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 2 

Abstract 23 

 24 

Mobile monitoring campaigns to estimate long-term air pollution levels are becoming 25 

increasingly common. Still, many campaigns have not conducted temporally-balanced sampling, 26 

and few have looked at the implications of such study designs for epidemiologic exposure 27 

assessment. We carried out a simulation study of fixed-site air quality monitors to better 28 

understand how different mobile monitoring designs involving short-term stationary 29 

measurements at fixed locations impact the resulting exposure surfaces. We used Monte Carlo 30 

resampling to simulate three archetypal monitoring designs using oxides of nitrogen (NOx) 31 

monitoring data from 69 regulatory sites in California: a year-around Balanced Design that 32 

sampled during all seasons of the year, days of the week, and all or various hours of the day; a 33 

temporally reduced Rush Hours Design; and a temporally reduced Business Hours Design. We 34 

evaluated the performance of each design’s land use regression prediction model. The Balanced 35 

Design consistently yielded the most accurate annual averages; while the reduced Rush Hours 36 

and Business Hours Designs generally produced more biased results. A temporally-balanced 37 

sampling design is crucial for mobile monitoring campaigns aiming to assess accurate long-term 38 

exposure in epidemiologic cohorts.  39 

  40 

Synopsis: Air pollution mobile monitoring campaigns rarely conduct temporally balanced 41 

sampling. We show that this results in biased annual average exposure estimates. 42 

 43 
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1 Introduction 46 

 47 

A large body of evidence links long-term exposure to air pollution to adverse health 48 

effects in humans, including mortality from cardiovascular outcomes and lung cancer.1–6 An 49 

increasing number of studies are using mobile monitoring campaigns to assess average long-term 50 

air pollutant levels.7–13 Mobile monitoring campaigns typically equip a vehicle with air monitors 51 

and collect short-term samples while in motion (non-stationary sampling) and/or while stopped 52 

(stationary sampling). The focus of this analysis is on the latter mobile monitoring design. A 53 

single monitoring platform can be used to collect samples at many specified locations within a 54 

relatively short period of time, making it a time and cost-efficient sampling approach. Mobile 55 

campaigns are particularly well-suited for multi-pollutant monitoring of less frequently 56 

monitored traffic-related air pollutants that require expensive instruments or instruments that 57 

need frequent attention during the sampling period.  58 

And while a few studies have investigated the number of sampling locations and repeat 59 

samples needed to improve the resulting exposure surfaces from mobile monitoring 60 

campaigns,14,15 to the best of our knowledge, none have considered the importance of conducting 61 

temporally-balanced sampling when the goal is estimation of a long-term average for 62 

epidemiologic application. This is particularly relevant since many pollutants, particularly those 63 

related to traffic, experience strong diurnal and seasonal concentration trends.16,17 Collecting 64 

limited or unbalanced sampling may thus be sufficient to answer questions surrounding peak 65 

concentrations or source identification, but it may produce biased long-term estimates and be 66 

inadequate for epidemiologic applications.22 In general, many mobile monitoring campaigns 67 

have been short, lasting from a few weeks to months and with few repeat visits to each location 68 
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spanning one to three seasons.9,18–20 Most campaigns have conducted sampling during weekday 69 

business or rush hours, ignoring the surrounding hours, when air pollution concentrations can be 70 

drastically different.8,17,21 Furthermore, short-term mobile monitoring campaigns often collect 71 

non-stationary (mobile) measurements, which can be much shorter in duration than stationary 72 

campaigns (e.g., a few seconds per road segment vs minutes or hours per stop location). It is an 73 

open question whether these shorter sampling times along with the platform’s increased 74 

proximity to immediate vehicle sources (e.g., in a traffic queue while stopped at a traffic signal) 75 

may produce more biased and less precise exposure surfaces when compared to short-term 76 

stationary monitoring.12,23–26  77 

The goal of this paper is to shed light on the temporal design of a short-term stationary 78 

mobile monitoring campaign for application to epidemiologic cohort studies. We carry out a set 79 

of simulation studies to better understand the role of mobile monitoring design on the prediction 80 

of annual average surfaces. We use existing monitoring data from California to compare the 81 

primary, annual site averages when all of the data are included to subsequent analyses utilizing 82 

subsets of the data. These data provide a unique opportunity to explore how short-term stationary 83 

sampling strategies can influence the resulting estimated annual-average concentration. Our 84 

analysis requires having a long-term, comprehensive set of measurement data, which therefore 85 

necessitates using fixed-site measurements rather than mobile measurements, to shed light on an 86 

aspect of study design for short-term stationary mobile monitoring. 87 

 88 

  89 
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2 Methods  90 

 91 

2.1 Data  92 

 93 

We simulate three sampling designs (see below) using hourly observations for oxides of 94 

nitrogen (NOx) collected during 2016 from regulatory Air Quality System (AQS) sites in 95 

California. NOx was selected since it is a spatially and temporally variable traffic pollutant with 96 

a strong diurnal pattern,8,27,28 and it is measured at many regulatory monitoring sites in 97 

California, providing a large enough dataset for this analysis.29 98 

We included 69 of 105 California AQS sites that met various criteria (Error! Reference 99 

source not found., SI Figure S3). First, sites needed to have readings at least 66% of the time 100 

(5,797/8,784 hourly samples; 2016 was a leap year). Second, sites needed to have sampling 101 

throughout the year, such that data collection gaps were a maximum of 45 days long. These two 102 

criteria are in line with other air quality work.30 Third, sites were required to have sampled for at 103 

least 40% of the time during various two-week periods that were used in two of our “common” 104 

designs (described below). This sample size ensured that we could sample during these periods 105 

without replacement. Fourth, sites were required to have positive readings (> 0 ppb) at least 60% 106 

of the time, thus ensuring that sites had sufficient variability in their concentrations and allowing 107 

us to model annual averages on the natural log scale. Finally, sites in rural and industrial settings 108 

(as determined by the US EPA)31 were excluded since these do not represent where the majority 109 

of people reside. The resulting sites were in both urban and suburban settings, in residential and 110 

commercial areas.  111 

 112 
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 113 

Figure 1. AQS sites included in this analysis (N=69) and their true annual average NOx measurements, as 114 

measured by the long-term Year-Around Balanced Design Version 1 (see Methods for details).   115 

 116 
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2.2 Sampling Designs 117 

 118 

We conducted simulation studies to characterize the properties of three sampling designs 119 

(  120 
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Table 1, Supplementary Information [SI] Figure S1). Each design has a long- and a short-121 

term sampling approach. Long-term approaches use all of the data that meet each design’s 122 

definition to estimate site annual averages and are analogous to traditional, fixed-site sampling 123 

approaches where sampling at a given location occurs over an extended period of time. Short-124 

term approaches only collect 28 samples per site and are analogous to mobile monitoring 125 

campaigns that collect a few repeat samples per site. (The cut-off of 28 samples reflects our 126 

preliminary analyses showing that 28 hourly NOx samples are sufficient to estimate a site’s 127 

annual average within about 25% error or less [SI Figure S2].) Each design has multiple versions 128 

where samples are collected at slightly different times. The various design versions are intended 129 

to reflect the bias produced if only certain times are included in the measurements. We simulated 130 

each short-term sampling approach 30 times (Monte Carlo resampling), and hereafter refer to 131 

each of these simulations as a “campaign” since each represents a potential mobile monitoring 132 

study.  133 

 134 

  135 
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Table 1. Simulated sampling designs used to estimate site annual averages.
1
  136 

Design Sampling 

Approach and 

Number of 

Samples2 

Sampling 

Seasons 

Sampling Days Sampling Hours 

Year-Around 

“Balanced” 

Design  

Long-term 

 

(Max  

8,784 (V1), 

7,320 (V2), or 

4,392 (V3) 

hourly samples 

per site x 1 

campaign 

simulation) 

 

 

 

Winter, spring, 

summer, fall 

Mon – Sun V1 (All Hours) 

 

V2 (Most 

Hours): 5 AM –

12 AM 

 

V3 (Truncated 

Hours): 6-9 AM, 

1-5 PM, 8-10 PM 

 Short-term 

 

(28 hourly 

samples per site 

x 30 campaign 

 7 samples per 

season 

5/7 weekday 

samples; 2/7 

weekend samples 

Random hours 

according to V1, 

V2, or V3 
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simulations) 

Two-Season 

Weekday “Rush 

Hours” Design4 

Long-term 

 

(Max 160 hourly 

samples per site 

x 1campaign 

simulation) 

V4-5: winter & 

summer (2-wk 

period per 

season) 

 

V6-7: spring & 

fall (2-wk period 

per season) 

Mon – Fri 7-10 AM, 3-6 

PM 

 Short-term 

 

(28 hourly 

samples per site 

x 30 campaign 

simulations) 

14 samples per 

season  

  Random Rush 

Hours according 

to V4-5 or V6-7 

Two-Season 

Weekday 

“Business 

Hours” Design4 

Long-term 

 

(Max 180 hourly 

samples per site 

x 1 campaign 

simulation) 

V4-5: winter & 

summer (2-wk 

period per 

season) 

 

V6-7: spring & 

Mon – Fri 

 

 

9 AM – 5 PM 
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fall (2-wk period 

per season) 

 Short-term 

 

(28 hourly 

samples per site 

x 30 campaign 

simulations) 

14 samples per 

season  

 Random 

Business Hours  

according to V4-

5 or V6-7 

1 There are three archetypal sampling designs, each with long- and short-term sampling 137 

approaches and multiple versions. Long-term approaches are analogous to traditional, fixed-site 138 

sampling, while short-term approaches are analogous to mobile monitoring campaigns. Short 139 

names for the sampling design appear in quotes. 140 

2
 Long-term approaches have 1 campaign simulation (each includes all of the available data that 141 

meet that design’s criteria), while short-term approaches have 30 campaign simulations (each 142 

with 28 samples). Maximum hourly samples per site varied because some sites had missing 143 

readings. Year 2016 was a leap year. 144 

4 See SI Table S1 for each version’s exact sampling periods 145 

 146 

The Year-Around “Balanced” Design represents an “ideal” sampling scheme: sampling is 147 

conducted during all seasons, days of the week, and all or most hours of the day. Version 1 148 

collects samples during all hours of the day. Versions 2-3 reduce the sampling hours to reflect 149 

the logistical constraints of executing an extensive campaign: samples occur during most hours 150 

of the day (5 AM – 12 AM only; “Version 2”) or during 6-9 AM, 1-5 PM and 8-10 PM 151 
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(“Version 3”). Estimates from the long-term Balanced Design Version 1 are analogous to what 152 

might be collected from a traditional, year-around, fixed-site sampling scheme. For simplicity, 153 

we interchangeably refer to these as the “true” estimates or the “gold standard” hereafter, though 154 

we acknowledge that some error exists (e.g., due to missing hours or instrument accuracy). 155 

The Two-Season Weekday “Rush Hours” and “Business Hours” Designs reflect common 156 

designs in the literature. Samples are collected either during summer and winter (Versions 4-5) 157 

or spring and fall (Versions 6-7). Sampling for each version occurs on weekdays during the same 158 

two-week period for all sites during each relevant season (See SI Table S1 for each version’s 159 

exact sampling periods). Sampling is restricted to the hours of 7-10 AM and 3-6 PM (Rush 160 

Hours Design) or 9 AM – 5 PM (Business Hours Design). The short-term approach collects 14 161 

random samples during each season. 162 

 163 

2.3 Prediction Models 164 

 165 

We estimated unweighted site annual averages based on the data collected during each 166 

campaign. We log-transformed these before using them as the outcome variable in partial least 167 

squares (PLS) regression models, which summarized hundreds of geographic covariate 168 

predictors (e.g., land use, road proximity, and population density; see SI Table S2 for the 169 

covariates considered) into two PLS components (using the plsr function in the pls package 170 

in R). We evaluated the performance of each campaign using ten-fold cross-validated (CV) 171 

predictions on the native scale, incorporating re-estimation of the PLS components in each fold. 172 

The cross-validation groups were randomly selected and, importantly, fixed across all campaigns 173 

to allow for consistent model performance comparisons across design versions.  174 
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To best understand the role of design, we present results for annual average estimates, 175 

predictions, and model performance statistics. In descriptive analyses, we compare design-176 

specific annual average estimates and predictions to the gold standard (long-term Balanced 177 

Design Version 1). We compare predicted site concentrations against predictions from the gold 178 

standard since epidemiologic air pollution studies often rely on predicted exposure, and the gold 179 

standard prediction represents the best possible prediction of annual-average concentrations that 180 

a study could hope to achieve. We complement this approach with model assessment evaluations 181 

of design-specific site predictions against two different references: an assessment against the true 182 

averages, and a traditional model assessment evaluation against the respective design-specific 183 

annual average estimates. The traditional assessment compares the predicted exposures to the 184 

observed site measurements from which they were derived. This allows us to document the 185 

quantities that would normally be available from modeling the data measured from any specific 186 

campaign. We summarize the model performance in terms of cross-validated mean squared error 187 

(MSE)-based R2 (R2
MSE), regression-based R2 (R2

reg), and root mean squared error (RMSE). 188 

R2
MSE assesses whether two sets of measurements such as estimates and predictions are the same 189 

(along the 1-1 line), and thus reflects both bias and variation around the one-to-one line (see SI 190 

Equations 1-3 for definitions). R2
reg, on the other hand, assesses whether observations are 191 

linearly associated (based on the best fit line though not necessarily the 1-1 line) and thus adjusts 192 

for bias and slopes different than one. R2
reg is defined as the squared correlation between two sets 193 

of measurements.  194 

In sensitivity analyses, we repeated these simulations for nitrogen dioxide (NO2) and 195 

nitrogen monoxide (NO), adding a two ppb constant to all of the hourly NO readings before log-196 

transforming to eliminate negative and zero concentration readings. Furthermore, we conducted 197 
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NOx simulations for a subset of sites (N=17) within the Los Angeles (LA) and San Diego 198 

Counties, refitting PLS models to these sites alone. This region was meant to represent a 199 

potential area of interest for epidemiologic exposure assessment and one that could be more 200 

feasibly covered by a mobile monitoring campaign, though it had a reduced sample size. 201 

 202 

All analyses were conducted in R (v 3.6.2, using RStudio v 1.2.5033).
32

 SI Note S1 lists the R packages 203 

used. All map tiles were created by Stamen Design
33

 under CC BY 3.0,
34

 using data by OpenStreetMap 204 

under ODbL.
35

 205 

 206 

3 Results 207 

 208 

3.1 Hourly Readings 209 

 210 

Sites (N=69) had on average (SD) of 8,090 (361) hourly readings, the equivalent of 337 211 

(15) days of full sampling (See SI Table S3). Average (SD) hourly NOx concentrations were 16 212 

(21) ppb (See SI Table S4). Sites had seasonal, daily, and hourly concentration patterns, with 213 

trends being more pronounced at some sites than others (See SI Figure S4-S6).   214 

 215 

3.2 Annual Average Estimates 216 

 217 

 Across the 69 monitor locations, measured annual average concentrations (long-term 218 

Balanced Design Version 1), had a median (IQR) of 14 (10 - 21) ppb and ranged from 3-56 ppb. 219 
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The short-term and long-term sampling approaches resulted in similar distributions of annual 220 

averages for different design versions. Figure 2 shows the long-term and a single short-term 221 

approach for each design. Overall, the long-term and short-term approach for each design 222 

version had very similar distributions. All of the Balanced Design versions resulted in only slight 223 

differences in their medians and IQRs. The Rush Hours Design versions generally resulted in 224 

slightly higher annual averages than the true averages, with some versions being more variable 225 

and having somewhat different distributions. The Business Hours Design versions resulted in 226 

annual averages that were generally lower than the true averages and less variable than the Rush 227 

Hours Design versions. See SI Table S5 for summary statistics. SI Figure S7 shows annual 228 

average estimates for all campaigns and pollutants. 229 

 230 

 231 

Figure 2. Distribution of NOx annual averages (N=69 sites) from different design versions. Showing the 232 

one campaign for each long-term approach and one example campaign for each short-term approach. 233 
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 234 

Figure 3 shows the site-specific distributions of annual averages across designs for short-235 

term approaches relative to the true averages for a stratified random sample of 12 sites. Sites are 236 

stratified by whether their true mean concentration was in the low (<25th percentile), middle 237 

(25th-75th percentile) or high (>75th percentile) concentration category. The variation of averages 238 

across campaigns increases with concentration in all designs. Site-specific averages are similar to 239 

the true averages for all Balanced Design versions while there were multiple sites from the 240 

Business Hours Design versions with averages systematically lower. The Rush Hours Design 241 

versions also had many biased averages, although the direction of the bias varied by site and 242 

design version. SI Figure S8 shows these biases for all sites. 243 

 244 
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 245 

Figure 3. Site-specific NOx measurement error for short-term designs (N = 30 campaigns) as compared to 246 

the true annual average at that site (long-term Balanced Design Version 1). Showing a stratified random 247 

sample of 12 sites, stratified by whether their true concentration was in the low (<25
th

 percentile), middle 248 

(25
th

-75
th

 percentile) or high (>75
th

 percentile) concentration category and arranged within each stratum 249 

with lower concentration sites being closer to the bottom.  250 

  251 
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3.3 Model Predictions  252 

  253 

The PLS model of the true annual average had a root mean square error (RMSE) of 7.2 254 

ppb and a mean square error-based coefficient of determination (R2
MSE) of 0.46.  255 

We compared PLS model predictions from each short-term design to the gold standard 256 

model predictions. SI Figure S9 shows the relative standard deviations of predictions by design 257 

version, with 1 indicating that design predictions have the same standard deviation as the gold 258 

standard model predictions. Overall, the Balanced Design predictions have similar variability to 259 

those of the gold standard (range: 0.87-1.28), the Rush Hours Design predictions are more 260 

variable (range: 0.90-1.74), and the Business Hours Design predictions are mixed: some less and 261 

some more variable (range: 0.73-1.54). Figure 4 displays these comparisons as scatterplots and 262 

best fit lines. The scatterplots show that there are a few sites, some of which have high leverage, 263 

that have variable predictions in all designs. From the best fit lines, we observe that all short-264 

term Balanced Design versions resulted in the most accurate predictions on average, as indicated 265 

by their overlapping general trends along the one-to-one line. The Rush Hours Design versions 266 

were more likely to have a positive general trend, while the Business Hours Design versions 267 

were more likely to have a negative general trend, indicating, for example, that higher 268 

concentrations were more likely to be over- or under-estimated, respectively. However, there 269 

was heterogeneity in this overall pattern across the Rush and Business Hours Design versions. 270 

Furthermore, there was additional heterogeneity across individual campaigns. The SI contains 271 

comparable figures comparing design predictions to the gold standard and additional figures for 272 

NO and NO2 (SI Figures S10-S13).  273 

 274 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2021. ; https://doi.org/10.1101/2021.04.21.21255641doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.21.21255641
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 20

 275 

Figure 4. Scatterplots and best fit lines of cross-validated short-term predictions for 30 campaigns vs the 276 

gold standard predictions for NOx. Thin transparent lines are individual campaigns, colored by design 277 

version; thicker lines are the overall version trend. (One prediction is excluded for clarity from the Rush 278 

Hours Version 4 scatterplot at x=24 ppb, y=109 ppb [site 60731016] but included in the line plots.) 279 

 280 
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Figure 5 shows site-specific comparisons of predictions across 30 short-term campaigns 281 

relative to the gold standard predictions for a stratified random sample of 12 sites in order to 282 

characterize relative bias (see SI Figure S14 for all sites). Overall, the short-term Balanced 283 

Design predictions had a median (IQR) bias of 0.2 (-1 – 1.4) ppb relative to the gold standard 284 

predictions (see SI Table S7 for details). All Balanced Design predictions were very similar to 285 

the gold standard predictions, though some sites frequently had larger biases. The Rush Hours 286 

and Business Hours Design versions were more likely to consistently produce biased site 287 

predictions, with a median (IQR) bias of 1.2 (-1.2 – 4) ppb and -3.8 (-6.6 – -1.4) ppb, 288 

respectively. While the Rush Hours Design versions generally resulted in higher predictions 289 

across sites (with some inconsistency across versions for a few sites), the Business Hours Design 290 

versions resulted in predictions that were both lower and higher than the gold standard 291 

predictions across sites. There were also a few sites that tended to have more biased and/or more 292 

variable predictions relative to the gold standard across all designs. We observed similar patterns 293 

when looking at estimate (rather than prediction) biases (See Figure 3, SI Figure S8). 294 

 295 
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 296 

Figure 5. Site-specific NOx prediction errors for short-term designs (N = 30 campaigns) as compared to 297 

the gold standard predictions (long-term Balanced Design Version 1). Showing a stratified random 298 

sample of 12 sites, stratified by whether true concentrations were in the low (Conc < 0.25), middle (0.25 299 

≤ Conc ≤ 0.75) or high (Conc > 0.75) concentration quantile and arranged within each stratum with lower 300 

concentration sites closer to the bottom.   301 

 302 
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3.4 Model Assessment  303 

 304 

Figure 6 shows the out-of-sample prediction performances relative to the observations 305 

from the true averages (left column) and the specific design (right column), for both the long-306 

term and short-term approaches. The boxplots quantify the distribution of performance statistics 307 

across all 30 short-term campaigns while the squares show the performance for the long-term 308 

approach of the same design version. When assessed against the true averages, all the Balanced 309 

Design versions generally perform better than either the Rush Hours or Business Hours Design 310 

versions with higher CV R2
MSE and CV R2

reg, and lower CV RMSE estimates. This is particularly 311 

apparent for the long-term approach. Furthermore, within design the performance for the long-312 

term approach is better than the majority of the short-term campaigns. There is considerable 313 

heterogeneity in performance across the Rush Hours and Business Hours Design versions. In 314 

contrast, when assessed against observations from the same design, as would typically be done in 315 

practice, the role of sampling design on prediction performance is not as evident. The superior 316 

performance of the Balanced Design is not as apparent, and some of the Rush Hours and 317 

Business Hours Design versions appear to perform better. There are also a few campaigns that 318 

show poor performance, even under the Balanced Design. SI Figure S15-S16 show similar 319 

results for NO2 and NO, with NO showing more variability and some lower performing statistics. 320 

Stratifying by whether sites were considered to have high or low variability (based on hourly 321 

standard deviation estimates) showed similar R2 and RMSE patterns (data not shown). 322 

 323 
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 324 

Figure 6. Model performances (MSE-based R2, Regression-based R2, and RMSE), as determined by each 325 

campaign’s cross-validated predictions relative to: a) the true averages (long-term Balanced Version 1), 326 

and b) its respective campaign averages. Boxplots are for short-term approaches (30 campaigns), while 327 

squares are for long-term approaches (1 campaign).   328 
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 329 

3.5 Sensitivity Analyses 330 

 331 

 Findings were similar for sensitivity analyses (see the SI for NO and NO2 results). Figure 332 

7 and  333 

Table 2 further illustrate the resulting predictions for the Los Angeles-San Diego analysis for the 334 

gold standard campaign (long-term Balanced Version) and each of the short-term designs. Short-335 

term designs estimates are for the average site prediction across all simulations and design 336 

versions for simplicity. Compared to the gold standard campaign, the median prediction bias 337 

(and percent error) for the Balanced, Rush Hours and Business Hours designs was about 0.0 ppb 338 

(13.2%), 2.1 ppb (20.4%) and -4.0 (27.5%), respectively.  339 
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 340 

Figure 7. Site predictions from the gold standard campaign (long-term, Balanced Design, All Hours) and 341 

prediction errors from each short-term design, as compared to the gold standard campaign, for the Los 342 

Angeles-San Diego sensitivity analysis (N = 17 sites).   343 
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 344 

Table 2. Site prediction error by design relative to the gold standard campaign predictions for the 345 

southern California sensitivity analysis (No. Predictions = 17 sites x 30 simulations/version x 3-4 346 

versions/design). 347 

Design No. Predictions Absolute Error (ppb)  Percent Error (%) 

  Median IQR  Median IQR 

Balanced 1530 0.0 4.6  13.2 17.2 

Rush Hours 2040 2.1 6.8  20.4 28.7 

Business Hours 2040 -4.0 7.6  27.5 26.0 

 348 

4 Discussion 349 

 350 

In this paper we have used existing regulatory monitoring data to deepen our 351 

understanding of the importance of short-term stationary mobile monitoring study design for 352 

application to epidemiologic cohort studies. Others have shown that short-term data can be used 353 

to estimate long-term averages.8,9 What has been missing from the literature until now, however, 354 

is the impact of short-term stationary mobile monitoring study design on the accuracy and 355 

precision of long-term exposure estimates and model predictions, particularly when the goal is to 356 

produce predictions for an epidemiologic study. Our results indicate that for designs with a 357 

sufficient number of short-term samples at each location (about 28 or more), the design rather 358 

than the sampling approach (i.e., sampling duration at a given site) has the largest impact on the 359 

estimated annual averages. We focus the rest of this discussion on the short-term approaches for 360 
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each design, which resemble mobile monitoring, though the long-term approaches produced 361 

similar results.  362 

In terms of specific design, we found that all of the Balanced Design versions resulted in 363 

similar annual averages as the true averages (long-term Balanced Version 1), while the Rush 364 

Hours and Business Hours Design versions were more likely to result in more biased and more 365 

or less variable annual average estimates. Specifically, the Rush Hours Design was more likely 366 

to overestimate, while the Business Hours Design was more likely to underestimate site 367 

averages. This result was likely because the Balanced Design captured much of NOx’s temporal 368 

variability by allowing for samples to be collected during each season, day of the week, and all 369 

or most times of the day, all periods during which meteorology and traffic activity patterns 370 

impact air pollution concentrations (SI Figure S4-S6). The Rush Hours Design, on the other 371 

hand, was restricted to two sampling seasons and was more likely to sample during high 372 

concentration times of day and days of the week. The Business Hours Design had similar 373 

limitations though it was more likely to sample during low concentration times. These 374 

conclusions were the same in the Los Angeles-San Diego sensitivity analysis, which is more 375 

representative of a geographic area that could be realistically sampled by a mobile campaign.  376 

We found a similar pattern with the predictions: similar predictions across all Balanced 377 

Design versions, while most of versions in the Rush Hours tended to overpredict and those in the 378 

Business Hours tended to underpredict. However, this varied by design version, suggesting that 379 

the particular four weeks of sampling are an important source of heterogeneity in the results. The 380 

predictions were more variable for all Rush Hours Design versions and one Business Hours 381 

Design version (SI Figure S9). One Business Hours Design version was less variable, while two 382 

versions were about the same relative to the gold standard predictions.  383 
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The similarity in annual averages and predictions across all of the Balanced Design 384 

versions suggests that campaigns with slightly reduced sampling hours (for example, due to 385 

logistical constraints) should to a large degree still produce unbiased annual averages at most 386 

sites. On the other hand, campaigns that follow more temporally restricted sampling designs such 387 

as the Rush Hours and Business Hours Designs may produce systematically biased results, with 388 

the degree and direction of error being heavily impacted by the sampling window that happens to 389 

be selected. 390 

At the site level, we saw that while any individual study campaign had the potential to 391 

produce biased estimates and predictions, the Rush Hours and Business Hours Designs were 392 

more likely to do so than the Balanced Design. The direction and magnitude of bias varied by 393 

site and depended upon the sampling design and the typical seasonal, day of week, and time of 394 

day patterns of pollution at that site. This suggests a simple correction factor to time-adjust short-395 

term measurements based on long-term observations at a small number of reference sites, for 396 

example using regulatory fixed sites, is unlikely to fully adjust for bias at the site level.22 While 397 

many past campaigns have taken this approach to account for the fact that short-term stationary 398 

mobile sampling inherently misses some observations, this approach makes a strong assumption 399 

that all sites have the same temporal trends. SI Figure S17 – S19 illustrate the temporal trends for 400 

sites included in the Los Angeles-San Diego analysis and clearly shows how lower concentration 401 

“background” sites are also more likely to have less temporal variation when compared to other 402 

sites. Using these “background” sites (or any other site for that matter) to adjust readings at other 403 

sites would not substantially reduce the bias from an unbalanced sampling design. This may be 404 

especially pertinent for mobile monitoring campaigns since their increased spatial coverage is 405 

more likely to capture localized pollution hotspots that may have even more temporal variation. 406 
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We thus argue that sampling design should be prioritized in mobile monitoring campaigns. 407 

Analytical methods such as temporal adjustment factors, on the other hand, should be further 408 

investigated to establish their true value given their strong assumptions. 409 

Furthermore, non-balanced designs may misrepresent some sites more than others and 410 

lead to differential exposure misclassification in epidemiologic studies since higher 411 

concentration sites were more likely to have greater degrees of bias and variation (Figure 4 – 412 

Figure 5). Thus, while non-balanced designs may be appropriate for non-epidemiologic purposes 413 

including characterizing the spatial impact of traffic related air pollutants during peak hours for 414 

urban planning and policy purposes, these could be misleading in epidemiologic applications. 415 

 In this study we were able to evaluate prediction model performance against the true 416 

annual average NOx exposure as well as against the observations typically available for model 417 

performance assessment. Performance assessment against the true averages indicates that the 418 

Balanced Design is clearly the best, and that there is little degradation in performance across 419 

design versions. This means it is possible to design high quality short-term stationary mobile 420 

monitoring studies that accommodate some measure of logistical feasibility, for example, by not 421 

requiring sampling in the middle of the night. In contrast, the performance of the Rush Hours and 422 

Business Hours Designs is comparatively worse, indicating that the logistically appealing 423 

approach that samples only four weeks during two seasons, during daytime hours, and only 424 

during weekdays is inadequate for providing high quality estimates of annual averages. Further, 425 

the performance of these designs varies considerably and unpredictably depending upon the 426 

specific pair of two-week periods that are selected for sampling. Additionally, comparison of the 427 

two R2 estimates (R2
MSE and R2

reg) indicates that not all of their poor performance is due to the 428 

inability to predict the same value as the truth (R2
MSE), but due to systematic bias in the design. 429 
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As noted earlier, R2
MSE assesses whether two measurements are the same - along the 1-1 line, 430 

whereas R2
reg simply assesses whether they are linearly associated. SI Figure S13, for example, 431 

shows that Balanced Designs generally produce predictions that are more similar to the “true” 432 

estimates from a gold standard campaign (closer to the 1-1 line), whereas the Rush Hours and, in 433 

particular, the Business Hours Designs are more likely to produce predictions away from the 1-1 434 

line. This results in the Balanced Designs having R2
MSE estimates that are only slightly lower 435 

than R2
reg estimates, whereas this drop in performance is greater for the Rush Hours and Business 436 

Hours Designs, as seen in Figure 6. 437 

Further, it is notable that the standard approach to model assessment, comparing model 438 

predictions to observations collected during the sampling campaign, doesn’t clearly reveal the 439 

superior performance of the Balanced Design or the inherent flaws of the Rush Hours and 440 

Business Hours Designs. In fact, some of the Rush Hours and Business Hours Design versions 441 

perform better than the Balanced Design when evaluated against the campaign’s observations. 442 

This is because the evaluation doesn’t take into account that the observations are biased because 443 

of the sampling design.   444 

It is notable that the performance of short-term stationary mobile campaigns were fairly 445 

consistent with, though generally slightly worse than, the performance observed in the longer-446 

term campaigns for each design version (Figure 6). However, occasionally there was an 447 

“unlucky” short-term campaign with meaningfully poorer performance than the other campaigns 448 

of the same design. This was more likely in the non-balanced designs, though even the Balanced 449 

Design versions had 1-2 of the 30 campaigns (~3-6%) with notably worse performance as 450 

quantified by R2. It may be possible that this result is driven by a few high-leverage outlier sites 451 

that impact the prediction model performance. In practice, mobile monitoring study investigators 452 
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are likely to investigate high-leverage sites and address their influence in their prediction 453 

modeling. 454 

Our study focused on short-term stationary mobile campaigns with 28 repeat samples per 455 

site. We did not consider campaigns with fewer or more visits. As evident in SI Figure S2, the 456 

percent error in estimating the annual average from fewer than 25 visits skyrockets, suggesting 457 

that site estimates will be considerably noisier in mobile campaigns with few repeat visits, 458 

regardless of the study design. Prediction model performance is thus likely to decrease as the 459 

number of visits per site decrease. Logistically, it is also difficult to achieve balance in sampling 460 

over time across season, day of week, and time of day with fewer than 28 samples per site. 461 

Furthermore, we note that this study focused on a few generalizable, common designs in the 462 

literature, though many other approaches have been taken. We expect that the variety of mobile 463 

campaign designs that have been implemented will all produce slightly different results.  464 

 In putting these results in context, it is important to recognize that in this simulation study 465 

we are using NOx hourly averages to approximate much shorter-term sampling durations (e.g., a 466 

few minutes or less) than would be collected during a mobile monitoring campaign. Shorter 467 

duration sampling will affect the noise in the data, to an amount that depends on the environment 468 

(e.g., temporal patterns in the concentrations of the pollutant being measured) and the 469 

instruments. For comparison, however, our additional evaluations of minute-level data suggest 470 

that the decrease in percent error in going from two-minute to hour-long samples is at most a few 471 

percent because of serial correlation in the data. This thus gives us confidence that the findings 472 

from this work are still generalizable to more common, shorter-term stationary monitoring 473 

campaigns with sampling periods closer to a few minutes.  474 
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Further, our study took place throughout California, a large, geographically diverse area 475 

with varying climate profiles.36 While such a large sampling domain would be challenging for a 476 

real-world mobile monitoring campaign, the overall conclusions of this study – the importance of 477 

temporally-balanced sampling, are also supported in the Los Angeles-San Diego sensitivity 478 

analysis. In terms of the siting criteria for the regulatory monitoring sites where the data came 479 

from, locations are generally meant to capture representative population exposures, including 480 

near roadway, at various spatial scales ranging from microscales (< 100 m range) to regional 481 

scales in order to inform regulatory compliance.37,38 This should thus have provided us with 482 

decent spatial coverage and concentration variability. Most air pollution studies, in fact, rely on 483 

this network of regulatory monitors.39 Still, when compared to most mobile monitoring 484 

campaigns, this study’s larger domain and reduced exposure variability may have produced 485 

lower prediction model performances than would be expected from mobile monitoring 486 

campaigns.  487 

Another distinction is that while we sampled measurements within sites at random, 488 

mobile campaigns typically sample from sites along a fixed route or in a designated area. The 489 

actual sampling scheme will thus depend on the exact route developed and the number of 490 

platforms deployed, both of which are beyond the scope of this paper. In general, sampling along 491 

a route also induces some spatial correlation in the mobile monitoring data. This dependence is 492 

often overlooked in mobile monitoring campaigns and was not addressed in this study. 493 

Furthermore, we did not consider the importance of the distribution of sampling locations in this 494 

study, which is particularly relevant when the exposure assessment goal is an epidemiologic 495 

application. Selecting sites that are representative of the target cohort’s residence locations will 496 

ensure the spatial compatibility assumption is met, which is an important way to reduce the role 497 
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of exposure measurement error in epidemiologic inference.40 This consideration is especially 498 

relevant for mobile monitoring near major sources (e.g., airports, marine activity, and 499 

industry),8,9,41–47 which may or may not represent a study cohort of interest.  500 

Our evaluation focused on NOx, NO, and NO2, which are quickly and moderately 501 

decaying air pollutants (concentrations reach background levels approximately 400-600 m from 502 

roadway sources).21 Campaigns that measure these pollutants may be more susceptible to 503 

sampling design than campaigns that measure less spatially- and/or temporally-variable 504 

pollutants such as PM2.5.
27 We selected NOx, NO, and NO2  because these traffic-related 505 

pollutants are often measured in short-term campaigns, and data for these pollutants are more 506 

widely available. Non-criteria pollutants, for example ultrafine particulates (UFP), however, 507 

have also received increasing attention in recent years given their emerging link to adverse health 508 

effects.48–51 Still, high-quality information about their spatial distribution is essentially absent, 509 

and most studies have implemented short-term mobile sampling approaches47 that may not be 510 

temporally balanced and potentially be misleading. Finally, while other discrepancies surely 511 

exist between this simulation study and realized mobile monitoring campaigns, we expect our 512 

overall conclusions on the importance of temporally-balanced sampling to be remain the same.   513 

An important next step in this work is to understand whether the differences in exposure 514 

estimates that we observed across study designs have a meaningful impact on epidemiologic 515 

inferences. This is of particular interest considering that year-around, balanced designs are 516 

resource-intensive and rare, while shorter, more convenient campaigns are more common in the 517 

literature. More research is needed to better understand how and whether unbalanced mobile 518 

monitoring campaigns may contribute high quality exposure assessments for epidemiology. 519 

Regardless of design, we expect that the predictions from all of the campaigns will result in both 520 
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classical-like and Berkson-like error.40,52–54 Specifically, the predictions capture only part of the 521 

true long-term exposure (Berkson-like error), while the parameters in the prediction model are 522 

inherently noisy (classical-like error). However, these measurement error methods have not to 523 

date considered exposure assessment study design, beyond considering the importance of spatial 524 

compatibility, i.e., that distribution of monitoring locations is the same as the distribution of 525 

participant locations. Our work suggests that deeper understanding of the role of exposure 526 

assessment design on epidemiologic inference is an important area of research. 527 

  528 

4.1 Conclusions and Recommendations for Mobile Monitoring Campaigns  529 

 530 

Mobile monitoring study design should be an important consideration for campaigns 531 

aiming to assess long-term exposure in an epidemiologic cohort. Given the temporal trends in air 532 

pollution, campaigns should implement balanced designs that sample during all seasons of the 533 

year, days of the week, and hours of the day in order to produce unbiased annual averages. 534 

Nonetheless, restricting the sampling hours in balanced designs, for example due to logistical 535 

considerations, will still generally produce unbiased estimates at most sites. On the other hand, 536 

unbalanced sampling designs like those often seen in the literature are more likely to produce 537 

biased annual estimates, with some sites being more biased than others. And while predictions 538 

from these restricted designs may at times perform similarly to balanced designs (or, more 539 

problematically, may erroneously appear to perform similarly when evaluated against 540 

measurements which are themselves biased samples), this performance may strongly depend on 541 

the exact sampling period chosen and may thus be difficult or impossible to anticipate prior to 542 

conducting a new sampling campaign. Furthermore, the differential exposure misclassification 543 
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that may result from these designs may be problematic in epidemiologic investigations. Finally, 544 

studies that implement unbalanced sampling designs are likely to have hidden exposure 545 

misclassification given that both the observations and model predictions may be systematically 546 

incorrect. By implementing a balanced sampling design, campaigns can thus increase their 547 

likelihood of capturing accurate annual average exposure averages.  548 

 549 
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