumours36 and more recently squamous cell carcinomas of the lung and 
head / neck,37 although here we noted weak evidence for association in lung adenocarcinoma (Table 1). At 11p11.2 
colocalisation analysis showed little evidence for involvement with genes C1QTNF4 (lung) and MTCH2 (brain-
cortex), suggesting that these signals are unlikely to explain the lung cancer association, one other candidate is 
potentially PTPRO which is hypermethylated in several cancers including lung.38,39 At 4q13.2, the finding remains 
ambiguous, but from histological subtypes analysis performed from the previous reported GWAS study, it appears 
that this signal is mostly found in lung adenocarcinoma. 
 

We additionally sought to use the shared genetic aetiology between lung cancer susceptibility and smoking 
related traits and gene expression annotations (eQTL) to explore variants that did not achieve GW significance. We 
used the partial least squared (PLS) method to select variants related to these traits for the PRS analysis and 
demonstrated that such variants are indeed enriched for susceptibility alleles. While the role of these individual 
variants remains to be confirmed, these sub-GW significant variants were located near relevant candidate genes 
(smoking traits like CHNRA6, DBH and eQTLs for ERCC2, RAD51C, XRCC3 and CASP8).  Combining both sub-
GW PRS lists (smoking PRS and eQTL PRS) with GW significant results reached an OR of 1.36 per standard 
deviation unit increase in score improving on previous PRS predictions (OR 1.17 and 1.26),40,41 despite the 
conservative clumping approach (R2 < 0.1) employed. This suggests that integrating functional annotations may be of 
interest for PRS.  
 
Lastly, the analysis of the smoking PRS demonstrated an association between a person’s genetic risk load and 
mutation burden, and or burden of tobacco-related somatic mutational signatures, within two independent case cohorts 
and using different sequencing methods (exome sequencing and whole genome sequencing). These associations 
appear consistent with the notion that genetic variants influence an individual’s smoking behaviour, which in turn, 
influences their carcinogenic exposure and consequently, their somatic mutation burden.  
 
In conclusion, this work has increased the number of variants associated with lung cancer susceptibility, with the 
identification of novel susceptibility loci. PRS analysis highlighted that many additional variants remain to be 
discovered and provided insights into the carcinogenic mechanisms. 
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Figure legends 
 
Figure 1: Manhattan plot of the meta-analysis of genome-wide by proxy (GWAx) with genome-wide association 
study (GWAS) into lung cancer.  
The Manhattan plot displays the results of the meta-analysis of the GWAx (48,843 proxy cases and 197,029 proxy 
controls without a family history of any cancer) and the GWAS (29,266 cases and 56,450 controls) with the new 
novel loci highlighted in black with the likely candidate gene name presented. This meta-analysis discovered 65 novel 
loci across 21 cytoband regions. The x-axis is the chromosome position across the autosomal chromosomes, with the 
Y-axis containing the association level displayed as the -log10(P-value), derived by a multivariate logistics regression 
model.  The red dotted line displays the genome-wide significance threshold (5x10-8)  
 
Figure 2: Brain and lung eQTLs discovered within the eight novel loci  
 Co-localisation between lung cancer (x axis) and CHRNB2 putamen expression (A), CHRNA4 putamen expression 
(B), CHEK1 lung expression (C) and RP11-10O17.1 lung gene expression(D) (y axis). Each variant and eQTL status 
were compared using COLOC for colocalisation to confirm that the lung cancer SNP was the same SNP driving the 
eQTL effect in both brain and lung tissues, the Bayesian posterior probability (PP4) of each gene was tested, CHRNB2 
(PP4=98.67%), CHNRA4 (96.48%), CHEK1 (91.1%) and RP11-10O17 (95.25%) 
 
Figure 3: Germline polygenic risk score construction using smoking and eQTL related SNPs and performance 
testing within the UK Biobank lung cancer cohort. 
(A) The mean lung cancer association statistics calculated by variant bins (100 variants per bin) ranked by component. 
Variants (clumped on LD based on lung cancer P values) were ranked based on PLS component for smoking 
propensity (Component1_smoking, top), and eQTLs (Component1_eQTL, bottom) (x axis) and plotted against the 
mean lung cancer Z statistics calculated across variants in each bin (y axis). Values that exceed 3 SDs from the mean 
are noted in red (NbinsSmoking =9, NbinsQTL = 37) and are those that have the highest values of the PLS 
component. (B) A Forest plot of the performance for the constructed PRS in comparison to just using the 65 genome-
wide significant (GWS) independent loci as a baseline using the model LC ~ PRS + array + sex + array of recruitment 
+ first 5 PCs.  The top panel contains the smoking PRS and the eQTL PRS list without containing any of the 65 GW 
loci within each list. The middle panel contains the model with smoking status (previous, current, never) added. The 
bottom panel contains the full lists without adjusting for smoking status. The combined PRS contains all the 65 loci 
plus both the smoking and eQTL lists.   
 
Figure 4: Polygenic risk scores for smoking (smPRS) associations with total number of mutations and 
mutations attributable to SBS4 in the TCGA cohort. 
 (A) Associations with total number of mutations. (B) Associations with SBS4 mutations. The left panels represent the 
distribution of the number of mutations in the sm-PRS quintiles. The right panels correspond, respectively, to the 
forest plots of sm-PRS associations with total mutational burden (panel A) and SBS4 mutations (panel B). For each 
PRS, the association was tested: i) in all lung cancer cases when considering all SNPs in the smPRS SNPs selection, 
ii) in all lung cancer cases when considering different subsets of SNPs in the PRS computation, iii) stratifying by 
histology, iv) stratifying by smoking status. Gray squares correspond to the estimate resulting from Quasi-Poisson 
models. The squares are highlighted in red when the associated P-value is below 0.05. 
 
Supplementary Figures   
Supplementary Figure 1: Genomic inflation and quantile–quantile plot across studies that were meta-analysed 
Supplementary Figure 2: Visual validation of genome-wide by proxy method by Manhattan plot compared to the lung 
cancer genome-wide association study.  
Supplementary Figure 3: Z-statistic plots for variants associated with traits at 15q24(CYP1A1) compared to lung 
cancer  
Supplementary Figure 4: CYPA1A expression in the nucleus accumbens 
Supplementary Figure 5: Partial least squares of mean z-scores for lung cancer for the polygenic risk scores 
construction and correlation across smoking traits and eQTLs  
Supplementary Figure 6: The smPRS and eQTLPRS associations with mutational signatures related to smoking 
attributed to tobacco 
Supplementary Figure 7: Mutational burden in lung tumours across rs72740955 genotype categories 
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Supplementary Figure 8: eQTLPRS associations with total number of mutations and mutations attributable to SBS4 in 
the TCGA cohort 
Supplementary Figure 9: Replication analysis for the association of PRS with somatic mutational load in the GeniLuc 
cohort  
 
Supplementary Tables within Supplementary Materials  
Supplementary Table 1. UK Biobank Sample selection and filtering. 
Supplementary Table 2. 65 Genome wide significance variants identified by the GWAx-GWAS meta-analysis. 
Supplementary Table 3. eQTL analysis on rs78062588 and rs11697662. 
Supplementary Table 4. PRS panels for smPRS and eQTLPRS. 
Supplementary Table 5. Association between PRS and lung cancer in the TCGA case cohorts. Association in lung 
cancer versus all other cancers.  
Supplementary Table 6. Association of tobacco-smoking PRS (sm-PRS) with mutation load and SBS4 by TCGA 
cohort.   
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Figure 1: Manhattan plot of the meta-analysis of genome-wide by proxy (GWAx) with genome-wide 
association study (GWAS) into lung cancer.  
The Manhattan plot displays the results of the meta-analysis of the GWAx (48,843 proxy cases and 197,029 
proxy controls without a family history of any cancer) and the GWAS (29,266 cases and 56,450 controls) with 
the new novel loci highlighted in black with the likely candidate gene name presented. This meta-analysis 
discovered 65 novel loci across 21 cytoband regions. The x-axis is the chromosome position across the 
autosomal chromosomes, with the Y-axis containing the association level displayed as the -log10(P-value), 
derived by a multivariate logistics regression model.  The red dotted line displays the genome-wide significance 
threshold (5x10-8)  
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Figure 2: Brain and lung eQTLs discovered within the 8 novel loci  
 Co-localisation between lung cancer (x axis) and CHRNB2 putamen expression (A), CHRNA4 putamen 
expression (B), CHEK1 lung expression (C) and RP11-10O17.1 lung gene expression (D) (y axis). Each variant 
and eQTL status were compared using COLOC for colocalisation to confirm that the lung cancer SNP was the 
same SNP driving the eQTL effect in both brain and lung tissues, the Bayesian posterior probability (PP) of 
each gene was tested, CHRNB2 (PP=98.67%), CHNRA4 (96.48%), CHEK1 (91.1%) and RP11-10O17 (95.25%) 
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Figure 3: Germline polygenic risk score construction using smoking and eQTL related SNPs and 
performance testing within the UK Biobank lung cancer cohort. 
(A) The mean lung cancer association statistics calculated by variant bins (100 variants per bin) ranked by 
component. Variants (clumped on LD based on lung cancer P values) were ranked based on PLS component for 
smoking propensity (Component1_smoking, top), and eQTLs (Component1_eQTL, bottom) (x axis) and plotted 
against the mean lung cancer Z statistics calculated across variants in each bin (y axis). Values that exceed 3 
SDs from the mean are noted in red (NbinsSmoking = 9, NbinsQTL = 37) and are those that have the highest 
values of the PLS component. (B) A Forest plot of the performance for the constructed PRS in comparison to 
just using the 65 genome-wide significant (GWS) independent loci as a baseline using the model LC ~ PRS + 
array + sex + array of recruitment + first 5 PCs.  The top panel contains the smoking PRS and the eQTL PRS list 
without containing any of the 65 GW loci within each list. The middle panel contains the model with smoking 
status (previous, current, never) added. The bottom panel contains the full lists without adjusting for smoking 
status. The combined PRS contains all the 65 loci plus both the smoking and eQTL list.   
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Figure 4: Polygenic risk scores for smoking (smPRS) associations with total number of mutations and 
mutations attributable to SBS4 in the TCGA cohort. 
 (A) Associations with total number of mutations. (B) Associations with SBS4 mutations. The left panels 
represent the distribution of the number of mutations in the sm-PRS quintile. The right panels correspond, 
respectively, to the forest plots of sm-PRS associations with total mutational burden (panel A) and SBS4 
mutations (panel B). For each PRS, the association was tested: i) in all lung cancer cases when considering all 
SNPs in the sm-PRS SNPs selection, ii) in all lung cancer cases when considering different subsets of SNPs in 
the PRS computation, iii) stratifying by histology, iv) stratifying by smoking status. Gray squares correspond to 
the estimate resulting from Quasi-Poisson models. Those squares are highlighted in red when the associated P-
value is below 0.05. 
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Table 1: The 8 novel genome-wide significant loci associated with lung cancer risk  

 
 
*  1q32.1, 6p22.2 and 20q13.33 contains two independent SNPs  
** rs2281925 has been reported as genome-wide significant for adenocarcinoma, but not for overall lung 
cancer risk 
 Histological subtypes taken from McKay et al 2017, Adeno = Adenocarcinoma, Small = Small 
cell carcinoma, Squam = Squamous cell carcinoma, Variants that are in bold indicate that the SNP is also 
related to smoking propensity, Likely targets in bold are eQTLs for the given SNP in either the lung or brain 
tissues within GTEx   
 
 
 
 
 
 

Variant Cytoband chr:pos (hg19) Ref Alt P-value OR (L95%-U95%) 
Likely targets 

(sentinel distance) Adeno Squam Small cell 

rs78062588 1q21.3 chr1:154566225 T C 4.03E-08 0.904 [0.868-0.94] 
ADAR(0kb), 

CHRNB2(+13.87kb) 

 

1.15E-03 

 
6.99E-06 1.73E-02 

rs4252707 1q32.1 chr1:204508147 G A 9.11E-10 0.931 [0.908-0.954] MDM4(0kb) 1.42E-01 1.57E-03 - 
rs7551222 1q32.1* chr1:204599295 A G 2.56E-08 1.057 [1.037-1.076] MDM4 1.97E-01 1.44E-03 3.26E-02 

rs185666783 4q13.2 chr4:67833774 G C 5.56E-09 1.062 [1.042-1.083] 
- 

4.92E-05 

 3.34E-02 1.66E-04 

rs7766641 6p22.2 chr6:26184102 G A 7.05E-14 0.926 [0.906-0.946] 
HIST1H2BE(0kb) – 

broad locus 
4.79E-04 6.06E-08 2.98E-04 

rs6913550 6p22.2* chr6:26540683 C T 4.82E-14 0.918 [0.896-0.94] 
BTN1A1,HCG11,HM

GN4 
2.09E-02 2.26E-03 9.33E-05 

rs72905558 11p11.2 chr11:48201643 A T 2.41E-09 0.913 [0.88-0.94] PTPRJ(+9.249kb) 1.50E-03 2.22E-01 2.51E-03 
rs61612408 11q24.2 chr11:125495044 G A 3.07E-08 0.903 [0.87-0.94] CHEK1(0kb) 1.40E-01 1.15E-05 7.26E-02 

rs12441817 15q24.1 chr15:75025814 T C 4.77E-08 1.096 [1.06-1.13] 
CYP1A1(+7.937kb), 

CYP1A2(-15.37kb) 
2.19E-04 - 0.443 

rs11697662 20q13.33 chr20:61992005 T C 1.49E-08 1.071 [1.05-1.09] CHRNA4(0kb) 6.42E-02 5.50E-06 3.40E-03 
rs2281925** 20q13.33* chr20:62376503 G A 3.49E-09 1.091 [1.062-1.12] RTEL1 3.05E-08 9.46E-01 5.34E-02 
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