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Abstract

During the SARS-COV2 pandemic, there has been a persistent call for universal testing to better
inform policy decisions. However, a little considered aspect of this call is the relationship between a test’s
accuracy and the tested demographic. What are the implications of frequent, universal testing in otherwise
asymptomatic demographics? By applying Bayesian statistics, it becomes clear that as the odds of having
COVID decreases, there is a non-linear increase in the odds that each positive test is, in fact, a false
positive. This phenomenon has precedence in the historical narrative surrounding universal mammogram
screening which is no longer recommended due to the unacceptably high rate of false positives. The solution
to combat the inflation of false positives is also suggested by Bayesian statistics: intelligently integrating
multiple COVID diagnostic tests and symptoms via Bayes’ Theorem, an approach conceptually similar to
pre-screening for mammograms. This extra information is readily available (e.g. olfactory function and
fever) and will minimize the economic and emotional costs incurred by false positives while simultaneously
improving the information available for policy-makers. In summary, along with the push for universal
testing should be an equally rigorous approach to interpreting the test results.

Potential Risks of Universal Testing

Despite the extensive discussion surrounding various testing modalities for detecting the SARS-COV2
virus, there is comparatively little discourse on mitigating the impact of false positives [1] which exist
for every test, regardless of the quality. The emotional and economic cost of false positives for universal
testing has already been extensively discussed for universal mammogram screening, where it was realized
that pre-screening significantly improved the diagnostic value of the test while minimizing the emotional
burden of false positives [2]. In the case of mammograms, even though the nominal false-positive rate
for a mammogram is less than 3% [3], universal screening resulted in approximately 38,057 false-positive
mammograms out of 405,191 total tests [4], nearly four times the expected number of false positives. Just
as for mammograms, the economic and human cost of every false positive in COVID tests is significant [1].
Children, extended families, and teachers are quarantined. Colleagues are forced to take unpaid time off
and businesses are left with minimal staff. Entire buildings shut down for cleaning. Beyond the economic
burden, a false positive promotes risky behavior by actors assuming immunity, thereby undermining the
herd immunity [5].

The mammogram narrative suggests false positives are particularly problematic when historically di-
agnostic tests are being used for surveillance [6]. This is because the accuracy of the test decreases
proportionally to the prior odds of the tested individual having the disease. This can be intuited from the
following thought experiment. If you apply a test with a false positive rate of 1%, to a population of 100
people who do not have COVID, by definition you would have 1 false-positive and 0 false negatives. That
means that 100% of the positives are false. Therefore, as you decrease the probability that your tested
population has COVID by expanding the testing pool, you increase the proportion of positives which are
false positives. Many doctors intuit this trade-off and understand that ordering a test is predicated on
having a rationale for doing so (i.e. the patient is symptomatic).

Bayesian Statistics Applied to COVID testing

This relationship between test performance and tested demographic can be formalized using Bayesian
statistics, a branch of statistics dealing probability of an outcome given prior odds of an event. Formally,
the probability of a false positive (P (false+))is equal to

P (false+) = 1− sensitivity ∗ p(COV ID+)

sensitivity ∗ p(COV ID+) + (1− specificity) ∗ (1− p(COV ID+))
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Figure 1: Diagnostic test performance depends on the prior odds of infection in the tested
demographic. A,B) The probability of a false positive (P (false+)) depends on the prior odds of having
COVID (p(COV ID+)) before the test. These odds necessarily decrease as the tested pool is expanded
to more asymptomatic people. This is true even as sensitivity (A) or specificity (B) of a test increases,
though test specificity is more important for false positives than sensitivity. C) Combining two tests (dark
red and gold) of different sensitivity and specificity using a Bayesian approach, reduces the proportion of
false positives (green). This is because the prior (p(COV ID+)) of the second test is updated with the
posterior odds from the first test.

where specificity is the rate of true negatives (p(test−|COV ID−)), sensitivity is the rate of true positives
(p(test+ |COV ID+)), and p(COV ID+) is the probability of having COVID before the test (See Supple-
ment for derivation). It is important to note that generally the sensitivity and specificity are not equal for
any given test.

Examining the relationship between the percentage of positive tests which are false positives and the
prior odds of having COVID reveals that as the prior odds of having COVID decreases, the proportion
of false positives increases (Figure 1A) matching our expectation from the thought experiment. The
proportion of false positives should not be confused with the rate of positives which decreases as the prior
odds decrease. Increasing the specificity and sensitivity are not the solution as this trend is true of all tests
to varying degrees (Figure 1A, B). This is not merely a curious phenomenon at some extreme, but plays
an escalating role as the testing pool is continuously expanded. For example, taking the specifications of
the gold standard PCR-based test which has 70-90% sensitivity and a remarkable 99% specificity, applied
to a population with 1% prior odds of having COVID (estimated based on active caseload in a given area),
false positives account for 52% of all positive tests.

Intelligently integrating multiple tests reduces the proportion of false positives

What is a solution to this tension? The shape of the curves in Figure 1A suggests even incremental
increases in the prior odds dramatically reduce the probability of a false positive. When a test is being
applied universally, the only approach to increasing the prior odds is to chain multiple tests together. This
is because the outcome of each test becomes the prior odds for the subsequent test. Bayesian statistics,
therefore, provides a simple solution to integrate multiple tests and reduce the economic burden of false
positives.

For example, pairing an olfactory performance test [7] with PCR test has the following impact. If the
olfactory test has specificity and sensitivity of 96% and 70% respectively [7], administered in a population
with 1% prior odds of COVID+ results in false positives comprising 82% of the positives. If however, the
positives are subsequently tested using the PCR test, the increase in prior odds from 1% to 18% based on
the olfactory test decreases the proportion of false positives from 52% to 6% in the PCR test (Figure 1C,
gold to green line). Because the order of the test does not matter, chaining together tests in order of the
speed of turn around can improve the quality of each subsequent test while reducing the quarantine time
for false positives thereby mitigating their economic and emotional impacts. Additionally, the posterior
odds measured by each test decay back to the basal p(COV ID+) level, as defined by the active caseload,
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over time. Therefore, reducing the spacing between subsequent tests is critical to maximizing information
transfer between tests.

One could easily imagine extending this framework to include multiple COVID symptoms (e.g. fever,
shortness of breath, etc.) in such a way that no information is wasted in identifying true positive cases.
Indeed this is being done using Bayesian networks [8], though dealing with temporally sequenced and
sparse information is critical for continuously updating diagnosis in real-time in a large population.

In summary, holistic assessment of the patient, rather than depending on a single test will always
necessary in medicine, whether for breast cancer screening or COVID testing. That the quality of routine
PCR tests could be greatly improved by simply appending 2-3 readily measurable symptoms to each test
should be sufficient motivation to do so. Intelligent universal testing increases the value of the test while
decreasing the economic and human costs of every false positive.

Supplementary Information

Bayes Derivation

Bayes’ equation for a the probability of being COVID+ given a positive test (p(COV ID + |test+)),
also called the positive predictive value, is

p(COV ID + |test+) =
p(test+ |COV ID+) ∗ p(COV ID+)

p(test+)

where p(test + |COV ID+) is the probability of a positive test if COVID+ (commonly called a test’s
sensitivity), p(COV ID+) is the prior probability of having COVID before the test, and p(test+) is the
probability of a positive test. The probability of a positive test is equal to

p(test+) = p(test+ |COV ID+) ∗ p(COV ID+) + p(test+ |COV ID−) ∗ p(COV ID−)

where p(test + |COV ID−) is the probability of a positive test if one does not have COVID, commonly
called the false positive rate. The specificity of a test is one minus the false positive rate (1 − p(test +
|COV ID−)). So rewriting the first equation to calculate the probability of false positive (P (false+) or
p(COV ID−|test+) which is equal to 1−p(COV ID+|test+)) in terms of a test’s specificity and sensitivity
results in the following equation

P (false+) = 1− sensitivity ∗ p(COV ID+)

sensitivity ∗ p(COV ID+) + (1− specificity) ∗ (1− p(COV ID+))
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